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ABSTRACT

This paper presents an algorithm to perform regularized Boolean
operations on collections of simple polygons. The algorithm accepts two
arbitrarily complex collections of disjoint polygons and returns two col-
lections of polygons corresponding to the union and intersection respec-
tively. The algorithm is efficient and generalizes to higher dimensions.

Given two collections of polygons, the algorithm recursively de-
composes them into fragments using splitting lines determined from the
collections’ edges. This approach, which is called input directed decom-
position, maintains exact representations of objects, and easily classifies
an edge into either the union or the intersection set. By the use of edge
orientation information, ambiguities caused by objects that touch along
an edge are avoided. After edge classification, edge connectivity of poly-
gons is used to allow creation of the polygons belonging to the union
and the intersection collections.
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1. Introduction

This paper is concerned with the task of performing Boolean operations like union
and intersection on geometric objects. The task is performed in such a way that the
boundaries of the resultant object can be quickly determined. Many of the existing ap-
proaches to this problem are based on the idea of space decomposition, a direct application
of the divide-and-conquer paradigm|8]. Most decomposition methods are based on either
constructive solid geometry[9] (CSG) or quadtrees[2,11]. When CSG is used, an object is
decomposed into Boolean combinations of primitives. In quadtree approaches, the space
containing the object is partitioned into disjoint quadrants containing fragments of the
object. Both methods have been used to solve the problem of performing binary Boolean

operations.[1,5,10,13]

In quadtree methods, decomposition is normally done by recursively dividing a rect-
angular region into identically shaped rectangular subregions (this is called regular decom-
position). Some regions can be recursively decomposed into “primitive” regions (which
provide exact representations of regions of space) without any problem, but for certain re-
gions (called nasty regions by [14]), regular decomposition no matter how deep, will always
yield a non-primitive subregion. Thus, regular decomposition methods cannot provide a

simple exact representation of the portion of the object that is within the nasty region.[1]

Another problem with quadtree methods based on regular decomposition arises when
they are used for performing a Boolean operation such as intersection. When this is
done, it is necessary to determine, for each edge of each primitive region of an object,
whether it is inside or outside the intersection with the other object. This task is called
set membership classification or edge classification, and the methods necessary for doing

it are rather complex.

This paper describes an algorithm for binary Boolean operations on sets of mutually

non-intersecting simple polygons, overcoming the various difficulties mentioned above. The

[ V]



algorithm uses quadtree decomposition that is not regular. It uses spatial locality by
decomposing space into non-overlapping convex regions. But unlike quadtree methods,
that utilize regular decomposition, the approach used here decomposes space into non-
regular convex regions. Regions are partitioned into two subregions by choosing splitting

lines determined by the edges of the polygons to be decomposed.

This approach, called input directed decomposition, overcomes the above described
problems occurring with quadtree approaches. First, input directed decomposition guar-
antees that the interactions between a primitive region of one object and the corresponding
primitive region of the other object are quite simple—and thus the methods for edge clas-
sification can also be simple. Second, nasty regions do not exist—and thus the algorithm

always creates an exact representation of the object.

One problem that occurs in the classification of edges is the “On/On” ambiguity,
in which it is unclear whether or not a particular edge should be considered part of an
object. This occurs when two objects share an edge. One method for resolving this
ambiguity is by using neighborhood information[10]. In contrast, our algorithm avoids the
“On/On” ambiguity entirely by keeping track of edge orientation. When edge orientation
is maintained, the edge in question is represented two collinear edges, and whether or not

each of these edges is in the object becomes obvious.

The organization of the rest of the paper is as follows: Sections 2.1-2.3 present def-
initions of various mathematical entities such as points, directed lines, simple polygons,
regions, collections and fragments, and Section 2.4 describes the data structures used by
the algorithm to represent these entities. Section 3 discusses the general description of the
union/intersection algorithm. Section 3.1 through 3.4 give the details of the decomposi-
tion and edge classification. Section 4 outlines the creation of the polygons belonging to
the union and the intersection. In section 4.1 the clean up operation, which eliminates
unnecessary vertices, is given. Section & discusses implementation accuracy and the last

section gives closing remarks.



