
To appear, IJCAI-99. Revised 20 May 1999 to fix two typos.

On the Use of Integer Programming Models in AI Planning

Thomas Vossen Michael Ball
Robert H. Smith School of Business
and Institute for Systems Research

University of Maryland
College Park, MD 20742 USA
{tvossen, mball}@rhsmith.umd.edu

Amnon Lotem Dana Nau
Department of Computer Science

and Institute for Systems Research
University of Maryland

College Park, MD 20742 USA
{lotem, nau}@cs.umd.edu

Abstract

Recent research has shown the promise of using
propositional reasoning and search to solve AI
planning problems. In this paper, we further
explore this area by applying Integer Program-
ming to solve AI planning problems. The ap-
plication of Integer Programming to AI plan-
ning has a potentially significant advantage,
as it allows quite naturally for the incorpo-
ration of numerical constraints and objectives
into the planning domain. Moreover, the ap-
plication of Integer Programming to AI plan-
ning addresses one of the challenges in propo-
sitional reasoning posed by Kautz and Selman,
who conjectured that the principal technique
used to solve Integer Programs—the linear pro-
gramming (LP) relaxation—is not useful when
applied to propositional search.
We discuss various IP formulations for the class
of planning problems based on STRIPS-style
planning operators. Our main objective is to
show that a carefully chosen IP formulation sig-
nificantly improves the “strength” of the LP re-
laxation, and that the resultant LPs are useful
in solving the IP and the associated planning
problems. Our results clearly show the impor-
tance of choosing the “right” representation,
and more generally the promise of using Inte-
ger Programming techniques in the AI planning
domain.

1 Introduction

Although some of the application areas addressed in the
fields of Artificial Intelligence (AI) and Operations Re-
search (OR) are very similar (e.g., planning, scheduling),
the techniques that are used to solve these problems are
oftentimes substantially different. Therefore, it seems
only natural that recent research in the interface between
AI and OR has focused on comparing the relative mer-
its of the techniques and tools that are used in these
areas. In this paper, we further explore the interface
between AI and OR by applying Integer Programming

(IP), which has a rich history in OR, to a classical AI
problem, AI planning.

The possibility of using OR techniques in AI plan-
ning has not received much attention so far. Bylander
[1997] uses Linear Programming as a heuristic for non-
linear planning; Bockmayr and Dimopoulos [1998] de-
scribe domain-dependent IP models for specific problem
domains; and Kautz and Walser [1999], who use IP for-
mulations for planning problems with resources, action
costs, and complex objective functions. However, theirs
is the only work we know of besides ours.

One potential advantage of using Integer Program-
ming for AI planning is that IP formulations quite natu-
rally allow the incorporation of numeric constraints and
objectives into planning domains(for example, see Kautz
and Walser [1999]). The use of numerical constraints and
objectives is not addressed adequately in most existing
AI planning systems, but it is critical in real-world plan-
ning [Nau et al., 1998].

One difficulty indeveloping Integer Programming for-
mulations for AI planning is that the performance of the
resulting IP will depend critically on how AI planning
problems are formulated as Integer Programs. The pur-
pose of this paper is therefore to develop good domain-
independent IP formulations for AI planning. In par-
ticular, we discuss various IP formulations for the class
of action-based planning problems using STRIPS-style
operators. Our main objective is to show that a care-
fully chosen IP formulation significantly improves the
“strength” of the LP relaxation, so that it can provide
useful guidance in solving the problem.

Our IP formulations are principally derived from work
by Kautz and Selman [1996], which showed that planning
problems can be efficiently solved by general proposi-
tional satifiablity algorithms. As such, the use of Integer
Programming also addresses one of the challenges posed
in the paper “Ten Challenges in Propositional Reason-
ing and Search,” by Selman et al. [1997]. Specifically,
the challenge that we address concerns the development
of IP models and methods for propositional reasoning.
Selman et al. mention that the basic technique used
to solve integer programs—that is, the Linear Program-
ming (LP) relaxation of the problem—does not appear
to be useful for satisfiability problems, since it usually

1



sets all variables (modulo unit propagation) to the value
1
2 and therefore does not guide the selection of variables
in solving the problem.

