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Abstract

Despite the historical difference in focus between AI planning techniques and Integer Programming
(IP) techniques, recent research has shown that IP techniques show significant promise in their ability
to solve AI planning problems. This paper provides approaches to encode AI planning problems as
IP problems, describes some of the more significant issues that arise in using IP for AI planning, and
discusses promising directions for future research.

1 Introduction

AI planning is concerned with developing automated methods for generating and reasoning about sequences
of actions to perform certain tasks or achieve certain goals. Planning problems are similar but in some
sense more general than scheduling problems, which have received longstanding attention in the Operations
Research community. What separates AI planning from scheduling is that solving a planning problem
typically involves determining both what actions to do and when to do those actions. Scheduling problems
on other hand typically involve “only” the order in which a prespecified set of actions should occur. This
difference in scope however has also led to a different focus: solving planning problems in AI typically
amounts to solving hard feasibility problems, whereas solving scheduling problems in OR usually amounts
to solving hard optimization problems.

Integer Programming (IP) has been used to address a variety of hard combinatorial optimization prob-
lems, including certain classes of scheduling problems, such as crew and fleet scheduling. Despite the historical
difference in focus between AI planning techniques and IP techniques, recent research has shown that IP
techniques show significant promise in their ability to solve AI planning problems (e.g. [Kautz and Walser,
1999], [Bockmayr and Dimopoulos, 1998]). Therefore, we feel that this is an important and fertile area
for future research, on topics such as (1) how to choose and combine techniques from AI planning and IP
optimization, in order to better solve AI planning problems, and (2) how to make use of IP’s ability to solve
optimization problems with numerical constraints, in order to extend the scope of AI planning to include
planning problems that involve numeric computations.

While most real-world planners usually rely on domain-specific information and application-specific tech-
niques that capture the structure of the problem at hand, the simplest version of the planning problem is
completely domain-independent. It assumes that the environment is static and deterministic, and its formu-
lation is given by three inputs: a description of the initial state of the world, a description of the goal state,
and a description of the possible actions that can be performed and their effects on the state of the world.

Most of the methods used to solve such problems are based on the so-called STRIPS representation,
which is described in Section 2. STRIPS [Fikes and Nilsson, 1971] was an early AI planning system. Its
plan representation technique provided a simple yet general format for specifying operators, and a clear
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semantics for change over time. Thus, although the STRIPS planning algorithm itself is no longer used, its
way representing planning problems and their solutions is used in most subsequent AI planning algorithms
(the primary exception being Hierarchical Task Network (HTN) planning [Russell and Norvig, 1995, pp.
371-380]).

Even though the development of planners that are based on the STRIPS representation has received
considerable attention for nearly three decades now, recent developments have had a significant impact on
the field. Two approaches in particular, the Graphplan system [Blum and Furst, 1995] and the SATplan
system [Kautz and Selman, 1996] have been able to quickly solve planning problems that are orders of
magnitude harder than what was considered the state of the art less than 10 years ago. The Graphplan
system aims to exploit potential parallelism inherent in most plans. It is based on the notion of a “planning
graph” which allows for a compact representation of the problem and for the efficient inference of many
useful constraints inherent in the problem. In the SATplan approach, planning problems are converted
into propositional formulae. The resulting satisfiability problem is then solved by a general systematic or
stochastic SAT solver. It should be noted that both approaches are complimentary, as the planning graph
representation can readily be expressed in terms of propositional clauses [Kautz and Selman, 1996, 1999].

To a large extent, the success of the SATplan approach coincides with recent advances in the development
of satisfiability solvers, which has resulted in powerful new general reasoning algorithms, that has been used
not only for planning problems but also for many other difficult tasks (i.e. graph coloring, circuit verification).
In spite of this general applicability, the propositional representations used in SAT solvers also have some
inherent limitations. One problem is how to incorporate numeric constraints. For instance, converting a
boolean linear inequality into a propositional representation may require an exponential number of clauses.
An example of this is given by Hooker [1994] (taken from [Barth, 1993]), who reports that the boolean
inequality

300x1 + 300x2 + 285x3 + 265x4 + 265x5 + 230x6

+230x7 + 190x8 + 200x9 + 400x10 + 200x11 + 400x12

+200x13 + 400x14 + 200x15 + 400x16 + 200x30 + 400x31 ≤ 2700

expands to 117, 520 non-redundant logical propositions. Numerical constraints (such as capacity and dura-
tional constraints) however do arise in many practical, real-world domains, and the ability to incorporate
these constraints would therefore significantly enhance the power of domain-independent planners.

In order to extend propositional representations of AI planning problems to incorporate numerical con-
straints, it is therefore necessary to find efficient ways to

1. integrate numerical constraint representations with propositional representations for the AI planning
problem;

2. integrate numerical constraint solving techniques with propositional reasoning methods for the AI
planning problem.

Numerical constraints have received ample attention in the field of Integer Programming. The field of
Integer Programming has a long history in OR, and incorporates a declarative framework consisting of linear
constraints and a linear objective function, together with powerful solution techniques based on the linear
programming relaxation of the problem.

