
In AIPS-98: Workshop on Knowledge Engineering and Acquisition for Planning 1Matching Problem Features with Task Selectionfor Better Performance in HTN PlanningReiko Tsuneto, James Hendler and Dana NauDepartment of Computer Scienceand Institute for Systems ResearchUniversity of MarylandCollege Park, MD 20742 USAfreiko, hendler, naug@cs.umd.edu Leliane Nunes de BarrosLaboratory of Integrated SystemUniversity of S~ao PauloAv. Luciano Gualberto 158 trav. 305508-900 S~ao Paulo Brazilleliane@lsi.usp.brAbstractDuring the planning process, a planner may often havemany di�erent options for what kind of plan re�nementto perform next (for example, what task or goal to workon next, what operator or method to use to achievethe task or goal, or how to resolve a con
ict or enforcesome constraint in the plan). The planner's e�ciencydepends greatly on how well it chooses among theseoptions.In this paper, we present and compare two types ofstrategies that an HTN planner may use to select whichtask to decompose next. Both strategies facilitate ef-�cient planning by making it easier for the plannerto identify plans that can be pruned from the searchspace|but since the strategies accomplish this in twodi�erent ways, each works better on di�erent kinds ofproblems. We present experimental results showinghow characteristics of the planning domain can be usedto predict which strategy will work best, so that thesedomain characteristics can be used to select strate-gies across application domains when building practicalplanning systems.IntroductionOne characteristic of partial-order planners|regardlessof whether they use hierarchical task network (HTN)decomposition or STRIPS-style operators|is that theysearch a space in which the nodes are partially devel-oped plans. The planner re�nes the plans into more andmore speci�c plans, until either a completely developedsolution is found or every plan is found incapable ofsolving the problem. During this process, a plannermay often have many di�erent options for what kind ofre�nement to perform next.A planner that uses STRIPS-style operators mayneed to choose which unachieved goal to work on next,which operator to use to achieve a goal, or which tech-nique to use to solve a con
ict. An HTN planner usu-ally has an even larger array of options: it may need tochoose which unachieved task to work on next, whichmethod to use to accomplish the task, or which con-straints to impose on the plan. The planner's e�-ciency depends greatly on its plan re�nement strategy,which is the way it goes about choosing among thisoptions. In particular, a large amount of the cost of

generating plans can be caused by making the wrongre�nement choices and having to backtrack over themlater (Tsuneto et al. 1996; Tsuneto, Hendler, & Nau1997).Many comparative analyses have been done forSTRIPS-style planning (Minton, Bresina, & Drum-mond 1994; Kambhampati, Knoblock, & Yang 1995;Barret & Weld 1994) aimed at identifying what kinds ofdomain characteristics make di�erent planning strate-gies perform best. For practical purposes, the resultsof such performance analyses can help a knowledgeengineer to select a problem-solving method adequateto a given application. Such practical considerationsare particularly important for HTN planning since ithas been used in a number of practical planning sys-tems (Aarup et al. 1994; Wilkins & Desimone 1994;Agosta 1995; Smith, Nau, & Throop 1996). Manyheuristics have been developed for domain independentHTN planning systems, most notably O-Plan (Currie &Tate 1991) and SIPE-2 (Wilkins 1990) including someheuristics which are evaluated in this paper. However,little analysis has been done to explain the relationshipsbetween each heuristic's performance and domain char-acteristics, and to evaluate the performances based onthem.In this paper, we present two types of task selec-tion strategies that facilitate e�cient HTN planning bydoing task selection in a way that makes it easier forthe planner to identify and prune infeasible plans. Onestrategy, which we call the Left-to-Right selection strat-egy, makes use of the explicit step ordering informationin order to select the tasks that come earlier in the plan.The second strategy, which we call the ExCon strategy,pre-processes the domain description to automaticallyextract a kind of constraint we call external conditions.During the planning, ExCon's �rst preference is for thetasks that can establish or threaten the current externalcondition.Moreover, we present empirical results to con�rm thefollowing two hypotheses about how various featuresof planning domains relate to the applicability of theabove two strategies:� in problems where there are many ordering con-straints among the goal tasks and their subtasks, the



