
Error Minimizing Minimax: Avoiding Search Pathology in Game Trees

Brandon Wilson1 and Austin Parker2 and Dana Nau1,3,2

1Dept. of Computer Science, 2Institute for Advanced Computer Studies, and 3Institute for Systems Research
University of Maryland

College Park, Maryland 20742, USA
email: {bswilson,austinjp,nau}@cs.umd.edu

Abstract

Game-tree pathology is a phenomenon where deeper mini-
max search results in worse play. It was was discovered 30
years ago (Nau 1982) and shown to exist in a large class of
games. Most games of interest are not pathological so there
has been little research into searching pathological trees. In
this paper we show that even in non-pathological games, there
likely are pathological subtrees. Further, we introduce er-
ror minimizing minimax search, an adaptation of minimax
that recognizes pathological subtrees in arbitrary games, and
cuts off search accordingly (shallower search is more effec-
tive than deeper search in pathological subtrees). Finally,
we present experimental studies of error minimizing mini-
max in two different games. In our experiments, error mini-
mizing minimax outperformed minimax, sometimes substan-
tially, and never exhibited pathological characteristics.

Introduction
Game-tree search pathology is a phenomenon where deeper
minimax search leads to more erroneous decision-making.
In a pathological game tree, an algorithm minimaxing to
depth 9 will make worse decisions than an algorithm min-
imaxing to depth 5 (so long as the game ends in more than 9
moves). To those familiar with computational game play-
ing, this is a strange result. Conventional wisdom states
that deeper search produces better play – this has cer-
tainly been the case for chess. However, there is a large
class of games that exhibit pathology, and a large body of
work trying to understand why and what kinds of game
trees are pathological (Nau 1982; Bratko and Gams 1982;
Sadikov, Bratko, and Kononenko 2005; Beal 1980; Pearl
1984).

In this paper, we show how local pathologies can occur at
certain kinds of subtrees of a game tree, and how to modify a
minimax style search procedure to recognize local patholo-
gies. Local pathologies are likely to occur in all interesting
games, so we can hypothesize that even in games not known
to be pathological, a search procedure that recognizes and
accounts for such pathologies should produce better results.

We call the search procedure that recognizes and avoids
local pathologies error minimizing minimax (EMM) search.
EMM search works by tracking both the minimax value of a

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

node and the error associated with the node. As the minimax
value of a node is aggregated up the tree in a minimax fash-
ion, the associated error is also aggregated up the tree in a
fashion similar to the product rule from (Tzeng and Purdom
1983). At each node in the search, the static evaluation func-
tion is run and its associated error estimated. If the static
evaluation’s error happens to be less than the error associ-
ated with deeper search, then EMM search will throw away
the results of the deeper search and instead use the statically
evaluated results. If the static evaluation function’s error is
larger than that achieved by deeper search, then the deeper
search results are preferred. In this way, those portions of the
tree that are locally pathological (i.e. result in greater error)
are not included in the search, while those portions of the
tree that are non-pathological (i.e. result in smaller error) are
sure to be included in the search. The key insight in EMM
search is the recognition that the static evaluation function
produces erroneous values, and that by tracking that error
explicitly in the algorithm, one can produce better results.

The contributions of this paper are:
• An analysis of pathology showing that certain types of

subtrees are pathological, and that such subtrees are likely
to occur in all interesting games.

• Error minimizing minimax search: a minimax-style
search procedure designed to recognize and account for
errors caused by local pathologies.

• Experimental results showing error minimizing minimax
search to exhibit no pathology even in situations where all
other tested algorithms exhibited pathology.

Setup
In this paper, we are looking at two-player, perfect infor-
mation, zero-sum games. We name the game tree G where
each node n has a set of moves m(n) for the player-to-move
p(n). The terminal nodes are assigned a utility u(n), where
1 represents a win for player 1 and −1 represents a win for
player 2. The standard minimax formula is well known (e.g.,
(Russell and Norvig 2003)):
minimax(n) =
u(n) if n is terminal,
maxn′∈m(n)minimax(n′) if it’s player 1’s move,
minn′∈m(n)minimax(n′) if it’s player 2’s move.

