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NON-REGULAR DECOMPOSITION: AN EFFICIENT APPROACH FOR SOLVING THE
POLYGON INTERSECTION PROBLEM

G. Vanecak Jr. and D, §. Nau
Department of Computer Science
University of Maryland
Coliege Park, Maryiand

ABSTRACT

Most approaches to the integration of solid modeling with automated process plan-
ning have essentially involved extracting features from the mode] and sending them the
planning system, with no further interaction between the planner and the modeler. Fuzr-
ther integration of solid modeling and process planning will require extensive interaction
between the process planning system and the solid modeler during process planning. Most
existing solid modeling systems are unable to do this effciently, because of limitations in
the algorithms they use.

As a first step toward overcoming this problem, this peper describes an efficient al-
gorithm for producing the boundaries of objects resulting from regularized set operations
(such as union, intersection, and subtraction) on two-dimensional polygons. The algerithm
is significantly faster than the previously available algotithms for this task. For future work,
we intend to extend our algorithm to bandle three-dimensionp] objects containing both flat
and curved surfaces, resulting in an efScient solid modelér for use in automated process
planning.

INTRODUCTION

Most approaches to the integration of solid modeling with automated process planning
have essentially involved using the modeler as a front end to the process planning system.
For example, in feature-based planning systems such s SIPS|[5], machinable features are
produced from the mode! and sent to the planning system, which then reasons about these
features without further interaction with the solid modeler.

In order to generate correct process plans for complex objects, this approach is not
sufficient. What processes can be used for some machinable feature—or whether the feature
¢an even be made at all—may depend on geometric information not available solely from
the feature description. In order to produce correct process plans for complex objects, it
will be necessary for the process planning system to interact exiensively with the solid
modeler while the process planning is going on. Thus, the solid modeler must be able to
answer a large pumber of queries and perform a large number of incremental thanges to
the solid, all in an efficient manner. '

on



Although many solid modeling systems exist, the primary focus guiding their devel-
opment has been the fact that they will be used by bumans rather than machines, Thus,
much work has been done on efficient algorithms for operations such as rendering, but
not so much work has been done on making it efficient to answer queries and make incre-
mental changes. It is the goal of our research to develop techniques for representing and
manipulating complex solid objects that can do these operations more efficiently than the
modelers currently available. '

As » first step in this direction, this paper describes an algorithm for producing the
boundaries of objects resulting from regularized set operations (such as union, intersection,
and subtraction) on two-dimensional polygons. The algorithm is significantly faster than
the previously available algorithms for this task.

Most other algorithms for this task use a global approach of checking each edge of one

object with respect to every edge of the other object. This results in & cost that is worse -

than O(n?). The algorithm described here uses a local approach based on the divide-and-

_conquer paradigm in the form of non-regular decomposition of space[2,3]. This results in

an average-case performance which is empirically shown to be O(niog n), where n is the
total number of edges of both the input and the output.

For future work, we intend to extend our algorithm to handle three-dimensional ob-
jects containing both flat and curved surfaces. This will result in an efficient solid modeler
for use in sutomated process planning.

SET OPERATIONS

It is well-known that when set theoretic operations such as union, intersection, and
subtraction are applied to two valid n-dimensional objects, the result is not necessarily a
valid n-dimensional object. For example, if two squares touch on one side, their intersection
is a single line segment, which is not a valid two dimensional object.

Requicha and Voelcker{7] have shown that this difficulty can be overcome by using

regularized set operations instead of ordinary set operations. For example, regularized set.

intersection can be defined as

SAT=H(SNT)
§-*T=rS-T),

where the regularization rS of an object represented by S removes &ll lower dimensjonal
topological entities that do not bound the interior of the object represented by S.

An object may be modeled by its boundary. Topologically, this boundary consists of
a set of edges and s set of vertices. Geometrically, each edge is associated with & directed
line, and each vertex is associated with a point. The direction associated with each edge
is arbitrarily chosen so that the interior of the object lies to the right of the edge. In
terms of these directed edges, a polygon is either clockwise, enclosing 2 finite interior, or
counterclockwise, denoting a hole. ,

The computation of a set operation on such objects can be separated into two steges.
Stage one performs edge classification and stage two generates the edges needed for the
desired operation. Edge classification labels each edge of both objects by a classification
that tells where the edge is with respect to the other object. Edge classifieation was
formalized by Tilove[10]. He showed that an edge in a given object can be classified with
respect to the other objects by dividing the edge into segments, each of which falls into
one of three sets: IN, ON, and OUT. Once this classification was done, differentiation
among various types of ON edges was done using edge neighborhoods(7}.
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Fig. 1 Before and After Edge Classification of Edges.