In AIPS-98: Workshop on Knowledge Engineering and Acquisition for Planning 2Left-to-Right selection strategy performs better thanthe ExCon strategy (when Left-to-Right is not usedas a tie-breaking strategy);� the ExCon strategy performs better than the Left-to-Right strategy in problems where the goal tasks (andtheir subtasks) are highly interleaved.Section 2 describes the two task selection strategies.Section 3 presents the results of our experiments, whichwere carried out using UMCP, a domain-independentHTN planning system (Erol 1995) created at the Uni-versity of Maryland. Section presents conclusion andfuture work.Task Selection StrategiesIn this section, we describe the LtoR and ExCon taskselection strategies. In these descriptions (and through-out the paper), our notation for domain and problemdescriptions is that used in the UMCP planner.The Left-to-Right strategyIn STRIPS-style planning, there are three ways to planactions: plan forward, plan backward and a combi-nation of both. Constructing plans starting from theinitial state gives the planner the advantage of havingmore information about the world state the planner isdealing with and thus makes it easier to solve inter-actions between actions. Planning backward from thegoals has the advantage of producing lower branchingfactors because there are usually fewer actions applica-ble to satisfy a goal than a state. Although both theapproaches of forward planning and bi-directional plan-ning have been used successfully by some planners (Fink& Veloso 1994; Blum& Furst 1997), the backward plan-ning approach has been the most popular. For HTNplanning, the backward planning approach does nothave an obvious advantage since the planner constructsplans by decomposing tasks into subtasks by applyingdecomposition methods. On the other hand, the for-ward planning approach has an advantage similar toSTRIPS-style planning. First, like STRIPS-style plan-ning, the initial state is a complete description of thestate. Since only actions can a�ect the world state,inserting actions starting from the initial state can pro-vide more state information that is useful in reasoningabout later actions. Furthermore, an HTN domain cancontain explicit step orderings between subtasks, whichmake it easier for the planner to select earlier tasks.In HTN planning, the Left-to-Right (LtoR) task se-lection strategy will decompose a non-primitive taskonly when there are no other non-primitive tasks or-dered to come before it. As a tie-breaking rule to han-dle the case where more than one non-primitive task hasonly primitive tasks ordered before it, we use the FewestPredecessors (FP) heuristic, which selects non-primitivetasks which have the least number of tasks ordered be-fore them. This heuristic has the advantage that itdoes not have to check if the preceding tasks are prim-itive or not because a non-primitive task A has fewer

tasks ordered before it than a non-primitive task B ifA precedes B. So using the FP heuristic automaticallyimplements LtoR and each computation takes polyno-mial time with respect to the number of tasks in thepartial plan.While LtoR has a similar advantage to forward plan-ning in STRIPS-style planning, the LtoR strategy wepresent does not necessarily \plan forward" unless thegoal tasks and their subtasks are totally ordered. Forexample, LtoRmay select to decompose a non-primitivetask A before it selects a non-primitive task B, yet thesubtasks of A may be ordered after the subtasks of Bas a result of satisfying some state constraints.The ExCon strategyThe ExCon strategy makes use of a type of conditioncalled an external condition. Here, we give a brief de-scription of what external conditions are and how theplanner can use them to select tasks. The formal de�ni-tion of external conditions and the complete algorithmof the ExCon strategy will be presented in another pa-per (Tsuneto, Hendler, & Nau 1998).External conditions can be described intuitively asfollows. Suppose that to accomplish some task in aplan P, we decide to use some methodM. Furthermore,suppose that there is some condition c that must besatis�ed in order for M to be successful, but that thereis no way to decomposeM into a sub-plan that achievesc. In this case, the plan P cannot be successful unlessthe condition c is somehow achieved elsewhere in P .Thus, we say that the condition c is external to themethod M.For example, suppose you want to eat breakfast.Your typical breakfast is either pancakes made frompancake mix or cereal. We can encode this situation asan HTN planning problem in which there is a task called
Eat-Breakfast-Task that has two decomposition meth-ods: one to eat pancakes (as shown in Figure 1) andone to eat cereal. As shown in Figure 1, the pancakemethod decomposes Eat-Breakfast-Task into three sub-tasks: Prepare-Table, Cook-Pancake-Task, and Eat. Letus assume that the methods for these tasks involve (1)putting the syrup, fork and knife on the table, (2) cook-ing the pancakes, and (3) serving and eating the pan-cakes, respectively.Consider which conditions of the pancake method areexternal conditions. The method has four state con-straints: the constraints (initially (Egg ?egg)) and (initially
(Milk ?milk)) are static state constraints and not con-sidered for external conditions; the constraint (between
(Have pancake-mix) n0 n1) is an external conditions be-cause the task of preparing the table (i.e. n0: (Prepare-
Table)) does not make (Have pancake-mix) true and theother two tasks are ordered after n0 where the conditionmust be established; the constraint (before (Hot ?pc) n2)is not an external condition because the condition \thepancake ?pc is hot" can be caused by task n1. Thus,the constraint (between (Have pancake-mix) n0 n1) is theonly external condition is this method.
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n0: (Prepare-Table) (Cook-Pancake-Task ?pc ?egg ?milk) (Eat ?pc)n1: n2:

