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ABSTRACT

Three fundamental binary set operations are of interest in solid modeling: union,
intersection and subtraction. This paper describes an efficient algorithm for set opera-
tions on pairs of polyhedra modeled using boundary representation; the polyhedra need
not be bounded by manifolds. Given the boundaries of the two solids being operated
upon, the algorithm uses boundary classification to separate the two boundaries into
four classification sets each. This is done using an efficient boundary classification
method based on non-regular decomposition of object space. The algorithm then con-
structs the boundary of the desired object form the appropriate classification sets.
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1. Introduction

1t is well known that when get-theoretic operations such as union, intersection,
and subtraction are applied to two valid n-dimensional golids, the result is not
necessarily & valid n-dimensional solid. For example, if two squares touch on one
gide, their set-theoretic intersection is & single line segment which is not 2 valid
2-dimensional solid. For solid modeling, one 18 normally interested not in the
direct result of the set operation, but rather in the reqularized result of the set
operation [RVTT,RVSE)], i.e., that part of the result that is a valid n-dimensional
solid. .

If the two solids are rcpresented using boundary representa.tions, a common
approach to computing 2 regularized set operation on these two solids is to make
use of boundary classification. Boundary classification was formalized by Tilove
[Ti177,T'1180], and was elaborated on by Putnam and Subrahmaniam (PS8}, and
Mantyla [Man84 ]. The intent of boundary classification is to put each face of
each solid into one of several different classification sets, depending on whether
a face is inside, outside, or on the boundary of the other solid. Once this has
been done, the boundary of the resulting solid can be constructed based on the
classification sets.

During the boundary classification process, some faces may touch or intersect
the other solid only partially, and these faces cannot be put into the classification
sets directly. Such faces are first split into several subfaces such that each subface
lies completely inside, outside, or on the other solid—and then these subfaces
are put into the classification sets.

When solids are represented by boundary representations (BReps), algo-
rithms for set operations on these solids often are rather inefficient. During the
computation of set operations, 2 typical approach for boundary classification 18
to check each edge of one solid against every face of the other solid in order to
find out where they intersect. This requires time 0(n?), typically with a rather
large constant factor. As a result, the time required to perform set operations
may become prohibitive if the solids are complex.

Another problem that arises in performing set operations on BReps is how
to handle non-manifold objects. A 2-manifold M is a space such that each point
on M has an open neig;hborhood topologically equivalent to an open disk of
E? [Man84a]. Although most physical solids are bounded by 2.manifolds, the
result of a regularized set operation on two solids bounded by 9-manifolds need



not necessarily be bounded by a 2-manifold [Req77]. A general algorithm that
implements the set operations on solids must therefore be capable of representing
and manipulating solids that are not strictly bound by 2-manifolds—and this
causes problems for BRep modelers that use data structures such as winged-edge
representations [Bau72].

This paper presents a new algorithm for set operations on polyhedra repre-
sented using boundary representations. This algorithm provides better average-
case performance than the quadratic cost of the conventional approach to bound-
ary classification. This is accomplished by using a divide-and-conquer approach
to decompose the boundaries recursively into fragments that can be classified
quickly. The decomposition is done by separating space into regions using split-
ting planes lying along the faces of the solids. This means that the edges of one
solid are never checked against the other solid (as is done in the conventional
approach).

In addition to efficiency, there are several other appealing characteristics of
this algorithm. It operates directly on the boundary representations (without
requiring conversion to and from other representations), it does not have to
deal with numerous special cases as do many existing algorithms, it works for
both 2- and 3-dimensional solids, the boundaries of the solids do not have to be
manifolds, and the basic concept is easy to describe.

This paper discusses the operation of the algorithm on 3-dimensional poly-
hedra. As discussed in [VN87b], the algorithm becomes simpler if applied to the
problem of intersecting collections of 2-dimensional polygons.

Section 2, gives a brief overview of related work that has been done on decom-
position techniques. Section 3 discusses the details of the algorithm. Section 4
discusses implementation considerations, and Section 6 provides concluding re-
marks.