Type A

1

1 1

Type B or C

1

-1 1

Type D

-1

-1 -1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 0.1 0.2 0.3 0.4 0.5

E
rr

or
 a

t r
oo

t

Error at leaves

f(e)=e
Type A trees

Type B/C trees
Type D trees

Figure 1: The different tree types available when searching forward one level. Trees B and C are mirror images of one another
so are presented together. The graph shows the relationship between the error in the leaves and the error in the root after a
minimax search on each tree. Notice that only type D trees increase the error.

To use minimax to determine which move is best, one need
simply compute the minimax values for all states one can
move to, then pick a state with a maximal minimax value
(assuming the computation is done from player one’s point
of view). When ambiguous, we will use the term correct
minimax value to refer to the value of a node n computed
according to minimax(n).

In games such as the ones investigated in this paper (two
player, perfect information, zero-sum games), minimax is
known to return an optimal move when allowed to search the
entire game tree (Osborne and Rubinstein 1994). However,
in many cases, the computation resources needed for such
a search are not available – lots of interesting games have
combinatorially large game trees that do not permit exhaus-
tive search in normal game-play (i.e. chess, go, connect-6,
kalah, checkers, othello). As such, implementations of min-
imax generally include a heuristic function called a static
evaluation function. The static evaluation function quickly
estimates the true minimax value of a given node.

With the static evaluation function, depth-limited mini-
max search is possible. The idea is simple: do minimax
search to a depth d, then apply the static evaluation function
to estimate the minimax values of these depth d nodes. The
minimax values of nodes with depth less than d can then
be computed as normal, giving estimated minimax values
for each possible move. If eval(n) estimates the value of
minimax(n), then

minimaxd(n) =
eval(n) if d = 0
u(n) if n is terminal,
maxn′∈m(n)minimaxd−1(n′) if it’s player 1’s move,
minn′∈m(n)minimaxd−1(n′) if it’s player 2’s move.

It is generally accepted that deeper search results in better
game-play, in most practical situations. However, in the
early 1980s, one of the authors of this paper discovered that
in a class of games known as P-games, deeper minimax
search resulted in worse performance, a phenomenon that
has come to be know as game-tree pathology (Nau 1982).

In pathological game trees, minimax with deeper search
is less likely to produce a correct move; one whose correct
minimax value is optimal. Most naturally occurring games
such as chess, checkers, and the like have been observed to

not be pathological: deeper searching minimax algorithms
tend to result in better play. In the next section we will show
that certain kinds of game trees are pathological while others
are not.

Analysis
We now show a quick analysis of games with branching fac-
tor two1 showing that pathological sub-trees are likely to
occur in all interesting games. For this analysis, we will
assume a static evaluation function that returns the correct
minimax value on any given node with probability 1−e (i.e.
P (eval(n) = minimax(n)) = 1 − e). We will be look-
ing at the evaluation error in depth one trees. Evaluation
error occurs when a node’s minimax value is miscalculated
by a depth limited minimax computation. At one extreme,
we can imagine a depth 0 minimax computation wherein a
static evaluation function is simply applied to the node. In
this case, the evaluation error will simply be that of the static
evaluation function, e. When deeper minimax searches oc-
cur, we have different evaluation errors for different types
of trees. Here we examine only searches of depth one, as a
search to depth d can be instead thought of as d depth-one
searches.

In games with branching factor two, there are four possi-
ble depth one trees. These are shown in Figure 1 (trees B and
C are symmetric and are therefore considered together). In
each tree, it is player 1’s move, so the minimax value of the
root is the maximum of the minimax values of the children.
These trees are partial trees experienced by a search: the leaf
nodes are not terminal, but rather the search’s horizon.