The general problem of integrating logic-based methodologies and mathematical programming techniques
has received considerable attention recently. Two notable approaches include the “Mixed Logical/Linear
Programming” framework developed by Hooker and Osorio [1997], in which the structure of the constraints
indicates how linear programming and propositional reasoning can interact to solve the problem, and the
“Branch and Infer” framework by Bockmayr and Kasper [1998], which combines Integer and Constraint
Logic Programming techniques.

Another approach however might be incorporate both the numerical constraints and the propositional
constraints into a single Integer Programming formulation. While this may appear outdated given the
abovementioned attention to integrated frameworks, it should be noted that these frameworks are developed
to enable the flexible and intuitive representations for large classes of problems that have significant numerical
and logical components. For a specific problem class however, i.e. the AI planning problem, the formulation
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as an Integer Program may prove to be useful, in that it may lead to more efficient representations of the
problem than would be obtained otherwise.

The formulation of propositional representations as Integer Programs itself is rather straightforward: it
is well known that propositional clauses can be converted into 0-1 inequalities (see for instance [Blair et al.,
1986] or [Hooker, 1988]). For example, the clause

x1 ∨ ¬x2 ∨ x3

is equivalent to the 0-1 inequality

x1 + (1− x2) + x3 ≥ 1;x1, x2, x3 ∈ {0, 1}.

While this representation has been used to solve general satisfiability problems with Integer Programming
methods, it should be noted that this has not been very successful in comparison with logic-based SAT
solvers. For the specific problem class of AI planning problems however, this conversion of the propositional
representation may not necessarily be the best one.

Our research is primarily concerned with the development of “strong” Integer Programming formulations
for the AI planning problem. Specifically, we use information about the problem structure that is specific
to AI planning problems, so as to yield representations that are more efficient. It should be emphasized
that the use of strong IP formulations is not limited to solving AI planning problems by Branch and Bound
methods for Integer Programming alone. Strong IP formulations may also prove useful when using Integer
Local Search methods ([Walser, 1998] or CLP methods for pseudo-boolean constraints ([Barth,1995]). In
addition, strong formulations may lead to much better lower bounds when used as an admissible heuristic
in partial-order planning [Bylander, 1997].

In the remainder of this paper, we discuss the use of Integer Programming formulations in AI planning
in greater detail. In the next section, we review the STRIPS representation for AI planning, the SATplan
approach, and Integer Programming formulations and techniques. Section 3 discusses the formulation of AI
planning problems as Integer Programs, and Section 4 provides a discussion of the issues that arise when
solving the resulting Integer Programs. We conclude with an overview of future research directions.

2 Background

In this section, we define the STRIPS representation for AI planning, discuss the SATplan approach to
solving STRIPS planning problems, and give a brief overview of Integer Programming formulations and
techniques.

2.1 STRIPS representation

For our purposes, a STRIPS-style planning problem is a triple R = (S,G,O) as defined below:

• S, the initial state, is a finite collections of ground atoms of some first-order language L. Intuitively,
S is a conjunct that tells us which ground atoms are true at the beginning of the planning problem:
if a ground atom A is in the state S, then A is true in the state S, and if B /∈ S, then B is false in
the state S. Thus, S is simply an Herbrand interpretation (cf. [Shoenfield, 1967]) for the language L,
and hence each formula of first-order logic is either satisfied or not satisfied in S according to the usual
first-order logic definition of satisfaction.

• G, the goal condition, is a conjunction of ground atoms in L. G represents the conditions that we want
to be true at the end of the planning problem.

• O is a set of planning operators. Each planning operator o ∈ O is a 4-tuple (Nameo,Preo,Delo,Addo),
where:

– Nameo, the name of the operator, is a syntactic expression of the form o(X1, . . . , Xn) where each
Xi is a variable symbol of L.
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– Preo, the precondition list, is a finite set of literals (i.e., atoms and negated atoms) such that each
variable symbol is in the list X1, . . . , Xn given above. Preo gives the conditions that a state must
satisfy in order for the operator to be applicable to that state.

– Delo, the delete list, is a finite set of atoms such that each variable symbol is in the list X1, . . . , Xn

given above. Preo gives the conditions that the operator will delete when we apply it to a state.

– Addo, the add list, is a finite set of atoms such that each variable symbol is in the list X1, . . . , Xn

given above.1 Preo gives the conditions that the operator will add when we apply it to a state.

Just as with the initial state, each of the sets Preo, Delo, Addo is taken to be a conjunct.2

An action (also sometimes called a step) is a ground instance α = (Nameα,Preα,Delα,Addα) of any planning
operator o ∈ O. If α is an action and S satisfies Pα, then α is applicable to a state S, and the result of
applying α to s is defined to be the following state:

result(S, α)) = (S −Dα) ∪Aα.

Given a planning problem (S,G,O), a plan is a sequence (α1, . . . , αk) of actions. The plan is applicable to
the state S if the following state is defined:

R = result(result(. . . (result(result(S, α1), α2), . . . ), αk−1), αk).

If the plan is applicable to S, then it solves the planning problem (S,G,O) if the state R satisfies the goal
condition G.

Note that in the STRIPS formulation, the notion of time is very simple: time consists of a finite sequence
of time instants (0 to n), each action takes exactly one unit of time to perform, and only one action can be
performed at each time instant.