2. Related Work

The idea of performing space decomposition by use of a plane is not new.
Quadtrees and octrees use regular decomposition of space to represent recti-
linear solids. Extended octrees provide an efficient and exact representation
of polyhedra. Isabel Navazo in her Ph.D. thesis [Nav86], and Ayala [ABN8S]
showed how to perform set operations on extended octrees. Non-regular decom-
position was first used by Fuchs in his presentation of Binary Space Partitioning
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Trees (BSP) to represent polyhedra for the use in a hidden surface algorithm
[FKNSO]. The use of BSP trees was recently extended by Thibault and Naylor
to allow for the conversion from CSG to BSP to BRep, and to allow for the
computation of set operations between & BSP and a CSG primitive [TN87]. Of
the previous work, Naylor’s approach is the mmost similar to ours because we
both perform a si jlar type of decomposition. _

The main differences between our work and the approaches discussed above
are as follows:

1. Each of these approaches proceeds by building elaborate data structures to
represent localized regions of space, and then using these data structures
as the underlying representations for the objects being manipulated (for

example, Thibault and Naylor map BReps into BSP trees and do their
manipulations on these trees). In contrast, our algorithm deals purely with
boundary representations without converting to and from an alternative
representation.

2. Each of the approaches makes certain simplifying assumptions about the
nature of the objects being represented. For example, all of the approaches
assume manifold boundaries, and many of them assume that the faces of

the solids are conveXx. In contrast, We handle arbitrary polyhedral objects.

3. The Algorithm

3.1. Definitions, and Overview of the Algorithm

A plane P is represented by 2 four-tuple (4, B .C,D). (4, B,C) is the normal
vector for P, and the distance from P to the origin is |D|. A point (Z,Ys z) isin
’PifA:z:+By+Cz+D=0.

P = {(2,9:2) | Az+By+Cz+D<0}
is the half-space below P, and
P> = {(z,9,2) | Az+By+CZ+D >0}

is the half-space on 0T above P.
A solid can be modeled as & subset of E® that is bounded, closed, regular,
and semianalytic [ReqSO,RV83] (one consequence of this is that every solid has
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a finite volume). The mathematical properties of such solids are discussed by
Requicha [RV77]. If S is a polyhedral solid, then bS is the set of faces that
bound S. If fisa face of S, then Py is the plane (A,B,C,D) containing f-
To give the orientation of f with respect to S, the signs of A, B, C,and D
are chosen so that f's normal vector N;=(AB ,C) points outward from S.
f! is the face occupying the same space 8s f, but having the normal vector
(-A,-B, —C) pointing in the opposite direction. If Fis & set of faces, then
F ={f"|feF} |

A region is any non-empty intersection of zero or more open or closed half-
spaces. The fragment F S of a solid S within a region Ris

FS'= {fn'leer}.

The use of regularized intersection here is to handle the case where a boundary
of R is open rather than closed. As a consequerce of this, the interior of each
face in F? is in R, but the borders of each face in F° need not necessarily be in
R.

Regions are useful conceptually for describing the algorithms in this paper,
but none of the algorithms ever deal with R explicitly. Thus, the problem of
how to compute the above regularized intersection never arises.

A face f of S is homogeneous with respect to solid T if one or more of the
following classification relationships holds:

1. fINT;ie., the interior of f lies in the interior of T
2. fOUTT; i.e., the interior of f is outside of T.

3. f WITH T; i.e., f lieson the boundary of T, and both S and T are on
the same side of the boundary.

4. {f ANTIT; i.e., f lies on the boundary of T, and S and T are on opposite
sides of the boundary.

Not every face of S is necessarily homogeneous with respect to T’ and non-
homogeneous faces cannot be classified directly. Instead, they must be split into
two or more subfaces, each of which is homogeneous. Once this has been done,
the classification relationships for the subfaces can be determined.