2. Preliminaries

2.1. Points and Lines

A directed line in a two-dimensional Euclidean space is represented by a triple (4, B, C)
denoting the equation Az + By+C = 0. If (A, B, C) represents a line L, then the direction
of L is the direction of the vector (—B, A). —L is the line represented by (— A, —B, —C);

i.e., the line occupying the same location as L, but having the direction (B, —A).

Given two distinct points P; = (z1,y1) and P, = (22,y2), Line(P1, P;) is a triple
representing the directed line passing from P; towards P;; i.e., the line passing through Py
whose direction is (22 — x1,y2 — y1). It follows that Line(P;, Py) = (a/f,b/f,c/f), where
a=1ys—1y1, b=121 — 2, ¢ = Tay; — 21Yy2, and f = Va? + b2. Thus the directed line is

normalized; i.e. A2 + B? = 1.

Any point P = (z,y) can be classified as being either to the left of L, P < L, to the
right of L, P > L, or on L, P ~ L. We can define
P<L& Az +By+C<0

P~L& Az +By+C=0

P>L& Az +By+C >0

Since the line is normalized, the distance from P to L is
Distance(P, L) = abs(Az + By + C).

Given a line L = (A4,B,C) and a point P = (z,y) on the line, the directed line
Perp(L, P) perpendicular to L through P and pointing to the left of L is

Perp(L, P) = (—B, A, Bz — Ay).
Given two lines Ly = (A;,B1,C1) and Ly = (A3, B2, C3), their intersection is the
point

undefined otherwise,

Inter(Ly, Ly) = { (a/86,8/8) if&§+#0
where a = (B1Cy — ByC4), = (C1A; — CaA1), and § = (A1 By — A3 By).
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2.2. Polygons

We represent a simple (i.e., connected and non self-intersecting) planar polygon II
by a sequence of points (P, P1,...,Pn,—1) of its vertices, given in the order in which
they occur on the polygon’s boundary. If (P, P1,...,P,—1) are the vertices of a polygon
IT and P; is one of these vertices, then the predecessor and successor for P; are Pig
and P;g; respectively, where 1 ©1 = (1 —1)modn, and :t &1 = (¢ + 1) mod n. The
edges of Il are ((P(), P, (P, P2) yeres (m)) and such that for each edge (m),

P; # Pig1. A vertex P; is a pseudo vertez if it its two incident edges are collinear, i.e., if
P;g1 ~ Line( Pigy, P;).

I =(FPo,Pr,...,Pa_1)is a clockwise polygon if Py, Py, ..., P,_; are given in clockwise
order, and is a counterclockwise polygon (or a hole) otherwise. II is a clockwise polygon if
and only if

Pkeal - Line(Pkel , Pk),

where Pi, be the rightmost vertex of II (or the uppermost of the rightmost vertices if there

is more than one).

If IT is a polygon whose vertices are (Py, Py,...,Pn_1), then =II, the reverse of II, is
the polygon whose vertices are (P,—1, Pp—2,...,Py). Thus if II is clockwise, then —II is

counterclockwise, and vice versa.

2.3. Regions, Fragments and Collections

By a solid we mean a regular subset of two-dimensional Euclidean space (for a defi-
nition of a regular set, see [10]). If S is a solid and its boundary is a set of disjoint simple

polygons C = {IIy,...,II5}, then C' is called a collection.

A region is the convex intersection R of zero or more half-spaces, each of which may

be either open or closed. Let R be a region, and let C' be the collection formed from C by



introducing pseudo vertices wherever edges in C cross boundaries of R. Then the fragment

f=A{e1,...,em} of Cin R is the set of all edges e; of C' whose interiors are in R.

Let Cy and C; be collections. Whenever we speak of the union or intersection of C;
and C;, we mean the regularized union and intersection (commonly denoted by C; U* C
and Cy N* C3) [10,13]. These operations are similar to ordinary union and intersection,
except that they don’t generate isolated vertices (i.e. vertices with no incident edge) and

dangling edges (i.e. edges that do not form a boundary of a solid).

2.4. Data Structures

This section describes the basic data structures used in the union/intersection algo-

rithm.