‘We follow Tilove’s approsch, with one difference: for two-dimensional ob jects, the ON
edges can directly be divided into two types, without the need of using edge neighborhoods.
Thus, an edge bounding a two dimensional object will acquire one of four classifications:

OUT the edge is outside the other object;
IN the edge is inside the other object; '
ON'T the edge is on the boundary of the other object, and both objects are on the same
side of the edge;
ON™ the edge is on the boundary of the other object, and the objects are on opposite
sides of the edge (i.e., the objects touch along that edge).
Since each edge must be uniquely classified with a single classification, the edges of one
object that eross or partially touch the other object must be split by the introduction
of new vertices. Such vertices are called fransition vertices. The classification stage thus
requires that the two objects split each other so that no edge of one object penetrate the
other object. .

Once the edges of an object re?resented by S bave been partitioned inte the four
classification sets ST, SourT, SéNT, SgNT, and the boundary of object represented
by T bas been partitioned into the four classification sets xS, ToutS, TJ,TN S,and T‘TDIN S,
the boundaries belonging to the desired set operation can be determined. Thus, the results
of regularized set operations can be derived directly without the need for regularization.
In particular, if S is the boundary of the object §, .

SU* T = SourT UTourSU ST,
SN"T=SInTUTinSUTILS,

and

§-*T = SourTU({TinS)™ U SHT,
‘T-*S=TouvrSU(SINT) UTLLS.

It follows from the above equations that if the two classification sets SUNT and TILS
are ignored, the remaining six sets will construct both the union and the intersection. -
Anelogously, if the two classification sets SgNT and Téks are removed, the remaining six
sets will construct both §—*T and T~* §. In the case of subtraction, (S1nT)™? denotes

the set of all directed edges in SyNT with their directions reversed.

As en example of edge classification, eonsider the two objects represented by S and
T in figure 1. The edge set S and T are {a,b,¢,d, e) and {f,g,h}). :
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After edge splitting and classification, the eight classification sets are

SovtT ={a, bl’} ToutS ={f,n}

ST ={d} Tin S ={1}
- SONT ={c} TEhS ={m}
SENT ={i} TS =ik}

Using equations (8) and (9),

Su*T ={a,b,j,f,n,c}
Sn*T={d,I,m}

THE ALGORITHM

This section presents the algorithm for performing binary set operations on two di-
mensional cbjects. The algorithm is as shown below:

Algorithm PesformSetOp(Objects S, T Op)

1. (§', T') = MskeObjects(Op, ClassifyEdges(S, T))
2. CleanUp(S5')

3. CleanUp(T")

4, return(5', T*)

The argument Op to PerformSetOp indicates whether the union/intersection opera-
tions (8, 9) or the subtraction operations (10, 11) are desired. Accordingly, the resulting
objects S' and T' are either SN* T and SU* T or S~"T and T -* 5. The algorithm
first classifies the edges of both objects by the ClassifyEdges algorithm which produces the
eight edge classification sets-see (12). These classification sets and the desired operation
pairs are then passed to the MakeObjects algorithm which selects the desired edges and
reconstructs the boundaries. At this point, the sets are regularized; however, since there
can exist adjacent pair of collinear edges—that is, redundant vertices-these boundaries are
cleaned up by the CleanUp algorithm. Each of these steps are discussed below.

Edge Classification Using Decomposition ‘

The edge classification algorithm described below uses object oriented decomposition
of space 1o recursively fragment the edge sets into ensily classifiable sets. The algorithm
falls somewhere in the middle of a spectrum of similar two dimensional approaches. At
one end of the spectrum are the spatially based approaches such as quad-trees, where
the division criteria is related to the spatial coordinate system(l]. At the other end of
the spectrum are object-based approaches, in which the object’s characteristics are the
sole means of division of the space, and division boundaries, called splitting lines, are
determined from the set of edges, The approaches at this end of the spectrum include
the Weiler polygon clipping algorithm(7) and the Sutherland and Hodgman clipper(12] for
general polygon clipping.

It is not unusual to implement edge classification by a simple double nested loop in
which each edge of one object is checked against each edge of the other object. Improvement
upon this simple strategy can be achieved by utilizing & divide and conquor paradigm on
the edge sets. Instead of considering each edge independently, the edge sets are recursively
split until trivial cases are found for which the same classification label can be applied to
all its edges. The edge sets are thus fragmented into several disjoint seta of edges, called
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fragments. The boundary elassification algorithm accepts two such fragments, 4 and B,
where fragment A is a subset of the edges of § and fragment B is a subset of the edges of
T. In the first call to ClassifyEdges, A and B contain al] the edgesof Sand T respectivelly,
Thereafter, each call works on progressively smaller fragments. At each call, the algorithm
returns the eight classification sets in the following order:

(4T, AovrT, ABNT, ALNT, BixS, Bows S, BlS, BS)

The algorithm for boundary elassification follows.