A fragment F S of S is homogeneous with respect to T if all of its faces satisfy
the same classification relationships with respect to T. In order to classify
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the faces of S T, 2 decomposition procedure 1| be used t
pnrtitions the spac into regions: and tries to class fy the fragments 1B those
regions. X ® fragment is found 0 be homogeneos™ then it m2Y be |assified
directly ( Gections 3.9 d43.8) Otherwisé the region containd e fragment
is decomP d into gubregons in hopes hat the sub{-rn.gments in the gubregions
will be homogeneous T gorithm for regula.nzed binary seb operations is as
follows:
1. Use the decompos'xtion P ocedure described 18 gection 3.2 10 divide bS and
pT into sets brl ) and bs T) homogeneousi es and classify them This
omputes the fo owing eigh lassification sets
snT = UE be(S) | £ TN TV (3.1)
SoutT (f € br(S) | f OUT T (3.2)
Swital (f € br(5) | § WITH TYs (33)
SaANTIT (f€ br(S) | ANTI T3x (3.4)
NS = UE bs(T) | SY; (3.5)
TouTS (f € bs(T) | §.OUT S (3.6)
TwiTHS (f € bs(D | § WITH Sh (3.7)
TanTS = (f € bs(T) \ T1 5} (38)

9. The classification sets computed in Step 1 allow for the boundary of the
new solid to be onstructed by incrementally copying and then gluing
ogether the faces of the appro riate classification se Depending on.
which operation is to be comp ed (umon iptersection, or difference
compute it using on€ of the following equations:

B= b(S ut ) = SOUTT U TOUTS J SW'[THT, (3.9)
B=>b50 T) = sinT Y TnS Y TWITHS (3.10)
g=bs-"T) = SoutT Y (Tn~15)"1 U SANTID (3.11)
p=bT-"5 ~ ToutS ¥ (ST Y TANTIS: (3.12
3. Due 10 the Jecomposition process, br(S and bs(T ) probably nsist of
pon-maX ol faces; 1-€: hey contain f which are €© Jan: and adja
efore could be combined. Thus, When the boundary



B is constructed using one of equations (3.9) through (3.12), it will prob-
ably also contain pon-maximal faces. Such boundaries are non-unique,
and their use in further set operations could proliferate the number of
non-maximal faces to a point where the boundaries could consist of many
more faces than needed. Therefore, at this point we perform a face merging
operation to form maximal faces. This is done in two steps. The first step
is to merge adjacent distinct coplanar faces by removing from B the edges
which lie between them. Once this has been done, the merged faces may
result in collinear and adjacent edges. The second step merges these edges
by removing from B all vertices that have exactly two adjacent collinear

edges.

4. The resulting boundary B may consist of one or more disjoint compo-
nents which need to be separated, and some of these components might
be non-manifold. If a component is not a manifold, it may consist of sev-
eral subcomponents whose interiors are disjoint; these subcomponents also
need to be separated. We check B for the existence of such situations, and
separate B into single-component boundaries. (This task must be done
here rather than during Step 2, since the classification sets computed dur-

ing Step 2 do not provide any information about the relationships among
the desired faces and the structure of the resulting solid(s).)

As an example of Step 3 above, Figure 3.1a shows a solid with non-maximal
faces. Figure 3.1b shows the solid after face- and edge-merging. For visualiza-
tion, Figure 3.2 shows the solid with hidden faces removed.
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Figure 3.1a Figure 3.1b

Figure 3.2: Solid of Figure 3.1 with hidden faces removed.

In Step 4 above, the resulting boundary needs to be separated into connected
components. However, looking for connected components alone will not fully
separate the boundary if the boundary is not a 2-manifold. As an example,
Figure 3.3 shows a non-manifold solid consisting of a rectangular peg inserted in
a cavity of a larger solid. Complete separation can be achieved by propagating
connectivity among all strongly connected faces as shown in Figure 3.4.