Our results are as follows:
• In our experiments, IP formulations derived directly

from SAT encodings proposed by Kautz and Selman
[1996] performed rather poorly—but an alternative
IP formulation that we call the “state-change for-
mulation” was competitive with BlackBox using the
systematic Satz solver [Kautz and Selman, 1998],
in terms of the number of nodes expanded in the
search space. Since the branching rule that is used
in systematic satisfiability algorithms is an impor-
tant factor in reducing the size of the search tree,
this indicates that the LP relaxation does guide the
selection of variables in solving the problem.

• Like Graphplan-based planners such as Blackbox,
state-change formulation is guaranteed to find plans
that have optimal values for the number of time
steps in the plan. However, this formulation also
takes into account the number of actions required
by the plans (i.e., the plan length); and the number
of actions obtained using the state-change IP for-
mulation was usually much less than the number of
actions in the plans obtained by BlackBox.

The organization of this paper is as follows. In Section
2, we discuss the various IP formulations of the planning
problem. Next, Section 3 provides experimental results
for these formulations, and a comparison with the sys-
tematic satisfiability solver. We conclude in Section 4
with a brief discussion of issues that arise in using IP
techniques, and of plans for future work.

2 Integer Programming Formulations
The most effective current approach for solving general
integer programs involves the use of branch and bound
employing a linear programming (LP) relaxation. Thus,
the key to the effectiveness of using integer programming
to solve planning problems will lie in the effectiveness
of the LP relaxation in improving the underlying tree
search. The LP relaxation is typically solved at every
node in the search tree. Search can be terminated at
a node 1) if LP relaxation value indicates that further
search could only uncover solutions with objective func-
tion values inferior to the best known, 2) if the LP is
infeasible, which in turn implies the integer program is
infeasible and 3) if the LP yields an integer solution.
Since for planning problems, the objective function is
only of secondary consideration, 1) will have little value.
On the other hand 2) and 3) can be quite useful in im-
proving search performance for planning problems. In
particular, if the initial LP solves integer then no search
is necessary. Another role the LP relaxation plays is that
it provides information useful in deciding which variables
to branch on.

A key issue in the performance of integer programming
algorithms is the “strength” of the formulation. In gen-
eral, there can be many equivalent integer programming

formulations for a given problem. One formulation is
stronger than another if the feasible region of the LP re-
laxation more closely approximates the integer program
(see [Wolsey, 1998] for more details on this concept).
Stronger formulations are more likely to yield integer so-
lutions and produce objective function values closer to
the values of the integer program.

In the remainder of this section we discuss two IP for-
mulations for STRIPS-style planning problems. In order
to express these formulations, we first introduce the fol-
lowing sets:
• F , the set of fluents, that is, the set of all instanti-

ated predicates;
• A, the set of actions, that is, the set of all instanti-

ated operators;
• I ⊆ F . I represents the set of fluents that hold

initially;
• G ⊆ F . G represents the set of fluents that have to

to hold in the goal state.
We assume that the number of time steps in the plan, t,
is given. Furthermore, we introduce the sets
• pref ⊆ A for all f ∈ F . pref represents the set of

actions which have fluent f as a precondition;
• addf ⊆ A for all f ∈ F . addf represents the set of

actions which have fluent f as an add effect;
• delf ⊆ A for all f ∈ F . delf represents the set of

actions that delete fluent f .

2.1 SATPLAN-based IP Formulations
Initially, our IP formulations were motivated by the well
known SATPLAN encodings, as discussed in [Kautz and
Selman, 1996]. In SATPLAN, the problem of determin-
ing whether a plan exists, given a fixed number of time
steps, is expressed as a satisfiability problem.