A simple example of a planning problem using the STRIPS representation is the so-called rocket domain
(see [Blum and Furst, 1997]). The rocket domain has three operators: Load, Unload, and Move. A piece of
cargo can be loaded into the rocket if the rocket and the cargo are in the same location. A rocket may move
if it has fuel, but performing the move operation uses up the fuel. The operators may be defined as follows:

Name: MOVE(R, X, Y)
Pre: AT(R, X), HAS-FUEL(R)
Del: AT(R, X), HAS-FUEL(R)
Add: AT(R, Y)

Name: LOAD(R,X,C)
Pre: AT(R, X), AT(C, X)
Del: AT(C, X)
Add: IN(C, R)

Name: UNLOAD(R,X,C)
Pre: AT(R, X), IN(C, R)
Del: IN(C, R)
Add: AT(C, R)

A typical problem might have one or more rockets and some cargo in a start location with a goal of moving
the cargo to some number of destinations.

1In some recent versions of the STRIPS operator representation (e.g., [Weld, 1999]), the Add and Del lists are combined
into a single list of literals called the “Effects” list, in which positive literals represent additions and negative literals represent
deletions. However, that representation is basically equivalent to the one we are using here.

2The original STRIPS planning system [Fikes and Nilsson, 1971] allowed some of these sets to be more general logical
expressions rather than just conjuncts; but this capability was disallowed in subsequent versions of STRIPS [Nilsson, 1980].
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2.2 SAT-based planning systems

In recent years, satisfiability testing has become one of the most successful methods for solving state-space
planning problems [Weld, 1999]. Kautz and Selman [1996] showed using their SATplan planner, that for
a wide range of planning problems, compiling a problem into a propositional logic, and solving it using
a general randomized SAT solver is competitive with, or superior to, solving the problem with the best
specialized planning systems. Two main factors contributed to the success of SATplan:

• The particular conventions on how to represent a planning problem in propositional logic (the “encod-
ing”).

• The use of new general powerful SAT solvers, such as Walksat [Selman, Kautz, and Cohen 1996], for
solving the propositional logic representation of the planning problem.

Since 1996, SAT-based planners have continued to improve, benefiting from a continuous progress in the
performance of general SAT engines, and from improved ways to encode the planning problem in propositional
logic. The next sub-sections describes briefly how a planning problem can be encoded in propositional logic,
and which kind of SAT solvers are being used nowadays in SAT-based planners. For a more detailed survey
see [Weld 1999].

2.2.1 Encoding a Planning Problem in Propositional Logic

Most propositional-logic encodings of planning problems are based on the STRIPS-style planning problems
described in Section 2.1, with one important difference. In the STRIPS representation of a plan, one action
can be performed at each time instant. However, in most propositional-logic representations, more than one
action can be performed at the same time, as long as the actions do not conflict with each other (i.e., if
they do not assert contradictory effects, and the effects of one do not negate the preconditions of the other).
Thus, the length of a plan (the number of time units required to perform it) may differ from the number of
actions in the plan.

To encode a planning problem in propositional logic, the basic idea is to start with a STRIPS-style
problem description, and create a propositional formula that includes encodings of the initial state and the
goal, axioms describing the preconditions of the actions that might occur at each time instance, axioms
describing what will change and what will remain the same if those actions are performed, and a statement
that a plan of length n exists for some n. Thus the formula will be satisfiable if a plan of length n exists;
and in this case, the truth values of the propositions will tell what the plan is. The planning system starts
with encoding the problem for an initial plan length n0 and invokes a SAT engine to solve the propositional
logic problem. If no solution is found for n0 the planner increases incrementally the length of the plan that
is being searched, until a plan is found.

In the basic encoding (the regular encoding), a logical variable represents either an action occurring at a
specific time (e.g., fly(airplane1, BWI, JFK, 3)) or a time-varying condition (fluent) holding at a a particular
time (e.g., at(airplane1, JFK, 4)).3 An action starts at the specified time instance t and ends at the next
time instance, where t ∈ 0, . . . , n− 1. A fluent corresponds to a time instance t ∈ 0, . . . , n.

The number of variables representing actions can be reduced by using an alternative action representation
such as simple action splitting [Kautz and Selman, 1996], overloaded splitting or bitwise representation
[Ernst, Millstein, and Weld, 1997]. However, these representations usually limit the ability to have parallel
actions in the plan.

The encoding includes a set of axioms, defined over the action and fluent variables, to express the following
features of a planning problem:

• The initial state and goals. These indicate which fluents are true and which are false at time 0, and
which fluents should be true at time n.

• Action schemata. The execution of a ground action at time t implies that its preconditions hold at
time t , and its effects hold at time t+ 1. For example, the action of flying airplane1 from BWI to JFK

3AI researchers first used the term “fluent” to refer to an object or condition X whose value varies over time (cf. [Russell
and Norvig, 1995]). However, in the literature on satisfiability methods for planning, has become common to use the term
“fluent” to refer to the instance Xt of X at the time t. Thus, that is what we do here.
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at time t implies that at time t airplane1 is at BWI, and at time t + 1 it is at JFK but not at BWI.
Thus, we get the following axiom ∀t ∈ 0, . . . , n− 1:

fly(airplane1, BWI, JFK, t)⇒
at(airplane1, BWI, t) ∧ ¬at(airplane1, BWI, t+ 1) ∧ at(airplane1, JFK, t+ 1)

• Frame axioms. These describe what fluents will not change actions occur, as described below.