3.2. The Decomposition Procedure

This section describes the decomposition procedure mentioned in Step 1 of the
set operation algorithm. This procedure is used to divide two fragments into
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Figure 3.3: Separating a non-manifold into two components.
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Wrong Right

Figure 3.4: Proper propagation of face connectivity.



gets of homogeneous faces.

Let F° and FT be the fragments of § and T in some region R- (initially,
R will be the entire wniverse: and F° end FT will be p5 and T, respectively)-
Unless it 18 known that FSand F T are homogeneous R (snd thus FSand F T)

Fi = (F0° P | feF ¥ (3.13)
FS = {fﬂ"Pz\.fGFS}, (3.14)
Fi = (forP\fE ¥ (3.19)
Fe Un"P,_\;fe & (3.16)

How these fragments are cornpui;ed 1s descﬁbed in Section 3.4.
The recursive decomposition procedure appears below-

1. From the arguments FS and FT, choose 2 splitting plane P using the
splitting—piane selection procedure described in Section 3.3.

0. Using P> split F $ into cubfragments F$ and FS, and FT into subfrag
ments F¢ and F>» using the fragment splitting procedure Jescribed in
Section 3.4. Asab example, Figure 3.5 shows & g-faced po\yhedron split

into two fragments with 5 faces each.
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Figure 3.5: Splitting a solid by a plane P.

e If F$ and FI contain one face each, and if the two faces share a com-
mon border, classify both faces using the classification procedure of
Section 3.5.

o If Fzs is empty, classify the faces of the fragment FZT directly as mem-
bers of either the TiNS or the ToytS classification sets, using the
classification procedure of Section 3.6.

o If Fg is empty, classify the faces of the fragment Fzs directly as mem-
bers of either the SiNT or the SouTT classification sets, using the
classification procedure of Section 3.6.

e Otherwise, if both F3 and Fg are non-empty, invoke the decomposition
procedure on them recursively.

3.3. Selecting a Splitting Plane

This section describes the procedure for selecting the splitting plane chosen in
Step 1 of the decomposition procedure (Section 3.2). The splitting plane is
chosen by first selecting a face from the valid faces of the two fragments to be
decomposed, and then by choosing a plane based on the relationship between
the face and the region that contains it. ' :

The splitting plane is usually taken to be a plane that contains a face of
one of the fragments. Using such splitting planes is sufficient when the frag-
ments cleanly intersect, i.e., they do not have overlapping faces. However, if the
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them to be reasonably balanced in gize. Thus, not every face or edge is appro-
priate t0 determine the splitting plane. To pick 2 proper face, it 18 necessary 0
know the relationshiP between 2 given face f and the region R that contains the
face. For 3-dimensional gpace, there are five face-region celationships:

f Ins R holds if the interior of f lies completely inside R and is not coplanarl
with any of the planes comprising the the boundary of R.

f withs R polds if f is coplanar with one of the planes bounding Rand f and
the plane pave the same the normal vectors (i.e f und the plane face the
same direction)- For example, 5€€ Figure 3.6a.

§ Antis R holds i f is coplanar with one of the planes bordering R _and the
pormal vectors for f and the plane are different (1€ f and the plane face
in opposite directions)- For example, s€€ Figure 3.6

f Ing R holds if both f wWiths R and f Antis R. This indicates that the face
is ;mbedded in 2 planaf (that is, 2-d'1mensional) region. Thus, all faces of
this fragment ar€ coplanar.

f WA R holds if f Ime R and the porder of Ris exactly equal to the border
of f (in which case f is the only face in the fragment that contains it).
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Figure 6a: With, Figure 6b: Anti,

Suppose F'S and F7 contain faces satisfying various of the above relation-
ships. Then, in selecting a face to use in defining the splitting plane, it is
necessary to give preference to faces satisfying the first possible relation in the

sequence
(In3, Withs, Anti3, Ing).

A face satisfying the WA, relation will never appear as a candidate, since the
fragment containing the face would already be classified in Step 3 of the decom-
position procedure and would not require further decomposition.