It is well known that satisfiability problems can be
expressed as integer linear programs. (see for instance
[Blair et al., 1986] or [Hooker, 1988]). Usually, this is
done by converting the clauses in the CNF representation
of the satisfiability problem to 0-1 linear inequalities. For
instance, the clause

x1 ∨ ¬x2 ∨ x3

is equivalent to the 0− 1 inequality

x1 + (1− x2) + x3 ≥ 1;x1, x2, x3 ∈ {0, 1}.
Our first formulation consisted of this conversion for
the SATPLAN encodings that are based on GraphPlan
[Blum and Furst, 1996], i.e., we allow for parallel actions
and the propagation of fluents using the “no-op” opera-
tor. The resulting formulation is summarized as follows:
Variables For all f ∈ F , i ∈ 1, . . . , t+1, we have fluent

variables, which are defined as

xf,i =
{

1 if fluent f is true in period i,

0 otherwise.



For all a ∈ A, i ∈ 1, . . . , t, we have action variables,
which are defined as

ya,i =
{

1 if action a is carried out in period i,

0 otherwise.

We remark that the action variables include the “no-
op” maintain operators from GraphPlan for each
time step and fact, which simply has that fact both
as a precondition and as an add effect. “no-op”
actions are necessary to propagate the fluent values.

Constraints The constraints are separated into differ-
ent classes, which can be outlined as follows:
• Initial/Goal State Constraints These con-

straints set the requirements on the initial and
final period, i.e.

xf,1 =
{

1 iff ∈ I,
0 iff /∈ I.

xf,t+1 = 1 if f ∈ G.
• Precondition Constraints Actions should

imply their preconditions, which is expressed
as follows.

ya,i ≤ xf,i ∀a ∈ pref , i ∈ 1, . . . , t.

• Backward Chaining Constraints Backward
chaining is expressed as

xf,i+1 ≤
∑

a∈addf

ya,i ∀i ∈ 1, . . . , t, f ∈ F .

• Exclusiveness Constraints Actions conflict
if one deletes a precondition or add effect of the
other. The exclusiveness of conflicting actions
is expressed as

ya,i + ya′,i ≤ 1,

for all i ∈ 1, . . . , t, and all a, a′ for which there
exist f ∈ F such that a ∈ delf and a′ ∈ pref ∪
addf .

Objective Function The objective function was set to
minimize the number of actions in the plan. It
should be noted that in theory we could have chosen
any objective function, since the constraints guar-
antee a feasible solution. In practice however, the
choice of an objective function can significantly im-
pact performance.

In addition, we made the following two modifications
in the formulation. First of all, we used the notion of
clique inequalities to strengthen the formulation. The
basic idea behind this is that the inequalities x1 + x2 ≤
1, x2 + x3 ≤ 1 and x1 + x3 ≤ 1 can be replaced by
a single inequality x1 + x2 + x3 ≤ 1. This leads to a
formulation which is not only more compact but also
stronger, in the sense that the fractional solution x1 =
x2 = x3 = 1

2 is feasible in the first set of inequalities, but

not in the second. It should be noted that the ability to
detect clique inequalities is available in most of today’s
commercial solvers.

Secondly, we did not restrict all variables to be 0-1 in-
tegers. Specifically, the integrality of the fluent variables
xf,i was relaxed, that is, the constraints xf,i ∈ {0, 1}
were replaced by 0 ≤ xf,i ≤ 1. This is possible because
the integrality of these variables is implied by the in-
tegrality of the action variables. We remark that as a
consequence, none of the fluent variables will be selected
in the branch and bound tree.

2.2 An Alternative Formulation

We now describe an alternative formulation of the plan-
ning problem, which we shall refer to as the “state-
change formulation”. The differences with respect to
the formulation described in the previous section are
twofold. First of all, the original fluent variables are
“compiled away” and suitably defined “state change”
variables are introduced instead. As we will see, this
results in a stronger representation of the exclusion con-
straints. Secondly, we more explicitly restrict the pos-
sible propagation of fluents through “no-op”-actions, so
as to reduce the number of equivalent feasible solutions.