Frame axioms are expressed either by classical frame axioms or by explanatory frame axioms. Classical
frame axioms [McCarthy and Hayes, 1969] declare which fluents are left unchanged by each action. Ex-
planatory frame axioms [Haas, 1987] specify the the set of actions that could have occurred in order to
achieve a state change. For example, having airplane1 at time t + 1 in JFK, but not having it in JFK at
time t implies that airplane1 flew from some other airport to JFK at time t:

¬at(airplane1, JFK, t) ∧ at(airplane1, JFK, t+ 1)⇒
fly(airplane1, BWI, JFK, t) ∨ · · · ∨ fly(airplane1, Reagan, JFK, t)

Explanatory frame axioms have the advantage that they permit parallelism: several actions may occur si-
multaneously. Conflict exclusion axioms should be specified to prevent contradicting actions from occurring
at the same time. For example, airplane1 cannot perform flights to JFK from Dulles and BWI at the same
time, thus, either it does not perform the BWI–JFK flight or it does not perform the Dulles–JFK flight:

¬fly(airplane1, BWI, JFK, t) ∨ ¬fly(airplane1, Dulles, JFK, t)

Empirical results [Ernst, Millstein, and Weld, 1997] showed that in most cases explanatory frame axioms
with conflict exclusions are superior to classical frame axioms.

Kautz and Selman suggested several additional encodings:

• The Graphplan-based encoding [Kautz, McAllester, and Selman 1996], which is similar to the com-
bination of the regular representation of actions and explanatory frame axioms. In this encoding
actions imply their preconditions, but there are no axioms in which actions imply their effects. The
Graphplan-based encoding is used by the Blackbox planner [Kautz and Selman, 1998]. Blackbox con-
structs first a planning graph [Blum and Furst, 1997] and then converts the graph into a CNF. In
that way the planner benefits from the powerful simplification algorithm employed by Graphplan to
construct the graph, prior to invoking the SAT engine. As a result, Blackbox is currently one of the
fastest planners.

• The state-based encoding, in which variables corresponding to actions are eliminated [Kautz and Selman
96].

• The causal-encoding, which is based on a representation used by partial-order planners [Kautz, McAllester,
and Selman 1996].

As shown by [Huang, Selman, and Kautz, 1999], declarative domain specific control knowledge can be added
to the encoding of the planning problem to speed-up the planning process.

2.2.2 SAT Solvers

General purpose SAT solvers, are used to solve the propositional-logic representation of the planning problem.
A short survey of SAT solvers appears in [Weld, 1999]. In brief, SAT solvers can be classified according to
their search method: systematic or stochastic. Systematic solvers are complete while stochastic solvers are
not. Satz [Li and Annbulagan, 1997] is one of the fastest systematic solvers available. It is based on the
DPLL algorithm [Davis et. al., 1962], but uses more sophisticated heuristics for selecting the next variable
to branch on. Blackbox also uses a randomized version of Satz, which in fact substantially improved its
performance [Gomes et al., 1998].

Currently, Walksat [Selman, Katz, and Cohen, 1996] is one of the fastest stochastic search algorithms for
satisfiability testing. It searches locally, and uses random moves to escape from local minima.
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2.3 Integer Programming

A mixed integer program can be represented as

Min cx (0)
subject to:

Ax ≥ b (1)
x1, . . . , xp ∈ Z+ (2)
xp+1, . . . , xn ∈ R+ (3)

where A is a (m × n) matrix, b a m-dimensional column vector, c a n-dimensional row vector, and x a
n-dimensional column vector. If x1, . . . , xp ∈ {0, 1}, we get a mixed 0-1 program. A vector x∗ which satisfies
constraints (1)-(3) is called a feasible solution. If x∗ furthermore minimizes the objective function (0), it
called an optimal solution and cx∗ the optimal value.

(Mixed) Integer Programming has a long history in the field of Operations Research. It provides a
very rich modeling capability, and a large number of problems in resource allocation, facility location,
distribution, production, reliability and design have been represented by mixed integer programming models
(see [Nemhauser and Wolsey, 1988]). A key notion in solving Integer Programs is the linear relaxation of the
mixed integer program, in which the integrality constraints are omitted, i.e.

Min cx
subject to:

Ax ≥ b
x1, . . . , xn ∈ R+

Solving the LP relaxation, which can be done efficiently in practice, may guide solving the Integer Program.
In fact, one of the basic results in Integer Programming Theory states that every Integer Program can be
represented by a set of constraints such that the LP relaxation will find the optimal (integer) solution. This
“ideal” formulation of the Integer Program corresponds to the convex hull of the set of feasible (integer)
solutions. (see [Wolsey, 1998] for more details on this concept). In practice however, using the convex hull
formulation is hardly ever possible. Usually it is very hard to characterize the convex hull and moreover, an
exponential number of inequalities might be required to characterize the convex hull.

While using the convex hull formulation is normally not possible, it is desirable to find “strong” formu-
lations, in the sense that the LP relaxation closely approximates the convex hull of the Integer Program. In
particular, given two formulations {min cx | A1x ≥ b, x ∈ Zn} and {min cx | A2x ≥ b, x ∈ Zn}, formulation
1 is stronger than formulation 2 if {x ∈ Rn | A1x ≥ b, x ≥ 0} ⊆ {x ∈ Rn | A2.x ≥ b, x ≥ 0}. Stronger
formulations are more likely to yield integer solutions and produce better lower bounds for the optimal value
of the integer program.