Once a face f has been selected, the selection procedure chooses a splitting
plane P as follows:

1. If fInzR or fAntizR, then P is the plane (4,B,C,D) of f.
2. If fWithsR, then P is the plane (-4, -B,-C,-D)of f~%.

3. If fIn, R, then P is a plane which is perpendicular to the plane of f. P is
chosen to contain an edge of f that lies completely within the region R (at
least one such edge must exist, since otherwise f would satisfy fWA:R,
whence the fragment containing f would not require splitting).

3.4. Splitting a Fragment

The fragment splitting procedure uses the splitting plane P provided by the
selection procedure to split a fragment F into two subfragments. One of the
subfragments, F5, lies on or above the splitting plane, and the other subfrag-
ment, Fy, lies below. Any face coplanar with the splitting plane belongs to F>.
The fragment splitting procedure has the following steps:
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Figure 3.T: Representing 2 face with holes.

1. Initially, set F>= F.=0.
2. For each face f in the fragment F',

o If f lesonOf above P, then put f into F>.

o If f lies below P, then put f into Fe-

o If f crosses the splitting plane P, use the face-splitting procedure
of Section 3.4.1 to split f into two of more faces, each of which lies
either on Of above P, of below P. Place each new face in either F5
or Fe, 88 appropriate.

3. Return the ne¥ subfragments F< and F>.

A face f is determined to lie above, below, OF across P by noting the position
of each edge of f with respect t0 p. This is done by noting the positions of the
vertices of f- p= (z,y,2) i8 8 vertex of f and (A,B,C,D) :s the 4-tuple
representing P, then p is below, above, OF on P if the distance

d(p)=A:c+By+Cz+D

from p to P is less than, equal to, OF greater than 0, respectively. If all vertices
of f are below P, then f is below P; if all vertices of f are on or above P, then
fisonor above P; and otherwise, f crosses P.

When considering 2 multiply connected face (i.e. @ face with holes), the
hole can be represented as a loop [BHSBO]. Splitting each face can be greatly
simplified if the holes do not need to0 be maintained separately, but can be
incorpora.ted into the outer loop of the face using imaginary edges [YTSS]', this
is the approach we use in the implementation of the algorithm. Figure 3.7 shows
a face with two holes, each connected by & single edge- This representation allows
the face splitting procedure to ignore holes and to handle splitting faces with

holes identically to splitting faces without holes.
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Figure 3.8: Splitting a face.

3.4.1. Splitting a Face

The problem of determining the subfaces lying on only one side of the splitting
plane has been widely investigated in computer graphics as the polygon clipping
problem [SHT74]; however, such discussions are oriented towards graphic display
rather than solid modeling, so that maintaining a consistent solid is unnecessary.
For the purpose of set operations, cutting polyhedra by splitting planes has
been investigated by Brotz [Bro76] and Mantyla [Man86]—but these papers
assume that the polyhedra have manifold boundaries. This section describes our
procedure for determining what subfaces are generated when a face is split by
the splitting plane, with the purpose of elucidating some of the details necessary
for face-splitting that have not been addressed elsewhere.

The face-splitting procedure uses the splitting plane P to cut a face f into
two or more faces. This involves the following steps:

1. Split all edges of f that cross the splitting plane P. This results in adding
new vertices to f; all of these new vertices lie in P.

o

let V be a list of all vertices of f which lie in P, sorted in order along the
line of intersection between P and the plane of f.

3. The point-set intersection between P and f consists of one or more line
segments. Some of these line segments may already correspond to edges
of f; for the others, we create edges bounded by the vertices in V.

4. The previous step splits f into two or more subfaces. Of these subfaces,
add to F> the ones lying on or above P, and add the rest to Fg.

In Step 2, the set V is constructed by tracing around the edges of f in a
counterclockwise order. To insert the new edges in Step 3, it is first necessary
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Figure 3.9: Result of Splitting a face.

in Step 2 to sort V along the line of intersection between P and the plane of f.
This line may be represented by the parametric equation

p(v) =p(v1) +1- T, o (*)
where v; is an arbitrary vertex in V', and
w= W} X N-p.