Before giving this formulation, we again first define the
variables. The action variables are the same as before,
i.e.,

ya,i =
{

1 if action a is executed in period i,

0 otherwise.

for all a ∈ A, i ∈ 1 . . . t. Now however, the “no-op”
actions are not included, but represented separately by
variables xmaintain

f,i , for all f ∈ F , i ∈ 1, . . . , t.
In order to express the possible state changes, we in-

troduce auxiliary variables xpre-add
f,i , xpre-del

f,i and xadd
f,i ,

which are defined logically as

xpre-add
f,i ≡

∨
a∈pref/delf

ya,i,

xpre-del
f,i ≡

∨
a∈pref∩delf

ya,i,

xadd
f,i ≡

∨
a∈addf/pref

ya,i.

Informally, xpre-add
f,i = 1 if and only if an action is exe-

cuted in period i that has f as a precondition but does
not delete it. We note that the execution of such an ac-
tion at a given time step implicitly asserts that the value
fluent f is propagated. Similarly, xpre-del

f,t = 1 if and only
if an action is executed in period i that has f both as a
precondition and a delete effect. xadd

f,i = 1 if and only if
an action is executed in period i that has f as an add
effect but not as a precondition.

The logical interpretation of these variables is repre-



sented in the IP formulation by the following constraints:∑
a∈pref/delf

ya,i ≥ xpre-add
f,i

ya,t ≤ xpre-add
f,i ∀ a ∈ pref/delf∑

a∈addf/pref

ya,t ≥ xadd
f,i

ya,t ≤ xadd
f,i ∀ a ∈ addf/pref∑

a∈pref∩delf

ya,t = xpre-del
f,i

for all f ∈ F , i ∈ 1, . . . , t. The equality in the defi-
nition of xpre-del

f,i follows from the fact that all actions
that have f both as a precondition and as a del effect
are mutually exclusive. As a consequence these variables
can in fact be substituted out, although for reasons of
clarity we shall not do so here. The remaining exclusive-
ness constraints can easily be expressed in terms of the
auxiliary variables, by stating that xpre-del

f,i is mutually
exclusive with xadd

f,i , xpre-add
f,i , and xmaintain

f,i . However,
in order to strengthen the formulation we furthermore
assert that xmaintain

f,i is mutually exclusive with xadd
f,i and

xpre-add
f,i . Informally, this means that a fluent can only

be propagated at a time step if no action that adds it is
executed. The resulting constraints are as follows.

xadd
f,i + xmaintain

f,i + xpre-del
f,i ≤ 1

xpre-add
f,i + xmaintain

f,i + xpre-del
f,i ≤ 1

for all f ∈ F , i ∈ 1, . . . , t.
The backward chaining requirements can also be ex-

pressed in terms of the auxiliary variables. Since, all
auxiliary variable that assert the precondition of a fact
f at a certain time step (i.e., xpre-add

f,i , xmaintain
f,i , and

xpre-del
f,i ) are mutually exclusive, we have the following

constraint

xpre-add
f,i + xmaintain

f,i + xpre-del
f,i ≤
xadd
f,i−1 + xpre-add

f,i−1 + xmaintain
f,i−1

for all f ∈ F , i ∈ 1, . . . , t.
Finally, we can express the initial/goal state con-

straints as

xadd
f,t + xpre-add

f,t + xmaintain
f,t ≥ 1

for all f ∈ G, and

xadd
f,0 =

{
1 if f ∈ I,
0 otherwise.

The objective function is again set to minimize the
number of actions. Also, the integrality requirement of
the auxiliary variables variables was again relaxed, as it
is implied by the integrality of the action variables.

3 Experimental Results

We tested the IP formulations on a variety of planning
problems from the Blackbox software distribution, and
compared the results with those obtained by Blackbox
using the systematic Satz solver. The integer programs
were solved using Cplex 6.0, a widely used LP/IP solver.
In solving the integer programs, we used all of Cplex’s
default settings, except the following: the initial LP op-
timum was obtained by solving the dual problem, and
the variable selection strategy used was “pseudo-reduced
cost”. In addition, the solver was terminated as soon as
a feasible integer solution was found. All problems were
run on a Sun Ultra workstation.