Constraints: (initially (Egg ?egg)) ∧ (initially (Milk ?milk))
∧ (between (Have pancake-mix) n0 n1) ∧ (before (Hot ?pc) n2)

(Eat-Breakfast-Task)Figure 1: The pancake method for (Eat-Breakfast-Task). The downward-pointing arrows represent task decomposition,and the right-pointing arrows represent precedence. The tasks in the decomposition are label as n0, n1, and n2 sothat they can be referred to in the constraint formula.External conditions are somewhat similar to unsu-pervised conditions used in O-Plan2, although thereare several di�erences in their de�nitions.1 First, un-like external conditions, unsupervised conditions mayalso specify a condition that can be established by asubtask in the decomposition method. Second, thetypes of conditions are explicitly speci�ed in O-Plan2to give the domain writer more power to control thesearch. So unsupervised conditions are explicitly speci-�ed while external conditions can be automatically ex-tracted. Moreover, conditions not speci�ed as unsu-pervised conditions may be regarded as external condi-tions. For example, only use if conditions in O-Plan2are conditions that are used to �lter out inapplicabledecomposition methods. If the conditions are for non-static state conditions (i.e. the conditions that maychange as results of other actions), then they are con-sidered external conditions by our de�nition. Similarly,some only use for query conditions may be consideredexternal conditions. For a summary and comparisonsof condition types used in O-Plan2, Nonlin and SIPE-2,see (Tate, Drabble, & Dalton 1994).After some method M is instantiated, every externalcondition of M becomes one of the applicability condi-tions in the partial plan: the conditions that must beestablished if the plan is to be successful. The ExConstrategy makes the planner work on the tasks that mayestablish or threaten an applicability condition of thepartial plan �rst. Task selection using external condi-tions requires three steps: (1) Pre-process the planner'sknowledge base to automatically extract the externalconditions for each decomposition method; (2) Duringtask decomposition, put the external conditions of thedecomposition method onto the stack; (3) When se-lecting a task to decompose, choose a task which maypotentially establish or threaten the condition on topof the stack.The ExCon strategy needs a heuristic for breakingties. We have tried using two di�erent heuristics forthis purpose. One heuristic is the LtoR heuristic de-1Also, unsupervised conditions in Nonlin (Tate 1977) andexternal-condition goals in SIPE-2 (Wilkins 1990) are de-�ned in a similar manner to unsupervised conditions in O-Plan2.