The goal is to order the vertices v € V according to the value t(v), where t(v) is
obtained by solving Eq. (*) for t. Fortunately, computing t(v) can be avoided
by sorting on the coordinate of v that corresponds to the coordinate of W having
the greatest magnitude. For example, if @ = (¢1,¢3,¢3) and max{ci, ¢z, ¢} = e,
then the 2nd coordinate of v.

Sorting V is not by itself sufficient to determine where to insert the new edges
in Step 3, because not every adjacent pair of vertices in V will correspond to an
edge. For example, Figure 3.8 shows a face in which V contains ten vertices. Of
these ten vertices, the fifth and the sixth vertex from the left should not have a
new edge created between them. Tracing along the vector w, we are originally
outside f. Every time we encounter a vertex v in V, we can determine whether
we have entered or exited f by checking to see whether the vertices close to v
along the boundary of f are on opposite sides of P. If we are inside f, then an
edge should be added.

Once the new edges have been inserted, this splits f into a number of new
faces. For example, Figure 3.9 shows the result of splitting the face shown in
Figure 3.8: the edge loop for the original face has been broken up into six edge
loops by adding five new edges, and each new edge loop defines a new face.
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3.5. WITH/ANTI Classification Procedure

In Step 3 of the decomposition procedure, suppose the two fragments to be clas-
sified contain one face each, and that these faces share a common border. Then
these faces are homogeneous, and can be classified without further decomposi-
tion.

Let FS and FT be the fragments, and let fs and fr, respectively, be the faces
contained in these fragments. There two possibilities: either the normal vectors
of fs and fr are opposite, or else they are equal. In the first case, the solids S
and T touch (i.e., they are on opposite sides of the faces, as in Figure 3.10a).
In this case, classifying fs and fr consists of adding them to the classification
sets SaAnTiT and TaANTIS, respectively. In the second case, the solids S and T
overlap (i.e., they are on the same side of the faces, as in Figure 3.10b). In this
case, classifying fs and fr consists of adding them to SwiTnT and TwWITHS,
respectively.

Figure 10a: Solids touch. Figure 10b: Solids overlap.

3.6. IN/OUT Classification Procedure

In Step 3 of the decomposition procedure, suppose that one of the fragments to
be classified is empty. Then all the faces of the other fragment can be classified
directly without further decomposition. The technique for doing this is general,
in that it also works for non-manifolds.

Without loss of generality, assume that F$ and F7 are the fragments to be
classified, and that F3 is empty. Then the Interiors of the faces of fragment
FI must be either completely inside or completely outside the solid S. If they
are inside, then all the faces of FT should be added to the TInS classification
set; otherwise, the faces should be added to the TouTS classification set. We
determine which of these cases holds using the method described below. Con-
ceptually, this method is similar to the one reported by Thibault and Naylor
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4. Implementation Considerations

Our algorithm becomes simpler if applied to the problem of intersecting collec-
tions of 2-dimensional polygons; in fact, the original development of the algo-
rithm was for the 2-dimensional case. The algorithm was originally implemented
for 2-dimensional polyhedra using the C programming language, running under
the Unix operating system on Sun-2 and Sun-3 workstations [VN87a]. The al-
gorithm was also coded into a 2-dimensional solid modeler using the SunView
window environment to provide a convenient user interface.

Our algorithm has been implemented as part of a 3-dimensional solid modeler
we are building called ProtoSolid. This section describes some of the implemen-
tation issues we are encountering, and how we are solving them.

4.1. Language Issues

ProtoSolid is being implemented on a T1/Explorer II, using Common Lisp
[Ste84]. Lisp was the programming language of choice for several reasons:

1. The language provides the necessary attributes to set up structures as
given above. Programming solid modelers is to a large extent a play on
the use of pointers, lists and symbols. Lisp is a language designed to do
just this.