The results are shown in Table 1. “Nodes” represents
the number of nodes visited in the branch and bound
procedure, and “iterations” the number of simplex iter-
ations performed. All times are in seconds. It should be
noted that, both for the IP formulations and BlackBox,
the results shown are for the problem of finding a fea-
sible solution given the number of time steps (i.e., t is
known in advance and given).

As shown in Table 1, the state-change formulation led
to a significant improvement in performance. Whereas
the SATPLAN-based IP formulation solved only the
smallest problems, the state-change formulations solved
all, and required both fewer nodes and less computa-
tion time. While the systematic BlackBox solver usu-
ally required less time than the state-change formula-
tion, both BlackBox and the state-change formulation
explored similar numbers of nodes. Moreover, the Black-
Box/Satz did not find a feasible solution to the “bw-
large.b” blocks-world problem, while the state-change
formulation did find a solution, using only 28 nodes.

It should be noted that the introduction of auxiliary
variables can possibly introduce a large number of vari-
ables and constraints. However,we found that the size
of the formulation was significantly reduced by standard
IP preprocessing (similar to the use of Graphplan as a
preprocessing tool in BlackBox). For example, while the
initial formulation of the problem “rocket.a” had 27744
variables and 40018 constraints, preprocessing reduced
this to 1573 variables and 3007 constraints. Similar re-
ductions in size were also obtained for the other prob-
lems.

A further indication of the strength of respective for-
mulations can be found by examining the value of the LP
relaxations. Since the objective function that is used is
to minimize the number of actions in the plan, the value
of the LP relaxation may also viewed as a lower bound
on the number of actions required in the plan. The re-
sults for the SATPLAN-based and the state-change for-
mulation are shown in Table 2. In almost all cases,
the state-change formulation has a much higher lower
bound, which indicates that its formulation is indeed
much stronger.

In the SATPLAN and Graphplan framework, the par-
allel length (i.e., the number of time steps) of plans is
minimized. The IP formulation follows this framework,



Table 1: Experimental results: IP formulations vs. Systematic BlackBox solver.
SATPLAN IP State-change IP BlackBox/Satz

Problem nodes its. time nodes its. time nodes time
anomaly 59 1471 3.1 3 161 0.1 3 0.55
bw-12step * * * 4 2037 9.7 3 2.42
bw-large.a * * * 4 4261 36 38 20.8
bw-large.b * * * 28 89048 2500 – –
att-log2 491 2748 4.9 24 177 0.57 7 0.56
att-log3 99 1296 12.1 33 406 4.2 16 0.58
att-log4 1179 20778 101.4 40 961 5.7 23 0.56
rocket.a * * * 213 40877 140 234 3.37
rocket.b * * * 73 18492 67 630 6.38
log-easy * * * 102 2505 5.8 16 0.62
logistics.a * * * 40 9305 80 41 1.66
logistics.b * * * 30 9532 92 46 2.37
logistics.c * * * 285 89760 1400 39297 79.3

– denotes that no plan was found after 10 hours of computation time.
* denotes that the node limit of 2500 was reached without finding a feasible integer solution.

Table 2: LP relaxation values.
Problem SATPLAN- State-

based change
anomaly 2.62 5

bw-12step 2.33 5
bw-large.a 12
bw-large.b 16

att-log2 2.19 6.75
att-log3 1.57 6.75
att-log4 2.89 10.7
rocket.a 12.73 20.6
rocket.b 20.6
log-easy 5.28 19.25

logistics.a 42.8
logistics.b 30.9
logistics.c 38.9

so it also is guaranteed to minimize the number of time
steps. In addition, the IP formulation also explicitly uses
minimization of the number of actions in the objective
function. Since we set the solver to terminate as soon
as the first feasible integer solution was found, the IP
solutions were not guaranteed to minimize the possible
number of actions. Still, we found that in most cases, the
IP formulation found plans with a significantly smaller
total number of actions than those obtained by Black-
Box. This is shown in Table 3.

4 Conclusions

Although Selman et al. [1997] reported difficulty in mak-
ing effective use of IP techniques for propositional rea-
soning in general, our results suggest that IP techniques
may potentially work well for AI planning problems, for
the following reasons.