Algorithm ClassifyEdges(Fragments A, B)
L. ifA={E} and B = {F} and
Edges E and F are collinear with common endpoints then

2 §f E hes the same direction as F'
3 then return(d, 8, 4, 9,9, 9, B, ¢)
4 else return(9, 9,9, 4, 9, 8, ¢, B)
5. else if A is empty then
6 If region containing B is inside $
7 then return(d, ¢, ¢, 0, B, 0, 8, )]
8 else return(®, 6,0, 9, 0, B, 0, )]
9. else if B is empty then
10.  if region contmining A is inside T
11.  then return(4, 9, ¢,0,0,0, 0, )]
12.  elsereturn(d, 4,9,9, 9,9, ¢, 0)

else begin(s Recursively Decompose and try again »)
13.  line L = FindSplitLine(4, B) )
4. (Aven, Anigy:) = SplitFragment(4, I)
15.  (Bren, Brign) = SplitFragment(B, Ly
16. (Cf,fori=1.8)= ClassifyEdges(Aven, Bren)
17.  (Ch.fori=1.8)= ClassifyEdges(ARigat, Brigat )
18.  return(C} UC}, for i = 1..8) i

end '

Steps 1 through 12 are the trivial cases in which the edges of fragments A and B can
be classified without further decomposition. Of these, only conditions 6 and 10 require
careful geometric evaluation which is not elaborated on bere. The usual way of checking
these conditions is to cast a ray. A careful consideration shows that » ray needs only be
cast through the parent fragment of the now empty fragment. This itself can be reduced

to considering only one edge of that parent fragment. The details of can be found in a
technical report written by the suthors[13]. :

When both fragments contain more than one edge, steps 13 though 18 perform the
fragments’ decomposition. Step 13 first chooses & splitting line L. This line demarcates the
region containing the fragments into a left open halfplane, and a right closed halfplane.
Using this splitting line, steps 14 and 15 partition the fragments A and B into their
corresponding left fragment Ap,.q and Bren, and the right fragments Apigta and Brign.
Thus, the splitting line cuts the region containing both fragments into two subregions and
decomposes the contained fragment into a Jeft and a right subfragment. This splitting line
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is chosen deterministically from among the lines associated with the edges contained in
the fragments. Since a given line should only be chosen once, each edge is tagged when
its line is chosen for splitting. Using such tags allows for efficient line selection. Given the
_ splitting line L, and an edge set A, the left and right fragments can be defined by:
Am.m =A4UAIUA,
Aren = A U As U AgU Ay
where the fragments
A={(FQecA|P-LAQxL}
is the sets of edges that are on or to the right of the splitting line, and

A = {(Inter(Line(P,Q),L),Q) | (F,Q) e AAP<LAQ :-L}

and

A= {(.EInter(Line(P,Q),L)) |(FQ) eAn@<LaP>1L}

are the get of new edges that resulted from splitting edges that cross the splitting line.
Similarily, the left fragment consists of the edge sets

A={PQcA|P=LAQ<L},
As={(FQ)eA|Q=2LAP=L)},
4e = { (ErerTeP Q) D)) | (FQ) € AAP > LAQ <L},

and

Ar= {(P,Inter(Line(P,Q),L)) |(PQ)eAnP<LAQ>1L}.

In the sbove, (P, Q) is the line segment between the points P and @, Inter(L;, L) is
the intersection point of the two lines L; and Ly, and <, =, & and > are predicates for
point/line classification (e.g., P > L is true if point P is on or right of line L).

The usual approaches to decomposition of space (such as quadtree approaches) al-
ways create rectilinear regions.[1,8] However, the object-oriented decomposition used by
Splitfragment instead creates arbitrarily shaped convex regions|6]. Conceptually, the edges
contained in the fragment to be split lie entirely within some convex region. The split-
ting of the fragment partitions the edges into two subfragments that fall entirely into two
convex subregions, one on each side of the splitting line.

As an example of the classification process the edges of two objects § and T of figure 1,
are shown in the tree in figure 2. In the figure, each node of the tree denotes the fragment
resulting from splitting the parent fragment.