2. The availability of specialized hardware to execute Lisp programs provides
for a software environment well-suited for rapid prototyping of code. The
Explorer architecture has a dedicated 36-bit processor with run-time data-
type checking, a high-resolution bit-mapped display, and Ethernet based
networking. The software environment includes an excellent editor with
advanced features such as interpretation and compilation of code within
the editor, incremental compilers, dynamic linking and loading, a flexible
display-oriented debugging system and other utilities. '

We now see Lisp as the obvious choice of language for solid modelers.

4.2. Data Structures

When the face-splitting procedure (Section 3.4.1) is invoked on a face f, it uses
Eq. (3.4) to compute the distance d(p) from p to P for every vertex p of f. Since
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the face-splitting procedure is invoked separately for every face incident on p,
this means that a naive implementation of the face-splitting procedure would
compute d(p) several times for each p. In our implementation, the algorithm is
made more efficient by computing d(p) only once and storing it in a table for later
reference. Similar kinds of repetitive computations arise for other geometrical
entities as well, such as points, unit vectors, and planes. Thus, we maintain a
separate table for computations involving each kind of geometrical entity.

It has been commonly recognized that the separation of topological and
geometrical information has computational benefits. In particular, although
each solid has its own topological graph structure, all solids share the same 3-
dimensional space, and thus they need to share the same geometrical entities.
Thus, the tables referred to above are global to all solids.. Not only does this
minimize the space for storing geometrical information, but since it eliminates
redundancy among existing solids, the equality check requires only a simple
address comparison, and efficient tables requiring O(log n) insertion and deletion
can be used. In Protosolid, each geometrical table has been implemented as a
binary search tree that uses three-way comparison functions. Tree balancing
(e.g. using AVL trees) has not been necessary, as the seemingly random order
of insertions rarely causes the binary search tree to degenerate [AHU74, page
118].

The splitting plane selection procedure, the fragment and face splitting pro-
cedures, and the classification procedure can be cleanly coded independently of
each other. However, better efficiency can be achieved by collecting and sharing
information between them. For example, the classification procedure needs to
locate a fragment'’s closest vertex to the splitting plane. Since the splitting pro-
cedures already has looked at every vertex of the fragment, it is more efficient
for the splitting procedures to retain the closest vertex for the benefit of the
classification procedure.

The topological and geometrical entities of a solid are represented in a hi-
erarchy shown in Figure 4.1. The fedge entity gives a face its orientation. Our
use of fedges is analogous to Mantyld's use of half-edges in the half-edge data
structure, except that the need for edge loops for representing holes has been
eliminated as was done in the bridge-edge data structure used by Yamaguchi
[YT85]. All faces and edges are are maintained by the solid in a doubly-linked
list. The vertices of a given solid are maintained in a binary search tree spatially
ordered by their coordinates.
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Figure 4.1: Solid Model Boundary Hierarchy.

5. Performance

The cost of the algorithm can be expressed as a recurrence relation. However,
even for the 2-dimensional case, the recurrence relation is a complicated one
[VN87a] which might not be feasible to solve analytically. Furthermore, it pro-
vides only a very loose bound on the cost of the algorithm. Although the worst
case should be easier to determine than the average case, it has been observed
that in geometric modeling systems, the worst case is generally very pessimistic
and sheds little light on the average-case running time.

An alternate approach is to observe the average case running time statis-
tically, by measuring the number of occurrences of several key operations per-
formed by the algorithm. This was done earlier for an implementation of our
algorithm on 2-dimensional polygons [VN87b). Using an algorithm for gener-
ating random polygons of arbitrary size, several batches of 50 pairs of unique
polygons were intersected and their averages plotted. Eight such batches with
increasing number of edges from 4 to 512 each were performed. The algorithm’s
complexity was measured in this way under numerous test runs, and the average-
case complexity was observed to be approximately O(nlog n). We have not yet
been able to do a similar test for the 3-dimensional case, because of the diffi-
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Figure 5.1: Two solids shaped like the letters V and G.