The most effective current approach for solving general integer programs uses the LP relaxation together
with branch and bound algorithms. Therefore, the key to the effectiveness of the LP relaxation lies in
improving the underlying tree search. The LP relaxation is typically solved at every node in the search
tree. Search can be terminated at a node 1) if LP relaxation value indicates that further search could only
uncover solutions with objective function values inferior to the best known, 2) if the LP is infeasible, which
in turn implies the integer program is infeasible and 3) if the LP yields an integer solution. Another role the
LP relaxation plays is that it provides information useful in deciding which variables to branch on. Since
stronger formulations will give better lower bounds and are more likely to yield integer solutions, they have
the potential of greatly reducing the number of nodes in the search tree.

3 Integer Programming Formulations for AI planning

In this section, we discuss various formulations for the AI planning problem using the STRIPS representation.
In formulating the IP models, we shall use the following sets

• pref ⊆ A for all f ∈ F .
pref represents the set of actions which have fluent f as a precondition;
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• addf ⊆ A for all f ∈ F .
addf represents the set of actions which have fluent f as an add effect;

• delf ⊆ A for all f ∈ F .
delf represents the set of actions that delete fluent f .

3.1 SATplan-based IP formulations

Since propositional clauses can easily be expressed as linear inequalities, it is straightforward to express
SATplan encodings as Integer Programming Models. So, as a first attempt we applied this conversion to
the Graphplan-based propositional encoding. This is the regular encoding described in Section 2.2.1, which
includes axioms for the initial state and the goals, action schemata axioms which express that a ground
action implies its preconditions, explanatory frame axioms, and conflict exclusion axioms. The resulting
formulation is summarized as follows:

Variables For all f ∈ F , i ∈ 1, . . . , t+ 1, we have fluent variables, which are defined as

xf,i =

{
1 if fluent f is true in period i,

0 otherwise.

For all a ∈ A, i ∈ 1, . . . , t, we have action variables, which are defined as

ya,i =

{
1 if action a is carried out in period i,

0 otherwise.

We remark that the action variables include the “no-op” maintain operators from Graphplan for each
time step and fact, which simply have that fact both as a precondition and as an add effect. “no-op”
actions are necessary to propagate the fluent values.

Constraints The constraints are separated into different classes, which can be outlined as follows:

• Initial/Goal State Constraints These constraints set the requirements on the initial and final
period, i.e.

xf,1 =

{
1 iff ∈ I,
0 iff /∈ I.

xf,t+1 = 1 if f ∈ G.

• Precondition Constraints Actions should imply their preconditions, which is expressed as
follows.

ya,i ≤ xf,i ∀a ∈ pref , i ∈ 1, . . . , t.

• Explanatory Frame Conditions Backward chaining is expressed as

xf,i+1 ≤
∑

a∈addf

ya,i ∀i ∈ 1, . . . , t, f ∈ F .

• Conflict Exclusion Constraints Actions conflict if one deletes a precondition or add effect of
the other. The exclusiveness of conflicting actions is expressed as

ya,i + ya′,i ≤ 1,

for all i ∈ 1, . . . , t, and all a, a′ for which there exist f ∈ F such that a ∈ delf and a′ ∈ pref∪addf .
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Objective Function The objective function was set to minimize the number of actions in the plan. It
should be noted that in theory we could have chosen any objective function, since the constraints
guarantee a feasible solution. In practice however, the choice of an objective function can significantly
impact performance.

In addition, we made the following two modifications in the formulation. First of all, we used the notion
of clique inequalities to strengthen the formulation. The basic idea behind this is that the inequalities
x1 +x2 ≤ 1, x2 +x3 ≤ 1 and x1 +x3 ≤ 1 can be replaced by a single inequality x1 +x2 +x3 ≤ 1. This leads
to a formulation which is not only more compact but also stronger, in the sense that the fractional solution
x1 = x2 = x3 = 1

2 is feasible in the first set of inequalities, but not in the second. It should be noted that
the ability to detect clique inequalities is available in most of today’s commercial solvers.

Secondly, we did not restrict all variables to be 0-1 integers. Specifically, the integrality of the fluent
variables xf,i was relaxed, that is, the constraints xf,i ∈ {0, 1} were replaced by 0 ≤ xf,i ≤ 1. This is possible
because the integrality of these variables is implied by the integrality of the action variables. We remark
that as a consequence, none of the fluent variables will be selected in the branch and bound tree.

3.2 An Alternative Formulation

We now describe an alternative formulation of the planning problem, which we shall refer to as the “state-
change formulation”. The differences with respect to the formulation described in the previous section
are twofold. First of all, the original fluent variables are “compiled away” and suitably defined “state-
change” variables are introduced instead. As we will see, this results in a stronger representation of the
exclusion constraints. Secondly, we more explicitly restrict the possible propagation of fluents through “no-
op”-actions, so as to reduce the number of equivalent feasible solutions. It should be noted that the resulting
formulation is similar in spirit to the action-based propositional encodings discussed by Kautz and Selman
[1996]. However, the introduction of state-change variables prevents the polynomial increase in constraints
(clauses) that results from compiling away the fluent variables.