• First, the IP formulation has the potential to do

Table 3: Plan length comparison
(total number of actions in plan).

Problem State-change IP BlackBox/Satz
rocket.a 30 33
rocket.b 26 29
log-easy 25 25

logistics.a 60 72
logistics.b 47 68
logistics.c 66 90

efficient planning. In our results, the number of
nodes expanded in the search space was typically
small, and comparable to a systematic satisfiablity
solver. This indicates that the LP relaxation gave
significant guidance in the selection of variables in
solving planning problems.

• Second, IP models may provide a natural means
of incorporating numeric constraints and objec-
tives into the planning formulation. This capability
would be important in many application domains,
but it is not available in most existing approaches
to AI planning. It should be noted, however, that
the way in which numeric constraints will be repre-
sented may have a significant influence on the per-
formance, much in the same way as we saw with
the various IP formulations. Therefore, the devel-
opment of strong IP representations that capture
common numeric constraints that arise in the plan-
ning domain is an issue for further research.

We would like to emphasize that so far our main concern
has been the development of different IP formulations,
rather than improving the efficiency of the LP relaxation
itself. While we believe that the state-change formula-
tion is reasonably strong, solving the LP relation at each
node is still sometimes computationally expensive. One



of the main reasons for this, we believe, is the degener-
acy of the LP relaxation (a condition that can cause the
LP solver to execute many non-productive iterations).
Therefore, we are currently also investigating techniques
to resolve this degeneracy, as well as further strength-
ening of the IP formulation. In particular, we want to
investigate the use of constraint and column generation
techniques.

References
[Blair et al., 1986] Blair, C.E., Jeroslow, R.G., and J.K.

Lowe. 1986. Some results and experiments in program-
ming techniques for propositional reasoning. Comput-
ers and Operations Research 13:633–645.

[BockMayr and Dimopoulos, 1998] Alexander
Bockmayr and Yanis Dimopoulos. 1998. Mixed Integer
Programming Models for Planning Problems. CP’98
Workshop on Constraint Problem Reformulation.

[Bylander, 1997] T. Bylander. 1997. A Linear Program-
ming Heuristic for Optimal Planning. Proc. AAAI-97.

[Blum and Furst, 1997] A. L. Blum and M. L. Furst.
1997. Fast Planning Through Planning Graph Analy-
sis. Artificial Intelligence, 90(1–2):281–300.

[Hooker, 1988] J. N. Hooker. 1988. A quantitative ap-
proach to logical inference. Decision Support Systems
4:45–69.

[Kautz et al., 1996] Henry Kautz, David McAllester,
and Bart Selman. 1996. Encoding plans in proposi-
tional logic. Proc. KR-96.

[Kautz and Selman, 1996] Henry Kautz and Bart Sel-
man. 1996. Pushing the envelope: Planning, propo-
sitional logic, and stochastic search. Proc. AAAI-96.

[Kautz and Selman, 1998] Henry Kautz and Bart Sel-
man. 1998. BLACKBOX: A New Approach to the
Application of Theorem Proving to Problem Solving.
Working notes of the Workshop on Planning as Com-
binatorial Search, held in conjunction with AIPS-98,
Pittsburgh, PA, 1998.

[Kautz and Walser, 1999] Henry Kautz and Joachim P.
Walser. 1999. State-space Planning by Integer Opti-
mization. Proc. AAAI-99.

[Nau et al., 1998] D. S. Nau, S. J. Smith and Kutluhan
Erol. 1998. Control strategies in HTN planning: the-
ory versus practice. In AAAI-98/IAAI-98 Proceedings,
1127–1133, 1998.

[Selman et al., 1997] B. Selman, H. Kautz, and D.
McAllester. 1997. Ten challenges in propositional
reasoning and search. In Proc. Fifteenth Interna-
tional Joint Conf. Artificial Intelligence (IJCAI-97),
Nagoya, Japan.

[Wolsey, 1998] L. Wolsey, Integer Programming, 1998,
John Wiley, New York.