scribed earlier. The other is the \fewest alternatives�rst" (FAF) heuristic, which selects the task that hasthe smallest number of applicable methods. In therest of this paper, we use the names ExCon-FAF andExCon-LtoR to refer to ExCon with the FAF and LtoRtie-breaking strategies, respectively.ExperimentsSince both the LtoR and ExCon strategies merely spec-ify the order in which a planner will prefer to decomposetasks, they have no e�ect on the planner's soundnessand completeness. However, they do a�ect the plan-ner's e�ciency; and we hypothesize that they do so inthe following ways:� The FAF heuristic, which selects the task that hasthe fewest decomposition methods, has been shownto work well in a large variety of planning prob-lems (Joslin & Pollack 1994; 1996; Tsuneto et al.1996). However, one major de�ciency of the FAFheuristic is that it ignores pruning. By choosing aplan element with a larger number of re�nement op-tions, the planner may be able to do more pruninglater on.2 Thus, we hypothesize that the ExCon-FAFstrategy should outperform the FAF strategy, espe-cially on problems where the goal tasks are highlyinterleaved.� In planning domains in which there are many con-straints on the ordering of the subtasks, the LtoRheuristic should be able to outperform the FAFheuristic by expanding the tasks in an order that fa-cilitates the pruning of infeasible plans. Similarly, theExCon-LtoR strategy should be able to outperformthe ExCon-FAF strategy in such problem domains.To test these hypotheses, we implemented four taskselection strategies, FAF, LtoR,3 ExCon-FAF, and2In fact, O-Plan's re�nement choice mechanism (Currie& Tate 1991) has been using a combination of the FAFheuristic called Branch-1 with a Branch-N heuristic thatestimates how many possibilities lie down the re�nementpath if it is taken. This Branch-1/Branch-N heuristic itselfis based on the Hayes-Roths' OPM planner (Hayes-Roth etal. 1979).3In our implementation of FAF and LtoR, we used theFP heuristic as the tie-breaking rule for FAF and the FAF



In AIPS-98: Workshop on Knowledge Engineering and Acquisition for Planning 4Algorithm re�ne(PartialPlan)1. (Pruning) If the constraint formula of PartialPlan is False then prune this plan by returning emptyset.2. (Task decomposition) Otherwise, if the constraint formula is True and there are non-primitivetasks in PartialPlan, then decompose a task and return the resulting partial plans.3. (Solution check) If the constraint formula is True and there are no non-primitive tasks in Par-tialPlan, then satisfy auxiliary constraints and return the resulting plans as solutions.4. (Constraint enforcement) If the constraint formula is neither True nor False, then satisfy con-straints, simplify constraint formula, and propagate auxiliary constraints. Return the resultingpartial plans. Figure 2: The default re�nement strategy in the UMCP planner.ExCon-LtoR, using the UMCP planning system, adomain-independent HTN planning system (Erol 1995),and compared their performance in a number of dif-ferent planning domains, including the Random TravelPlanning domain, the Translog domain, the BlocksWorld domain and the Flat Tire domain. For our ex-periments, we ran UMCP 1.0 on Sun ULTRA work-stations using Allegro Common Lisp 4.3. We in-corporated each task selection strategy into UMCP'sdefault commitment strategy, which is described be-low. The code for the UMCP planner is available athttp://www.cs.umd.edu/projects/plus/umcp/manual/.The domains used in the experiments are available athttp://www.cs.umd.edu/projects/plus/umcp/domains/.The default re�nement strategies in UMCP Forour experiments, re�nement choices other than taskselection are made using UMCP's default re�nementstrategy. UMCP's default re�nement strategy repeat-edly (1) decomposes a non-primitive task, (2) enforceseach of the newly inserted constraints (3) evaluates andsimpli�es the constraint formula, and (4) propagatesthe previously postponed constraints. Figure 2 showsthe algorithm that UMCP uses to decide what re�ne-ment to do next. It takes a partial plan as an inputand returns a set of partial plans as the result of there�nement performed.If the constraint formula of the partial plan is False,then UMCP prunes the partial plan by returning anempty set in Step 1. When the constraint formula isTrue, UMCP decomposes a non-primitive task t in thepartial plan at Step 2. Decomposing t involves, for eachdecomposition method M of t, (1) replacing t with thesubtasks in M, and (2) replacing the current constraintformula C in the partial plan with the conjunction ofC and the constraint formula in M. If t is a predicatetask, t is also phantomized by creating a plan with thetask t replaced with a do-nothing task and the con-straint formula specifying the predicate is accomplishedat the beginning of the do-nothing task. Step 3 checksif the partial plan is a solution plan or not. If thereare no non-primitive tasks in the partial plan and theheuristic as the tie-breaking rule for LtoR.