Each polygon II is represented by a doubly linked circular list. Each node N of the
polygon list corresponds to a vertex p(IN) of II—or equivalently, it corresponds to the edge
e(N) with its initial vertex p(N). Each node N contains a pointer to nodes Ng and Ng
representing the predecessor and successor nodes of p(N) in II. The line equation triple,

I(N), for edge e(N) is also stored in N.

Collection C is represented as a list of polygons. If II is a polygon in a collection C,
then the program creates fragments of C' in such a way that no edge of II is in more than
one fragment of C'. Thus, it is possible to represent fragments by placing additional links
in the nodes used to represent polygons. A fragment f is represented by a singly linked
circular list F' called a fragment list. F' contains one node for each edge in f, and each
node N of F is also a node of one of the polygon lists mentioned above. Thus N has three
links: one pointing to Ng, one pointing to Ng, and one pointing to another node in the

same fragment. Figure 1 shows an collection and the corresponding data structure. In



Fig. 1. A collection and its data structure.

the data structure, the polygon links are shown as solid arrows and the fragment links are

shown as dotted links.

By convention in this paper, whenever f; is a fragment, F; is the corresponding frag-
ment list, and vice versa. In our algorithms, if F; is a fragment list and N is a node in the
region R containing f;, then the assignment F; := F;U{N} assigns to F; a representation of
fiu{e(N)}. This is implemented by inserting N into the list F;. Similarly, the assignment
statement F; := F; — { N} assigns to F; a representation of the difference f; — {e(N)}. This
is implemented by removing N from the list F;. In practice, the node N to be removed

from F; will always be the first node in F;; thus, no traversal of F; will be necessary.

3. The Union/Intersection Algorithm

This section discusses an algorithm that computes both the union and the intersection
of two collections C; and C5. In order to compute the collections C; U* Cy and C; N* Co,
the algorithm interprets C; and C; as fragments of some arbitrary enclosing region R.
These fragments are then recursively decomposed, and their edges are classified (what this
means is discussed below). The classified edges from both collections C; and C; are then
relinked to form the collection C; U*Cy and C;N* Csy. Finally, all remaining pseudo vertices

are removed,



Let fi and f; be fragments of C; and C> respectively, sharing the same region. If
e is an edge of f, or f;, then edge classification of e consists of determining which of
the fragments fu, fn, or fy contains e. These fragments, called classification fragments,

contain the edges appearing in Cy U* Cy, C; N* Cy, or neither of them.

Edge classification is done by transforming the fragment lists F} and F, into three
fragment lists Fyy, Frn, and Fy called classification lists, which represent fy, fn, and fy,
respectively. Initially, the classification lists are all empty, but as each node of F} and F;
is classified it is removed from F or F, and put into one of the classification lists. During
this process, connectivity of edges within a polygon is maintained at all times, and polygon

boundaries are never broken.

Each edge must be classified. This is true regardless of whether the union alone or the
intersection alone is desired. To create the connected polygons for the union, requires the
relinking of the edges in f. As a biproduct of relinking the union edges, the connected
polygons for the intersection remain. Therefore, the algorithm generates as output both
the union and the intersection collections. Analogous to the computation of C; U* Cy and
Cy N* Cy, a single operation suffices to compute both C; —* C5 and Cy —* C;. Using
the Union/Intersection algorithm, C; —* C3 could be computed as —~(—~Cy U* C3), where
-C = {-II | Il € C}; C; —* C} is simultaneously computed by —=Cy N* Cs.

The procedure for union/intersection is shown below. The procedures called by it are

defined in sections 3.1 through 3.4.

Function Union_Intersect(Collection Cy, Cs)
begin
Let fragment F} contain the edges of C;
Let fragment F, contain the edges of Cs

(Fu, Fn, Fy) := Decompose(Fy, Fy)(* Classify all edges *)
Cy := MakePolygons(F)) (* Relink the Union polygons *)
Ch := MakePolygons(Fr) (* Relink the Intersection polygons *)
CleanUp(Cy) (* Remove pseudo vertices from Cn *)
CleanUp(Cr) (* Remove pseudo vertices from Cr, *)



Dispose(Fy) (* Discard all edges in Fy *)
return(Cy, Cn) (* return C1 U* Cy and C; N* Cy *)

end(* Union_Intersect )