Before giving this formulation, we again first define the variables. The action variables are the same as
before, i.e.,

ya,i =

{
1 if action a is executed in period i,

0 otherwise.

for all a ∈ A, i ∈ 1 . . . t. Now however, the “no-op” actions are not included, but represented separately by
variables xmaintain

f,i , for all f ∈ F , i ∈ 1, . . . , t.
In order to express the possible state changes, we introduce auxiliary variables xpre-add

f,i , xpre-del
f,i and xadd

f,i ,
which are defined logically as

xpre-add
f,i ≡

∨
a∈pref/delf

ya,i,

xpre-del
f,i ≡

∨
a∈pref∩delf

ya,i,

xadd
f,i ≡

∨
a∈addf/pref

ya,i.

Informally, xpre-add
f,i = 1 if and only if an action is executed in period i that has f as a precondition but does

not delete it. We note that the execution of such an action at a given time step implicitly asserts that the
value fluent f is propagated. Similarly, xpre-del

f,t = 1 if and only if an action is executed in period i that has
f both as a precondition and a delete effect. xadd

f,i = 1 if and only if an action is executed in period i that
has f as an add effect but not as a precondition.

To give an example as to how these variables may be interpreted, consider the rocket domain given in
Section 2.1. Considering the fluent AT (R,X), we may interpret the auxiliary variables as follows (time step
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indices are omitted):

xpre-add
AT (R,X) ≡ LOAD(R,X,C1) ∨ LOAD(R,X,C2) ∨ · · ·

∨ UNLOAD(R,X,C1) ∨ UNLOAD(R,X,C2) ∨ · · ·

xpre-del
AT (R,X) ≡MOV E(R,X, Y ) ∨MOV E(R,X,Z) ∨ · · ·

xadd
AT (R,X) ≡MOV E(R, Y,X) ∨MOV E(R,Z,X) ∨ · · ·

The logical interpretation of the auxiliary variables is represented in the IP formulation by the following
constraints: ∑

a∈pref/delf

ya,i ≥ xpre-add
f,i (1)

ya,i ≤ xpre-add
f,i ∀ a ∈ pref/delf (2)∑

a∈addf/pref

ya,i ≥ xadd
f,i (3)

ya,i ≤ xadd
f,i ∀ a ∈ addf/pref (4)∑

a∈pref∩delf

ya,i = xpre-del
f,i (5)

for all f ∈ F , i ∈ 1, . . . , t. The equality in the definition of xpre-del
f,i follows from the fact that all actions that

have f both as a precondition and as a del effect are mutually exclusive. As a consequence these variables
can in fact be substituted out, although for reasons of clarity we shall not do so here.

The remaining conflict exclusion constraints can easily be expressed in terms of the auxiliary variables, by
stating that xpre-del

f,i is mutually exclusive with xadd
f,i , xpre-add

f,i , and xmaintain
f,i . However, in order to strengthen

the formulation we furthermore assert that xmaintain
f,i is mutually exclusive with xadd

f,i and xpre-add
f,i . Informally,

this means that a fluent can only be propagated at a time step if no action that adds it is executed. The
resulting constraints are as follows.

xadd
f,i + xmaintain

f,i + xpre-del
f,i ≤ 1 (6)

xpre-add
f,i + xmaintain

f,i + xpre-del
f,i ≤ 1 (7)

for all f ∈ F , i ∈ 1, . . . , t.
The explanatory frame axioms can also be expressed in terms of the auxiliary variables. Since all auxiliary

variables that assert the precondition of a fact f at a certain time step (i.e., xpre-add
f,i , xmaintain

f,i , and xpre-del
f,i )

are mutually exclusive, we have the following constraint

xpre-add
f,i + xmaintain

f,i + xpre-del
f,i ≤ xadd

f,i−1 + xpre-add
f,i−1 + xmaintain

f,i−1 (8)

for all f ∈ F , i ∈ 1, . . . , t.
Finally, we can express the initial/goal state constraints as

xadd
f,t + xpre-add

f,t + xmaintain
f,t ≥ 1 (9)

for all f ∈ G, and

xadd
f,0 =

{
1 if f ∈ I,
0 otherwise.

(10)

The objective function is again set to minimize the number of actions. Also, the integrality requirement
of the auxiliary variables variables was again relaxed, as it is implied by the integrality of the action variables.
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3.3 Experimental Results

We tested the IP formulations on a variety of planning problems from the Blackbox software distribution,
and compared the results with those obtained by Blackbox using the systematic Satz solver. The integer
programs were solved using Cplex 6.0, a widely used LP/IP solver. In solving the integer programs, we used
all of Cplex’s default settings, except the following: the initial LP optimum was obtained by solving the dual
problem (this proved to be more efficient), and the variable selection strategy used was “pseudo-reduced
cost”. In addition, the solver was terminated as soon as a feasible integer solution was found. All problems
were run on a Sun Ultra workstation, with 196 Mhz CPU and 512 MB RAM.

We compared the performance of the SATplan-based IP formulation and the state-change IP formulation
with Blackbox. The results are shown in Table 1. “Nodes” represents the number of nodes visited in the
branch and bound procedure, and “iterations” the number of simplex iterations performed. All times are in
seconds. It should be noted that, both for the IP formulations and BlackBox, the results shown are for the
problem of finding a feasible solution given the number of time steps (i.e., t is known in advance and given).