constraint formula is True, then UMCP satis�es the re-maining auxiliary constraints by instantiating variablesand ordering steps, and return the solution plans. Ifthe constraint formula is neither True nor False, thenUMCP enforces the constraints in the partial plan atStep 4. Enforcing constraints involves adding step or-dering to the tasks, binding variables to a value, accord-ing to the constraint types. If it requires further taskdecomposition to fully enforce some constraint, the con-straint will be put into the auxiliary constraint lists tobe enforced later. If a constraint is not enforceable,then an empty plan is returned.Plan selection Our experiments used best-�rstsearch for the Block-World problems and depth-�rstsearch for all the other problems. For best-�rst search,each time the planner wants to select a partial plan forre�nement, it selects the one with the lowest value forthe following quantity:number of non-primitive tasks+ number of tasks (both primitive and non-primitive)+ number of ordering and variable constraintsthat are postponed.This selection heuristic is based on the heuristic pre-sented by Gerevini and Schubert (Gerevini & Schubert1996) and seems to perform well on many problems.Random Travel Planning DomainIn our description of the LtoR strategy earlier, wepointed out that the explicit step orderings given in thetask descriptions make it easier for the planner to selectthe tasks in a left-to-right manner. To see how muchthis can help the performance of the planner, we createda small domain called Random Travel Planning wherethere is only one level of hierarchy (i.e. no non-primitivetask is decomposed into another non-primitive task). Inthis domain, there are three types of goal tasks, Sight-
see, Travel and Eat. Their decomposition methods areshown in Figure 3. The task Sightsee is to go sightsee-ing ourselves (Method 1 in the �gure) or to join a tourbus (Method 2), depending on if we are tired or not.Going sightseeing makes us tired. Taking a 
ight, oreating a food makes us recover from tiredness. In other
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Sightsee() Method 1

n:
(go-sightseeing ?city)

Constraints:
(before (in ?city) n)
&(before (~tired ?city) n)

Sightsee() Method 2

n:
(join-tourbus ?city)

Constraints:
(before (in ?city) n)
&(before (tired ?city) n)

Travel(?city1) Method 1

n:
(stay-more ?city1)

Constraints:
(before (in ?city1) n)

Travel(?city1) Method 2

n1:
(goto-airport ?city0)

Constraints:
(before (in ?city0) n1)&(?city0 = ?city1)

n2:
(fly ?city0 ?city1)

n3:
(goto-downtown  ?city1)

Eat(?food) Method 1

n1:
(goto-local-restaurant )

Constraints:
(initially (local-food ?food ?city)
 &(before (in ?city) n1)&(between (in ?city) n1 n2)

n2:
(have ?food ?city)

Eat(?food) Method 2

n1:
(goto-good-restaurant ?food)

Constraints:
(initially (~local-food ?food ?city) &(before (~tired ?city) n1)
 &(before (in ?city) n1)&(between (in ?city) n1 n2)

n2:
(have ?food ?city)

Eat(?food) Method 3

n1:
(goto-closer-restaurant ?food)

Constraints:
(initially (~local-food ?food ?city) &(before (tired ?city) n1)
 &(before (in ?city) n1)&(between (in ?city) n1 n2)

n2:
(have ?food ?city)Figure 3: The decomposition methods for the Random Travel Planning domain. The tasks shown in boldface areprimitive tasks.

G7: (Sightsee)

G4: (Sightsee)

G9: (Sightsee)G5: (Eat Italian-food)

G3: (Eat American-food)
G1: (Eat French-food)

G8: (Eat American-food)G2: (Travel Rome)

G0: (Travel London)

G6: (Travel LosAngeles)

Initial State:
(local-food American-food NewYork) (local-food American-food LosAngeles)
(local-food French-food Paris) (local-food English-food London)
(local-food Italian-food Rome)
(in LosAngels)

Goal tasks:Figure 4: A sample problem of ! = 15 (the actual number of unordered pairs of task is 14) in the Random TravelPlanning domain.