3.1. Fragment Decomposition

The Decompose procedure, which controls the input directed decomposition, is based
on divide-and-conquer and is an extension of the one-dimensional Quicksort[4]. Decompose
accepts fragment lists representing two nonempty fragments f; and f,. If each fragment
contains exactly one edge and the two edges are collinear with common endpoints, then
edge classification is performed on them immediately, as described in the next paragraph.
Otherwise, the fragments must be decomposed further. In this case, Decompose calls the
FindSplitLine procedure to find a splitting line L, and partitions both f; and f; into left
subfragments fi; and fy; and right subfragments f;, and f;,, respectively (see Section
3.3). If one of the subfragments is empty, then all the edges of the other fragment are
classified immediately by the ClassifyFragment procedure. Otherwise, Decompose calls

itself recursively on the corresponding subfragments.

Function Decompose(Fragment Fy, F3)
begin
If 1 = {N} and F, = {M} then (* One edge in each fragment *)
(* Check for collinear edges with common endpoints *)

If p(N) = p(M) and p(Ng) = p(Mg) then

return({N}, {M}, 0) (* Edges have same direction ¥*)
else If p(N) = p(Mg) and p(Ng) = p(M) then
return(0, 0, {N,M}) (* Edges have opposite directions *)

Line L := FindSplitLine( Fy, F3)
(Fu, Fir, G, Gir) := SplitFragment(Fy, L)
(Fa1, Far, Go1, Gor) := SplitFragment(Fy, L)
If Fi; = then

(Fut, Fru, Fyy) := ClassifyFragment(Fy;, G1.)
else If F5; = 0 then

(Fut, Fru, Fyy) := ClassifyFragment(Fy;, Gar)
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else

(Fui, Fri, Fy) := Decompose(Fyy, Far)
If Fy, = 0 then

(Fur, Far, Fy,) := ClassifyFragment(Fi,, Ga)
else If F, = () then

(Fur, Frr, Fy,) := ClassifyFragment(F2,, G1;)
else

(Fur, Frvr, Fy,) := Decompose( Fi,, Fb,)
return(Fu; U Fu,, Fry U Fry, Fy U Fy,)

end(* Decompose *)

If each fragment contains exactly one edge and the two edges are collinear with com-
mon endpoints, then let the N and M be the nodes representing these edges. For classifying
e(N) and e(M), there are two cases to consider. The first case is where the collinear edges
have the same direction (i.e., {(N) = {(M)). This will occur when two solids are on the
same side of a common boundary. In this case, one of the edges, say e(NN), must belong to
the union and the other, e(M), must belong to the intersection. The second case is where
the collinear edges have opposite directions (i.e., I(N) = —I(M)). This will occur when
two solids touch at an edge. In this case, both edges fall in the interior of the union and

do not belong to any boundary in either Fi, nor Fn, so they are added to Fy.

3.2. Selecting A Splitting Line

If edge classification fails, then the fragments f; and f, are decomposed simultaneously
by decomposing the region of space R that contains f; and f;. This is normally done by
intersecting R with the half-spaces H; and H, lying on either side of a line called a splitting
line, thus producing a left subregion R; and a right subregion R,. We assume that Hj is
an open half-space and H, is a closed half-space. Thus, any edges of f; and fy lying on

the splitting line will be in R, rather than R;.

There are two different ways in which the splitting line might be chosen. The approach

used in previous geometric decomposition algorithms is regular decomposition, in which
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regions are recursively divided into smaller regions of identical shape. In such cases, the
splitting line is a vertical or horizontal bisector. For example, this is done in quadtrees,
where a square region is divided into four equal quadrants, and in bintrees, where a rect-

angular region is bisected into two smaller rectangles either horizontally or vertically.

In contrast, our algorithm uses non-regular decomposition to divide a region R into

convex subregions R; and R, that satisfy two desirable properties. These two properties

are discussed below.

Property 1. R; and R, must both have nonzero area. This is because representa-
tional inconsistencies arise when trying to handle edges that cross regions of zero area.
This property will be maintained if and only if a splitting line is not collinear with an edge

of Fy or F; that is on the boundary of R.