Table 1: Experimental Results: IP formulations vs. Systematic BlackBox solver.
SATPLAN IP State-change IP BlackBox/Satz

Problem nodes its. time nodes its. time nodes time
anomaly 59 1471 3.1 3 161 0.1 3 0.55
bw-12step * * * 4 2037 9.7 3 2.42
bw-large.a ** ** ** 4 4261 36 38 20.8
bw-large.b ** ** ** 28 89048 2500 - -
att-log2 491 2748 4.9 24 177 0.57 7 0.56
att-log3 99 1296 12.1 33 406 4.2 16 0.58
att-log4 1179 20778 101.4 40 961 5.7 23 0.56
rocket.a * * * 213 40877 140 234 3.37
rocket.b ** ** ** 73 18492 67 630 6.38
log-easy * * * 102 2505 5.8 16 0.62
logistics.a ** ** ** 40 9305 80 41 1.66
logistics.b ** ** ** 30 9532 92 46 2.37
logistics.c ** ** ** 285 89760 1400 39297 79.3

- denotes that no plan was found after 10 hours of computation time.
* denotes that the node limit of 2500 was reached without finding a feasible integer solution.

** denotes that the resulting formulation was too large to be solved.

As shown in Table 1, the state-change formulation led to a significant improvement in performance.
Whereas the SATPLAN-based IP formulation solved only the smallest problems, the state-change formu-
lations solved all, and required both fewer nodes and less computation time. In comparison to Blackbox
the state-change formulation usually required more time, though on the whole the numbers of nodes ex-
plored were similar. Still, in several cases the number of nodes explored by the state-change formulation
was markedly higher than by Blackbox. We believe that this is largely due to the difference in preprocessing
methods employed by both methods. In particular, Blackbox creates a planning graph prior to instantiating
the CNF, which may be viewed as a powerful simplification technique.

In order to analyze the effect of this preprocessing step, we have also done some preliminary studies on
running the planning graph expansion prior to generating the IP formulation. In the IP formulation, we
eliminated all variables that corresponded to actions and fluents which did not occur in the planning graph.
Our results (which will be described in detail in a forthcoming paper) show that the use of the planning graph
indeed has a significant effect on the performance of the IP, both in terms of number of nodes explored and
overall computation time, reducing the computation time to an amount that is competitive with Blackbox.
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4 Issues in using Integer Programming for AI Planning

In this section, we discuss issues that arise in using Integer Programming Models for AI planning problems.
In particular, we discuss the importance of “direct” IP formulations and the importance of preprocessing.

4.1 Importance of direct IP formulations

In the previous section, we presented two formulations for the AI planning problem: a conversion of the
propositional SAT encoding into linear equalities, and a more “direct” formulation which considers the state
changes in the AI planning problem.

While the SATplan-based encoding is straightforward, the importance of using a direct encoding becomes
clear when we compare the strength of both formulations. An indication of the strength of the respective
formulations can be found by examining the LP relaxations of the problems (see Section 2.3). Since the
objective function that is used is to minimize the number of actions in the plan, the value of the LP
relaxation may be viewed as a lower bound on the number of actions required in the plan. The results
for the SATplan-based and the State-change formulation are shown in Table 2. In almost all cases, the

Table 2: LP relaxation values
Problem SATplan- State-

based change
anomaly 2.62 5

bw-12step 2.33 5
bw-large.a * 12
bw-large.b * 16

att-log2 2.19 6.75
att-log3 1.57 6.75
att-log4 2.89 10.7
rocket.a 12.73 20.6
rocket.b * 20.6
log-easy 5.28 19.25

logistics.a * 42.8
logistics.b * 30.9
logistics.c * 38.9

* denotes that the resulting formulation was too large to be solved.

state-change formulation has a much higher lower bound. This indicates that its formulation is indeed much
stronger, which is critical in solving the Integer Program.

4.2 Importance of Preprocessing

While the state-change formulation significantly reduces the number of constraints, the resulting formulations
can still be huge, due to the instantiation of all ground actions at each time step. In fact, the large size of
the formulations might lead one to believe that IP approaches are not practical. However, we found that the
size of the formulation was significantly reduced by standard IP preprocessing, as done by Cplex (version 6).
Table 3 shows the effects of preprocessing, and gives the number of variables and clauses before and after
standard IP preprocessing.

In addition, preliminary results clearly appear to indicate the importance of more advanced preprocessing
techniques, i.e. the use of planning graph expansion as a simplification algorithm. The importance of
preprocessing is in fact studied in a recent paper by Kautz and Selman [1999], who compare various aspects
of clausal simplifying techniques in both Graphplan and BlackBox. Given the importance of preprocessing,
an interesting topic for further research would would be to analyze the similarities and differences between
propositional simplification techniques and planning graph expansion with techniques which are commonly
used in IP preprocessing (e.g. [Savelsbergh, 1994]). For example, the use of mutex calculations in the
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Table 3: Effect of preprocessing
Before Preprocessing After Preprocessing

Problem variables constraints variables constraints
anomaly 600 992 206 435

bw-12step 4752 8224 1682 3700
bw-large.a 7392 12936 2763 6162
bw-large.b 15912 28040 6473 14503

att-log2 8596 12323 256 434
att-log3 44494 66023 2164 4164
att-log4 48900 72822 2557 4918
rocket.a 23744 36018 1573 3007
rocket.b 64009 99074 3686 6994
log-easy 32121 48657 1361 2423

logistics.a 64009 99074 3686 6994
logistics.b 102856 158969 4273 7807
logistics.c 102856 158971 5485 10249

expansion of the planning graph appears to be similar to the use of conflict graphs in IP preprocessing (see
[Atamturk et al., 1998]).