In AIPS-98: Workshop on Knowledge Engineering and Acquisition for Planning 6words, the primitive task (go-sightseeing ?city) has an ef-fect (tired ?city) and the primitive tasks (fly ?city0 ?city1)and (have ?food ?city0) have an e�ect (�tired ?city0). Thetask (fly ?city0 ?city1) also has e�ects (�in ?city0) and (in
?city1). Other primitive tasks have no e�ects. The task
Travel is to move to another city, if it's di�erent from thecurrent location. The task Eat is to go to a restaurantfor a type of food we want and eat there. If the typeof food we want is local to the location, such as Italianfood if the current location is Rome, then going to alocal restaurant su�ces (Method 1). If not, we go to agood restaurant if we are not tired (Method 2), or wego to a closer restaurant if we are (Method 3). In thesemethods, every `before' and `between' state constraintis an external condition.A problem in this domain consists of 10 goal tasks,randomly generated. A goal task is either (Sightsee),
(Travel ?city), or (Eat ?food). where ?city is a valuerandomly chosen from fLosAngeles, NewYork, Lon-don, Paris, Romeg, and ?food is a value randomly cho-sen from fAmerican-food, English-food, French-food,Italian-foodg. Since the subtasks in each method aretotally ordered, how the problems are ordered dependson the step orderings between the goal tasks. If the goaltasks are totally ordered, then every partial plan gen-erated from the goal also has the tasks totally ordered.The step orderings between the goal tasks are randomlygenerated based on the parameter !, which de�nes themaximumnumber of pairs of goal tasks that can be leftunordered. Lower values of ! indicate that there aremore ordering constraints among the goal tasks. Theinitial state consists of the food-city pairs for each citysuch as (local-food Italian-food Rome) and the current lo-cation, i.e. (in ?city), which is randomly assigned. Asample problem of ! = 15 is shown in Figure 4We created 20 problems each for ! = 5, 10, 15, 20 or25 and solved them using FAF, LtoR, ExCon-FAF andExCon-LtoR strategies. The results are shown in theTable 1and Figure 5. For low ! values, LtoR does bet-ter than FAF because LtoR can use the step orderingsto correctly choose the earliest tasks. Many applicabil-ity conditions considered by ExCon-LtoR can be easilyestablished at the time the conditions are inserted intothe plan by using LtoR selection. Also, there are fewernon-primitive tasks that may a�ect the establishment ofthe current applicability condition, so the performanceof ExCon-LtoR is similar to that of LtoR.The performances of FAF and ExCon-FAF are alsosimilar for the low ! value problems. Since FAF usesthe LtoR heuristic for tie-breaking, FAF picks up thetasks relatively from left-to-right, although it skips Eatin preference to Sightsee or Travel. So, similarly toExCon-LtoR, only a few possible non-primitive tasksexist that may a�ect the establishment of the cur-rent applicability condition. Since the performance ofthe ExCon strategy greatly depends on its tie-breakingstrategy for low ! value problems (i.e. problems wheregoal tasks are not interleaved much), ExCon-LtoR doesbetter than ExCon-FAF.