Property 2. R; and R, must each contain either a nonempty fragment of f; or a
nonempty fragment of fo. Without this property, a region could be split repeatedly without
decomposing the fragments it contains. Indeed, by analogy to Quicksort, it is desirable in

the union/intersection algorithm that R; and R, each contain substantial portions of both
f1 and fs.

The choice of a splitting line is made by the function FindSplitLine shown below.
FindSplitLine is given two fragment lists F} and F, occupying some region R. From these
lists FindSplitLine selects two edges e(IN) and e(M) and returns a splitting line L that
does not lie on the boundary of R, and which satisfies Properties 1 and 2.

Function FindSplitLine(Fragment Fy, F,) : Line
begin
(* Select two edges for determining the separation line %)
If |[Fi| =1 and |F3| =1 then
Let N and M be nodes of F} and F, respectively
else If |Fy| > |F,| then
Let N and M be two distinct nodes of F}
else

Let N and M be two distinct nodes of F;

11



(* Find the splitting line using nodes N and M )

If p(M) ~ I(N) and p(Mg) ~ I(N) then begin (x edges are collinear *)
Let P be an endpoint of one of the edges so that the other edge is split
return(Perp(I(N), P)) (* return a perpendicular to [(N) *)

end else If ¢(N) is not on a region boundary then
return(If p(M) < [(N) or p(Mg) < [(N) then I(N) else —I(N))

else If e(M) is not on a region boundary then
return(If p(N) < (M) or p(Ng) < (M) then (M) else —I(M))

(* Neither I(N) nor (M) can be used. Compute a new splitting line *)

If (I(N) and I(M) are oppositely directed) then
return(Line(midpoint(p(N), p(Mg)), midpoint(p(M), p(Ng))))

else
return(Line(midpoint(p(N), p(M)), midpoint(p(Ng), p(Mg))))

end(* Find Splitting Line )

T el
\

\‘. h “\‘ \.

Fig. 2. Examples of Choosing a Splitting Line. L is the dotted line.

If f1 and f, contain edges that are not on the boundary of R, ¢(N) and e(M) should
be selected from among these edges. To eliminate searching for these edges, the fragment
lists are ordered such that all edges that are not on the boundary precede all edges that

are on the boundary.

When selecting e¢(NN) and e(M), it is necessary to insure that they are not collinear
with common endpoints. Since there is no way to separate such edges, the algorithm
would not terminate. When possible, e(N) and e(M) are both taken from the same
fragment, since a single fragment contains no collinear edges. The only case where this is
not possible is where each fragment contains one edge each. In this case, the two edges
cannot be both collinear and have common endpoints, since that condition was checked in

function Decompose.
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3.3. Splitting Fragments

Once FindSplitLine returns a splitting line L to Decompose, Decompose calls the

SplitFragment procedure twice, to split the fragment lists F; and F3.

Given a splitting line L and a fragment list for a fragment f, SplitFragment partitions
f into the subfragments f; and f, defined as follows: f; contains all edges of f which are
to the left of L, and the left-hand portions of those edges which intersect L. f, contains
all edges of f which are to the right of L, all edges of f which lie on L, and the right-hand
portions of those edges which intersect L. Mathematically, f; and f, are the following

fragments:

(PQ)ef|P=LAQ=L} U

= {
{(Inter(Lme (P,Q),L), Q) | (P,0) ef/\P<L/\Q>L} U
{(P Inter(Line(B, Q), L)) | (PQ) € fAQ<LAPS L}

fi={(PQ)ef|PLAQ=<L} U
{(P,Qef|QXLAP<L} U
{(Inter(Line(P,Q),L),Q) | (7,0) efAP>L/\Q<L} u
{(P,Inter(Line(P,Q),L)) | (P,0) ef/\P<L/\Q>L}

Given a splitting line L and a fragment list for a fragment f, SplitFragment returns
the new subfragments f; and f, created from partitioning f (see figure 3). For each of the
subfragments f; and f,, if the subfragment is nonempty, then SplitFragment also selects
for that subfragment a classification vertez, which is closest vertex to the splitting line. If
several vertices having different coordinates are equally close to the splitting line, one is
chosen arbitrarily. This vertex, which is determined by the function GetClosest Vertex, is
used by the ClassifyFragment function. For this vertex, a set of all nodes at that vertex is

maintained (see section 3.5).
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SplitFragment calls the function SplitEdge once for each edge of F' that intersects L.
SplitEdge takes a node N representing the edge that crosses L, and introduces a pseudo
vertex (see Section 2.2) that splits e(IN) at L into two edges e; and e, (e; and e, are to the
left and right of L, respectively). Thus, in the polygon list containing N, N is replaced by
nodes N; and N, such that e(N;) = ¢; and e(N,) = e,, and returns the pair (Ny, N,).