culty of generating random 3_dimensional polyhedra. However, We expect that
the average-cas€ complexity for the 3-dimensional case will be the same a8 for
the o.dimensional case-

As an example, We now discuss the use of the algorithm to compute the
:ntersection of tWo solids. The CPU times below are taken from ProtoSolid
executing on 2 T1/ Explorer-11 with non-optimized, but compiled Common Lisp
code. Figure 5.1 shows two solids G and Vv, shaped like the letters G and V.
These solids took 0.32 and 0.12 CPU seconds to create, respectively: Figure 5.2
shows G N V3 computing this intersection took 3.62 CPU seconds. This 3.62
seconds consisted of 9.7 seconds for boundary decomposition and classification,
0.87 seconds for creating the solid representing the intersection, and 0.05 sec-
onds for simplifying it to obtain maximal faces. During boundary classification,
the top level classification routine was called 171 times. The boundary decom-
position and classification step decomposed the nine original faces of V into 85
homogeneous faces, and the 23 original faces of G into 131 homogeneous faces.

In the above example, most of the time required for computing G AV was for
boundary decomposition and classification. When boundary decomposition and
classification is done, Protosolid retains the results of this st€p; making it easy to
compute other set operations on the same objects. For example, Figure 5.3 shows
v -G Computing this solid took 0.69 additional CPU seconds, consisting of
0.67 seconds for creating the solid and .02 seconds for simplifylng it to obtain
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Figure 5.2: The intersection of Gand V.

maximal faces.

If two solids are identical except for a small angle of rotation, many solid
modelers fail to do set operations on these solids correctly. ProtoSolid is suc-
cessful for rotations as small as 0.1 degrees, and most of the time succeeds for
even smaller rotations.

6. Conclusion and Future ‘Work

This paper presents a new algorithm for set operations on 3-dimensional poly-
hedra represented using boundary representations. This algorithm has several
appealing characteristics:

1. The polyhedra need not be bounded by 2-manifolds.

2. The same algorithm can also be used for 2-dimensional polygons. (In this
case, the polygons need not be bounded by 1-manifolds.)

3. The algorithm operates directly on the boundary representations, without
requiring conversion to and from other representations.

4. The algorithm does not have to deal with numerous special cases as do
many existing algorithms.
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Figure 5.3: The removal of G from V.

5. The divide-and-conquer approach used by our algorithm provides better
average-case performance than the quadratic cost of most existing algo-
rithms. The running time has been empirically determined to be between

O(n) and O(n?).

We are currently implementing a solid modeler using this algorithm. The
solid modeler, Protosolid, is implemented in Common Lisp on a TI/Explorer IL.
This will make it easy to integrate the modeler to systems we are developing to
do geometric reasoning for automated manufacturing [NIK*88]. In connection
with the ongoing implementation of Protosolid, several issues for future research
arise:

1. As mentioned in Section 3.3, the splitting plane is normally chosen to be
either coplanar or perpendicular to some face of the one of the solids.
By analogy with the Quicksort algorithm [Hoa62|, our algorithm is most
efficient when the plane decomposes fragments into subfragments of equal
sizes. We intend to investigate various selection strategies in detail, to
determine their relative merits.

9. The time complexity of the algorithm has not yet been satisfactorily ana-
lyzed. Although the cost of the algorithm can be expressed as a recurrence
relation, the recurrence relation is quite complex, and it may not be fea-
sible to determine the complexity analytically. An alternate approach is
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to observe the average case running time statistically. Although we have
done this for the 2-dimensional case, it still remains to do this for the
3-dimensional case.

. The use of Protosolid in our automated manufacturing project will require
that Protosolid be extended to handle nonflat surfaces.

. The efficiency of the implementation depends heavily on using an internal
representation of the boundaries of the solids that is efficient for non-
manifold boundaries. In our implementation of the algorithm, it is not
clear whether we have found the most efficient data structures for this
problem. Thus, we are investigating several data structures for represent-
ing the boundaries, to see which will provide the best performance.
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