For the high ! value problems, there are not verymany ordering constraints among the goal tasks, sothere can be many more interactions among goal tasks.In these problems, the performance of LtoR is worsethan any other strategy because LtoR does not haveenough step ordering information to correctly work ina left-to-right manner and thus not be able to �nd con-straints that can never be established early. FAF per-forms better than LtoR, but not as well as ExCon-FAFor ExCon-LtoR. The performances of ExCon-LtoR andExCon-FAF are similar because for the problem withhighly interleaved goal tasks, ExCon selects tasks anddoes not have to use its tie-breaking strategy (i.e. LtoRor FAF).Translog DomainTranslog (Andrews et al. 1995) is a transport logisticsdomain where the methods of transportation are spec-i�ed based on the locations, the types of packages, andavailabilities of the necessary equipment. It is a con-siderably larger domain than many used in planning.It is speci�ed with 17 compound tasks, 42 primitiveactions, and 29 predicates. We have randomly chosen10 problems from the one-package problems created byKettler (Kettler 1995) for this experiment. Table 2 liststhe results. For one-package (i.e. one goal task) prob-lems, there are many ordering constraints among thesubtasks. So the relative performances of the task selec-tion strategies are similar to the low ! values problemsin the Random Travel Planning domain.Blocks World and Fixit ProblemsFor the next set of experiments, the problems Sussman'sanomaly, tower invert3 and tower invert 4 in the BlocksWorld domain and the �xit problem in Russel's FlatTire domain were tested. For these two domains, thereare not very many ordering constraints among tasks asone-package Translog problems. The results are shownin Table 3.The non-primitive tasks in the Flat Tire domain haveeither one or two decomposition methods. So, the FAFheuristic is not very decisive. The LtoR strategy doesnot work quite as well because there are not very manyordering constraints among the tasks in the domain.ExCon-FAF creates more partial plans than FAF does.ExCon may not do well if search branches fail for rea-sons such as the failure of variable bindings, or stateconstraints except external conditions.For Blocks World problems, the performances of FAFand LtoR are the same. There are no explicit steporderings speci�ed between non-primitive subtasks, soLtoR always uses the tie-breaker FAF to select a task.However, there are only two non-primitive tasks on and
clear in this domain. The FAF heuristic prefers the task
on to clear, but does not decide on which one of the ontasks or clear tasks, so the task selection returns theone that happens to be found in the partial plan �rst.Thus the performances of FAF and LtoR depend onwhat order the tasks are speci�ed in the problem. For



In AIPS-98: Workshop on Knowledge Engineering and Acquisition for Planning 7! Actual FAF LtoR ExCon-FAF ExCon-LtoRPlans Time Plans Time Plans Time Plans Time5 2.95 63.55 0.32 36.95 0.16 63.60 0.36 36.90 0.1710 7.35 51.25 0.27 41.00 0.21 50.45 0.29 38.40 0.1915 11.85 58.55 0.32 50.80 0.26 46.90 0.28 41.05 0.2220 15.8 66.65 0.47 131.85 1.16 53.75 0.33 54.15 0.3425 22.2 168.10 2.57 431.55 5.54 62.15 0.44 62.00 0.41Table 1: The results of the Random Travel Planning problems. The actual average number of unordered pairsis shown next to ! values. \Plans" is the average number of partial plans created, and \Time" is the averagenon-garbage collection CPU time in seconds.
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(c) FAF and ExCon-FAF (d) LtoR and ExCon-LtoRFigure 5: The results of the Random Travel Planning problems. The x-axis shows the average number of pairs ofunordered goal tasks and the y-axis shows the average number of partial plans created.Problems FAF LtoR ExCon-FAF ExCon-LtoRPlans Time Plans Time Plans Time Plans Time1 218 5.51 217 5.45 219 5.32 217 4.812 87 1.04 87 1.02 87 0.91 87 0.913 303 9.97 302 9.05 309 11.59 302 8.134 442 16.59 243 6.56 258 7.38 243 6.185 77 0.79 76 0.76 77 0.81 76 0.796 80 1.04 78 1.03 80 1.04 78 1.047 77 0.79 76 0.79 77 0.77 76 0.788 80 1.07 78 1.03 80 1.05 78 1.099 80 1.03 78 1.03 80 1.03 78 1.0210 287 7.79 331 8.47 529 10.50 331 8.45average 173.1 4.56 156.5 3.52 179.6 4.04 156.5 3.32Table 2: The results of the one-package Translog problems. Plans are number of partial plans created. Time isnon-garbage collection CPU time in seconds.