® Real Vertex

o0 PseudoVertex

Fig. 3. Fragment Splitting.

Function SplitFragment(Fragment F'; Line L)
begin
Fragment F; := F,. := 0 (* Clear the Left and Right subfragments *)
Set of Nodes Gy := G, := 0  (x Initialize the Classification vertex set *)
for every node N in F do begin
:=F —{N} (x Remove edge e(N) from fragment F *)
If p(N) > L and p(Ng) = L then begin(* e(N) is on or right of L *)
(* N is on the boundary of the region *)
Mark N If p(N) ~ L and p(Ng) ~ L
GetClosestVertex(L, G, N)
F, .= F,U{N} (x Place e(N) in right subregion *)
end else If p(N) < L and p(Ng) < L then begin
(* e(N) is to the left of L *)
GetClosestVertex(L, Gy, N)
Fi = FlU{N} (x Place ¢(IN) in left subregion *)
end else begin (* Edge(N ) crosses L *)
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(N1, N,) := SeparateEdges(N, L) (x Split e(N) by L *)
F, = F, U{N,}
Fy:= F U {Nl}
end
end
return(Fy, F,, G, G,)
end(x Split Fragment x)

In the GetClosestVertex procedure, G represents the current “best guess” for the
vertex closest to the splitting line. Since a fragment list may contain several nodes for a
single vertex—and since GetClosestVertex must keep track of all of these nodes—G is a
set which may contain more than one node. GetClosest Vertex chooses the vertex closest to
L, and if necessary, updates G by comparing the vertex represented by G with the initial
and terminal vertices p(/V), and p(Ng) of the edge e(N) .

Procedure GetClosestVertex(Line L; Set of Nodes G; Node N)
begin

Point P := If G = 0 then (00, 00) else p(G)

(* Check initial vertex of edge e(N) *)

If Distance(p(N), L) < Distance(P, L) then

G := {N} (* p(N) is closer *)
else If P = p(N) then
G :=GU{N}

(* Check terminal vertex of edge e(N) *)
If Distance(p(Ng ), L) < Distance(P, L) then

G := {Ng} (* p(Ng) is closer *)
else If P = p(Ng) then

G := GU{Ng}
If Distance(P, L) = Distance(p(N), L) = Distance(p(Ng), L) then

G := GU{N} (x Edge e(N) is parallel to L *)

end(* Get Classification Vertex x)
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3.4. Empty Fragment Classification

Suppose that Decompose is decomposing two fragments f; and f;. Then both are
split into their corresponding left subfragments fi; and f2; and their right subfragments
fir and f, about some splitting line L. Suppose that one of these subfragments is empty
(without loss of generality, we may assume it is f1;). That is, the nodes of Fj fall entirely

into Fi,, and some of these becomes the nodes at the classification vertex Gi,.

Let S be the solid having the collection C; as its boundary. Let f; be a fragment of
Cy. If f1; is empty, then the region R; is either totally in the interior or totally in the
exterior of S. If it is in the interior then all the edges of fo; can be added to Flr. Otherwise,
all the edges of f3; can be added to F,, without further decomposition of fp;. This is done
by the ClassifyFragment function shown below. To determine which of these cases hold,
ClassifyFragment checks a point P in the left subregion against the edges incident to the

classification vertex nodes in the set Gy, (see figure 4).

- p(G’lr)
-—~=—- ink;

&————¢ inky

A P

Fig. 4. Classification of the Fragment Fb;.
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To determine whether R; is in the interior or exterior, it suffices to examine the
relationship between a single point of R; and a single edge of Fi,. Let P be any point in
R;. Among the edges of F}, that are incident on Gy, let E be the one having the smallest
angle to the line Line(p(Gi,), P). Then P (and thus R;) is inside S if and only if P is to
the right of E.