The classification algorithm resembles Hoare’s Quicksort algorithm/4], which divides a
set of keys to be sorted into two subsets around some partition element. The average-case
complexity of Quicksort results from the fact that although the partition element is chosen
randomly, it will usually not be too far from the middle of the set, and thus the two subsets
will be of comparable size,

The SplifFragment algorithm partitions the edges about some line chosen from among
the edges. In the Quicksort splitting algorithm, any individua! element is a valid candidate,
but in SplitFragment, not every edge can be used to provide a candidate splitting line.
Instead, » splitting line can be used only if its application maintains properties P1 and P2.
This requires the examination of at least two edges.
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Fig. 2 The trace resulting from the decomposition of objects S and T,

Creating the Desired Boundaries

After edge classification, the desired boundaries can be constructed by first collecting
all the proper edges (as indicated by (8) through (11)} and by eliminating redundant
veriices. If the objects are modeled by connected edge loops, then transition vertices must _
be relinked. As an example from figure 1, vertices 5 and 11 need their edges relinked when
creating the union and the intersection. Once this has been done, pseudo vertices, such as

vertex 10, should be removed. A pseudo vertex is a vertex whose two incident edges e on
the same line. : '

ANALYSIS

The classification algorithm presented manipulates edges. The cost C(n,m) of the
algorithm can be expressed in a recurrence relation on the size of the two fragments r and
m to be classified:

n4m In=0orm=0orn=m=1
C(n,m)= {1+ﬂ+m+ C(nr,mL)+C(ng,mp) ofw,0< ny,nz <n,
i OSWL,mRSm

The first condition covers steps 1 through 12 of the ClassifyEdges algorithm. The second
condition handles steps 13 through 18. This consists of a cost of 1 for selecting the splitting
line, the eost of n+m for splitting the fragments and the costs C{nr,m.), and C(ng,mp)
for classifying the left and the right subregions respectively. The bounds on the sizes
of subregions are very loose. The actual values depend greatly on the splitting strategy
used and more g0 on the probability. As such the elosed form might never be determined
analytically. Although the worst case should be easier to determine than the average case,
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it has been observed that in geometric modeling systems, the worst case is generally very
pessimistic and sheds little light on the average case running time{14].

The average case running time can be observed statistically. The algorithm’s complex-
ity has been measured under numerous test runs. Conclusions are derived from statistical
analysis of the collected data. This is done by measuring several key operators utilized by
the algorithm. One such key operation is any geometrical consideration of an edge. Using
an algorithm for generating random polygons of arbitrary size, several batches of 50 pairs
of unique polygons have been intersected and their averages plotted. Eight such batches
with increasing number of edges from 4 to 512 each has been performed. Figure 3s shows
the average numnber of edge compariscns. _
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Fig. 3 Edge comparisons and Pseudo Vertices vs Size.

An edge comparison is taken to be the action of removing an edge from a fragment for
some geometric consideration. The curve for the number of edge comparisons fits between
the curves for n and n? shown as dotted lines. The same figure also indicates the number
of recursive calls to ClassifyEdges. This simple statistical analysis shows that at least in

practice, the algorithm has an average-case complexity that is beiter than quadratic for’

intersecting polygons of equal size. Figure 3b shows the relation between the polygon size
and the number of pseudo vertices generated and removed.

Generating the desired boundaries from the eight classification sets can be performed
in O(nlogn) steps, where n is the sum of both the input number of edges and the total
pumber of edges produced by the ClassifyEdges algorithm. Note that the actual number
of resulting edges can be of O(m?) given m input edges. This would occur when every edge
of one object crosses every edge of the other object. Finally, removing redundant pseudo
vertices can then be performed in O(n) steps. '

CONCLUSION )

This algorithm has been implemented in C, in less than 1000 lines of C code, and
runs on a Sun-3 under Unix. It has been tried on a large number of problems, including
a number of examples specially designed to be hard, and bas been found to run very fast.
For example, intersecting two objects with 32 edges each resulting in roughly 90 edges each
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takes less than 3 seconds; intersection two object with 256 each that result in around 840
edges each takes about 45 seconds. _ .

In addition to providing improved time complexity, reducing implementation detajl is
of even more importance. Solid modeling systems are typically large and hard to under-
stand, at least parily because of the need for handling numerous special cases. One of the
most appealing features of our algorithm is its simplicity. It has the inherent ability to
decompose until only the most primitive topological components exist~and handling the
few arising eases is thus much simplified.

Currently work is in progress in producing a solid modeler which ean do efficient
set operations on three-dimensional solids modelled by » boundary representation. We
intend to do this by extending the non-regular spetial decomposition algorithm to three
dimensions. Theoretically, this problem is well understood, but it is still a. challenge to
implement efficiently.
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