In AIPS-98: Workshop on Knowledge Engineering and Acquisition for Planning 8Problems FAF LtoR ExCon-FAF ExCon-LtoRPlans Time Plans Time Plans Time Plans Timesussman-anomaly 36 0.15 36 0.14 33 0.13 33 0.14tower-invert3 45 0.22 45 0.21 49 0.28 49 0.28tower-invert4 229 6.41 229 6.43 100 1.32 100 1.34�xit 160 5.93 159 2.54 236 5.28 137 1.78Table 3: The results on the Blocks World problems and �xit problem. Plans are number of partial plans created.Time is non-garbage collection CPU time in seconds.Problems FAF LtoR ExCon-FAF ExCon-LtoRPlans Time Plans Time Plans Time Plans Timesussman-anomaly 71 0.53 71 0.50 50 0.52 50 0.51tower-invert3 80 0.76 80 0.72 36 0.22 36 0.23tower-invert4 4983 221.72 4983 216.14 107 1.41 107 1.45Table 4: The results on the Blocks World problems where the goal tasks are speci�ed in the reversed order.instance, the goals of the tower-invert4 problem usedfor the above experiments are ordered as (n1 on B C)
(n2 on C D) (n3 on D A). Thus, the goal (n1 on B C) isdecomposed �rst and then later the goal (n2 on C D) isdecomposed before the decomposition of the goal task
(n3 on D A). Table 4 lists the results of the same BlocksWorld problems, where the goals are speci�ed in reverseorder. The results show that the performances of FAFand LtoR are quite di�erent from the results shown inTable 3, while the performances of the ExCon strategiesare very similar regardless of the goal speci�cation.ConclusionMany search techniques have been presented to increasethe e�ciency of planning. However, many of them lackclear explanations of how they are better than othertechniques, what types of planning domains they workwell with, and how much one technique may performbetter than another in speci�c problems. The lack ofstudy is especially signi�cant in HTN planning, whichmany practical applications employ. Systematic stud-ies of various search techniques are necessary. Thisincludes identifying domain characteristics, and eval-uating and comparing various techniques empiricallyand/or theoretically. Not only can the results of suchperformance analyses help further improve the searchtechniques, but they can also help a knowledge engineerselect a problem-solving method adequate to a givenapplication.We have presented two types of strategies in HTNplanning that select which non-primitive task to de-compose. Each one is focused on di�erent HTN prob-lem domain characteristics in order to use domain in-formation for pruning. The LtoR strategy selects a taskthat has no non-primitive tasks ordered before it andtries to develop a detailed plan starting from the ini-tial state. It is easier for the planner to identify theunsatis�able conditions associated with a task if theplanner knows more about what primitive actions comebefore the task. Thus, the LtoR strategy performs well

for problems where there are many ordering constraintsbetween the goal tasks and their subtasks, because theordering constraints help the planner decide which taskcomes earlier.The ExCon strategy makes use of external condi-tions. The planner pre-processes its knowledge baseto extract external conditions for each decompositionmethod. During task decomposition, the external con-ditions of the method used are placed onto the partialplan as its applicability conditions. When selecting atask to decompose, ExCon selects a task that may beused to satisfy an applicability condition of the partialplan. ExCon performs well on the problems where thegoal tasks are highly interleaved.Our empirical studies show that LtoR consistentlyoutperforms other strategies on problems with manyordering constraints. The results also show that ExCondoes well on the problems where there are fewer order-ing constraints and the goal tasks are highly interleaved.Moreover, ExCon-LtoR, the ExCon strategy combinedwith LtoR, does better than FAF or ExCon-FAF onproblems with many ordering constraints because LtoRis used for tie-breaking. It does better than FAF orLtoR on problems with fewer ordering constraints be-cause ExCon works well for interleaving tasks.Since we have only run our experiments on a rela-tively small sample of problems the results presented inthis paper are preliminary. We are currently working tofully analyze LtoR and ExCon both theoretically andempirically. AcknowledgmentThis research was supported in part by grantsfrom ONR (N00014-J-91-1451), ARPA (N00014-94-1090, DABT-95-C0037, F30602-93-C-0039), ARL(DAAH049610297) and NSF (NSF EEC 94-02384, IRI-9306580).
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