Since the boundary of R; is not explicitly stored, suitable candidates for P can only be
found by examining the interiors of the edges contained in fragment f5;. As any point will
do, a point is selected that lies on an edge of f; and that does not correspond to p(Gir),
the classification vertex. ClassifyFragment selects this point, checks it agains p(Gi,), and

adds the edges of fy; to Fy or Fh.

Function ClassifyFragment(Fragment F'; Set of Nodes G)
begin
Node M := any node of F
Point P := any point on e(M) such that P # p(G)
Find edge e¢(N) incident to a vertex node in G such that
the angle between e¢(N) and Line(p(G), P) is minimum
If P> [(N) then

return(0, F, 0) (* Place all edges of F in Fn *)
else
return(F, 9, §) (+ Place all edges of F in F; *)

end(x Classify Fragment )

4. Creating Polygons by Resolving Transitions

After the original fragment lists f; and f; have been decomposed and all their edges
have been classified, the classification lists Fi; and Fn contain the proper edges of the
C1 U* Cy and Cy N* C; respectively, and Fy contains the edges that do not belong to either
the union or the intersection. Using the classification list F; and Ffy, it is possible to create
polygon lists representing the polygons bounding Cy U* Cy and C; N* C,. This is done by

relinking the nodes in the polygon lists representing C; and C;. The relinking operation
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is a destructive operation since all the edges of both C; and Cy are used to construct the

polygons in Cy U* Cy and Cy N* Cy.

The way that the algorithm determines that a node N needs to be relinked is if that
node is a transition node, i.e., a node whose incident edges are in different classification lists.
This occurs if and only if f(N) # f(Ng), where f(N) is defined to be the classification

fragment containing e(N).

If N € F; is a transition node, then there must be another transition node M € F,
such that p(N) = p(M) and f(N) = f(Mg). Thus, if the polygon list links between N

and M are interchanged, then N will no longer be a transition node.

In the simplest case, M will also no longer be a transition node after this interchange
operation. There may be more complicated cases in which some number n > 2 of transition
nodes represent identical vertices. In such cases, all n nodes can be made non-transition
nodes in n — 1 relinkings or less. At each point where a vertex occurs, the algorithm
maintains a set of all nodes with that vertex. To find the corresponding transition node M
such that p(M) = p(NN), it is not necessary to examine all the nodes in all the classification
lists, but only the nodes in this set. When a transition node is relinked it is removed from

this set. In figure 4, nodes belonging to a single set are shown circled.

The MakePolygons procedure traces around each polygon in F, finds all transition
nodes M such that p(M) = p(N), and relinks them. After each polygon has been traced,
the polygon is added to the collection being constructed. MakePolygons is first invoked
on F,. Once its nodes have been relink, MakePolygouns is invoked on Frn. The nodes in Fy
do not have to be checked explicitly, since if Fi, and F contain no transition nodes, Fj
also cannot contain transition nodes. Since all edges in fy fall in the interior of C; U* Cy,

Fy may be discarded.
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Function MakePolygons(Fragment F') : Collection

begin

Collection C := §

While F' # 0 do begin (* For each polygon Il in F' do... *)
Let Node N € F and let II be its polygon  (* Pick any edge e(N) *)
While N € F do begin (x Trace around the polygon *)

F:=F—-{N} (* Remove edge ¢(N) from F *)
If f(Ng) # f(N) then begin (* Ng is a transition node *)

Find another transition Node M such that
p(M) = p(Ng) and f(M) = f(N)
Relink Ng and M (x Make edge e(M) be the next edge on II *)

end
N := Ng (*x Advance to next edge on boundary *)
end
c:=cCcull (* Add polygon to the collection *)
end
return(C) (* Return the collection of polygons *)

end(* MakePolygons )

Figure 5 shows the two fragments F;, and Fiy before and after invoking the procedure
MakePolygons. Edges of F, are shown as solid lines and the edges of F, are shown as

dotted lines. Collinear edges are offset slightly to show their connectivity.

4.1. Pseudo Vertices Cleanup

In the process of fragment splitting, edges are split and pseudo vertices are introduced.
Many of these vertices are transition vertices and will be relinked. However, some pseudo
vertices remain and must be removed in order to prevent proliferation of redundant pseudo

vertices in following operations.