4.3 IP solvers

To a large extent, the success of SAT-based planning systems coincides with recent advances in the devel-
opment of satisfiability solvers, which has resulted in powerful new general reasoning algorithms. However,
a similar development has occurred for general LP and IP solvers. There are currently several companies
packaging commercial solvers, and the size of the LPs and IPs that can be solved has increased dramatically
over the last few years. In fact, the most recent versions of Cplex (perhaps the best known commercial
solver) typically solve LPs and IPs one to two orders of magnitude faster than just one and a half years ago.
As the capabilities of these solvers continues to grow, the use of Integer Programming models for AI planning
problems may become more and more attractive, in particular if strong formulations can be identified.

5 Research Directions

Although Selman et al. [1997] reported difficulty in making effective use of IP techniques for general propo-
sitional reasoning, our results indicate that for a specific problem, i.e. the AI planning problem domain, IP
techniques may potentially work well. However, in order to fully exploit the possibilities of using IP meth-
ods for solving AI planning problems and extending the AI planning domain, several issues need further
investigation. Research directions that appear to be particularly promising are the following.

• Incorporation of numerical constraints
IP models may provide a natural means of incorporating numeric constraints and objectives into the
planning formulation. This capability would be important in many application domains, but it is
not available in most existing approaches to AI planning except for a few recent approaches. More
specifically, the following questions need to be answered:

1. What kinds of numerical conditions are needed for AI planning, and what is the best way to rep-
resent them? Some work is already being done in this area, for use in reasoning about resources
[Koehler 1998; Kautz and Walser 1999; Wolfman and Weld 1999]. The basic idea in all these
approaches is that actions can produce, consume, or provide resources, and that actions’ precon-
ditions are extended by resource requirements.4 In view of this, one obvious research direction is
to incorporate the general framework for reasoning about resources into our IP formulations.

4It should be noted that both the work by Kautz and Walser [1999] and the work by Wolfman and Weld [1999] is based on
LP-based techniques.
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2. What classes of Integer Programming problems will these numerical conditions produce, and how
efficiently can they be solved? The way in which numeric constraints for AI planning may have
a significant influence on the performance, much in the same way as we saw with the various
IP formulations. Therefore, the development of strong IP representations that capture common
numeric constraints that arise in the planning domain is an issue for further research.

• Hybrid Solution Approaches
Recent research has shown that Integer Programming provides a novel approach for solving AI planning
problems. Probably the most natural and fundamental question to consider is how other AI planning
techniques can be married with integer programming methods to generate hybrid approaches. This
issue is really part of the broader question of how the problem solving methods developed within
AI/computer science community can be combined with the techniques developed within the optimiza-
tion/operations research community. As we mentioned earlier there is already work progressing in this
area, e.g. Hooker and Osorio [1997], Bockmayr and Kasper [1998]. The starting point for such work is
to understand the fundamental differences (if any) in the techniques used. For example, it has already
been observed that certain integer programming preprocessing techniques are similar to unit resolution
in SAT approaches and the creation of a planning graph in the Graphplan system. Once fundamental
differences and equivalence are understood then one can begin to construct combined approaches with
superior performance.

• Using Integer Programming to find feasible solutions
While the possibility of extending the AI planning framework to allow for complex objective functions
is one of the main attractions of using Integer Programming, an interesting question in itself is the use
of integer programming to simply find feasible plans. So far, our approach was to minimize the number
of actions in the plan, but we terminated after the first feasible solution was found. However, it would
certainly seem that there are interesting issues here worth investigating. One could start by asking the
question of what is the value of an LP relaxation when the objective function is of minimal interest.
Within the context of branch and bound, one can view the LP relaxation as providing four “services”:
i) pruning a node based on objective function value, ii) pruning a node when the LP (and consequently
the IP) is infeasible, iii) pruning a node with the LP generates an integer solution, iv) guiding branch
selection. It would seem that the LP relaxation’s value relative to i) is greatly diminished when the
objective functions is of little interest. However, ii) and iii) are clearly still important. Certainly one
may wish to investigate alternate branch selection strategies. Another interesting question would be
to consider alternate objective functions and even to dynamically change the objective function. The
overall research problem would be to redesign branch and bound under the assumption that one is
“only” interested in finding a feasible solution.

• Derivation of Cutting Planes
A final topic for further research concerns the further strengthening of the IP formulation. While the
state-change formulation is much stronger than the SATplan- based encoding, the gap between the LP
relaxation value and the best feasible solution is sometimes still rather large. Therefore, methods that
can automatically derive cutting planes, which cut off part of the linear relaxation without eliminating
feasible solutions, at each node of the branch and bound tree may further increase the effectiveness of
IP techniques. Of course, a key to the effectiveness of this approach would be the generation of cutting
planes that represent strong constraints.
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