Removing pseudo vertices from a collection is a simple task of removing each node N

for which e(N) is collinear with e(Ng). The CleanUp procedure performs this operation.
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Fig. 5. Before and after MakePolygons.

Procedure CleanUp(Collection C')
begin
for every polygon IT € C do
for every vertex p(N) in II such that p(Ng) ~ I(N) do begin

(* N is a pseudo vertex *)

Unlink p(N) from II (* Link up Ng with Ng *)
Dispose(N) (* Discard Pseudo Vertex *)
end

end(* CleanUp *)

A splitting line is usually collinear with some edge e. Any edge that crosses the
splitting line without crossing e will cause a pseudo vertex to be created—but the number
of cases where this occurs is usually small. Any edge that crosses the splitting line by
crossing e will cause two pseudo vertices to be created—but these pseudo vertices are
transition vertices. Thus, during relinking, these vertices will become actual vertices rather

than pseudo vertices.

The case in which the maximum number of transition vertices is created before relink-

ing consists of two collections C'; and C'; of one polygon and n edges each, in which each
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edge of Cy crosses all n of the edges of C;. In this case, there will be approximately 2n?
pseudo vertices created. However, there will be n?/4 polygons of four vertices each in the
intersection and n?/4 polygons in the union. During relinking, all of the pseudo vertices

except one becomes an actual vertex.

Experimentally, the number of pseudo vertices remaining after relinking has been
found to be generally small, averaging around one-third the total number of vertices in the

original collections.

5. Implementation Accuracy

A pathological manifestation that occurs when implementing any solid modeling algo-
rithm using floating point is the epsilon problem. We store all numbers in double precision
that yields 15 digits of accuracy, but set the equality check at only 9 digits of accuracy; (i.e.
e = 107%). Computations that are sensitive to floating point errors must be normalized

using the e.

The point/line predicates (<, =, >, ...) are coded using Eval¢, which is Eval®, which
is
0 if abs(Az + By +C) <e

Eval(P,L) = {Aw + By + C otherwise.

Point equality P, = P, is
P=P<& |:E1 ~$2| + |y1 ~y2! <e

One important consideration in the implementation is to insure that the predicates
agree. That is, since each vertex P is on at least two lines L; and Lo, then for any
other point @ the implementation must guarantee that P = Q iff Q ~ L; A Q ~ La.
A disagreement between predicates like P = @ and Q ~ L will result in erroneous edge
classification. The use of normalized line equations and careful computation of the point

of intersection of two lines prevents the predicates from disagreeing.
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6. Conclusion

Efficient algorithms for solving general geometric intersection problems are becom-
ing an important part of many areas such as computational geometry[7], and computer
graphics. The development of this algorithm stemmed from the goal of improving on the
complexity of existing methods by taking advantage of the well understood divide-and-
conquer paradigm. We conjecture that the complexity is O(max(nlogn,m)), where n is
the number of edges in both €y and Cy and m is the number of edges in both Cy U* C7 and
C; N* C5.[12] This would be more efficient than existing intersection algorithms that oper-
ate in time in excess of O(n?). Current work is being conducted to show the algorithm’s
correctness and establish its average time complexity. The complexity will be verified
statistically by automatically generating collections of polygons and collecting parameters

such as the number of times edges are examined.

This algorithm has been successfully implemented in C and runs under Unix on a
Sun-3 workstation. The algorithm is implemented as a part of a two dimensional modeling
package including a user and a graphic interface that uses the SunCore graphics package.

The entire system runs under the Sun window environment.

Our Al group at the University of Maryland is developing a system called SIPS to
perform an automated manufacturing task known as generative process planning[6]. The
future success of this project will necessitate the use of a solid modeler which can efficiently
solve intersection problems on three dimensional solids. The two dimensional algorithm
described in this paper can be directly extended to three dimensional polyhedra by using
splitting planes instead of splitting lines.[3] We intend to use this approach as the basis for

a solid modeler based on boundary representation and input directed decomposition.
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Appendix:

Attached are several hardcopies of the Sun’s display printed on an Imagen. The dis-

play shows selected examples of two collections each and their corresponding union and
intersection, or their subtraction.
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