Using an evaluation function with error e, we can calcu-
late fraction of the time a depth one minimax search will
return the wrong value for the root node in each type of tree:

error(A) = e2 (1)
error(B) = e(1− e) (2)
error(C) = error(B) (3)

error(D) = 1− (1− e)2. (4)

Comparing these functions to simply applying the static

1We hope it will be obvious how the analysis will extend to
higher branching factors.

evaluation function with error e to the root node, we get that

error(D) ≥ e ≥ error(B) ≥ error(A)

for any error e ∈ [0, 0.5]. That is, the error resulting from
searching type D trees exceeds the error resulting from sim-
ply applying the static evaluation at the root node, while for
types A, B, and C trees, the error for depth one search is
less than that of simply applying the evaluation function.
Figure 1 shows this relationship in a graph, where we plot
the value of e against the error present at the root for simply
evaluating the root (f(e) = e) and for searching each tree
type.

Type D trees are the only ones in which the error at the
root is greater than the error at the leaves, and, since any
depth d search can be seen as a combination of d depth one
searches, we can conclude that type D trees are the source
of all pathology in two-move games. This is not to say that
anytime one reaches a typeD tree, a shallower search should
be preferred – it may be that each child of a type D tree
roots a typeA tree, in which case the error at the root will be
1− (1− e2)2, which is less than e. But simply to say that if
the entire tree were of type A, B, or C, then there could not
be evaluation pathology2.

We expect all interesting games contain type D trees: as
games are not interesting if player one always wins, and
without type D trees, it would be impossible for player two
to win!

Error Minimizing Minimax Search
Error minimizing minimax (hereafter EMM) search is an al-
gorithm that computes the minimax value of a node while
keeping track of the error associated with that minimax
value. The algorithm also computes the static evaluation
function at any given node. If the static evaluation allows
a tighter error bound than the minimax search, then that er-
ror bound is substituted in the final return statement. EMM
search is detailed in Algorithm 1.

By keeping track of both the error from searching and
the error from evaluating, the algorithm naturally distin-
guishes between pathological trees (type D above) and non-
pathological trees (types A, B, and C above). Further, notice
that the algorithm is not limited to branching factor two.

We now detail a short example of how EMM might tra-
verse a given tree, shown in Figure 2. This tree shows a
depth two search – the leaf nodes are non-terminal, but are
instead evaluated with a static evaluation function with 10%
error. Thus the evaluations of nodes D, E, F, and G are all
given with 10% error. When processing node B, in which it
is player 2’s move, we see that both children of B are eval-
uated as a loss (value 1) for player 2, and therefore that the
node is a loss for player 2. However, since this value is in
error if either of the static evaluations for nodes D or E is in
error, we have a 19% chance that the evaluation at node B
is in error. Since a static evaluation of the same node gives
the same value (1 – loss for player 2), but with only 10%

2So long as the static evaluation function mislabels each node
with independent probability e.

Algorithm 1 EMM(s, eval, d): Error minimizing minimax
search. For game state s, evaluation function eval (returning
an evaluation of a board from the perspective of the player-
to-move) with error e, and search depth d, returns a pair
(a, e) where a is the valuation of the state s and e is the er-
ror associated with that valuation. γ(s,m) denotes the state
transition function that returns the new state after making
move m in state s.

Let curV al = eval(s), and curErr = e.
If d is 0, return (curV al, e)
// Determine values vi and errors eri for children nodes.
Let mv1, . . . ,mvn be set of moves at s.
For i = 1, . . . , n, let (vTmpi, eri) =
EMM(γ(s,mvi), eval, d− 1)
Let vi = −vTmpi.
Let val = maxi(vi). // This node’s value.
// Determine error for this node aggErr.
if val is a loss then

// All children are losses, if any of them are wrong, this
node is in error.
aggErr = 1−

∏
i(1− eri)

else
// There is at least one win child. Error occurs if win-
ning children are wrong and losing children are right.
Let aggErr = 1
for each (vi, eri) do

if vi is a win then
aggErr = aggErr × eri

else
aggErr = aggErr × (1− eri)

end if
end for

end if
// Flip values if aggErr is too big.
if aggErr > 0.5, (val, aggErr) = (−val, 1−aggErr).
// Check if static evaluation matches minimax value.
if curV al = val then

// Return the result with the stronger error guarantee.
return (curV al,min(curErr, aggErr)).

else if curErr ≥ aggErr then
// Non-pathological case: statically evaluated error is
greater than search’s error. Use minimax results.
return (value, aggErr)).

else
// Pathological case: the statically evaluated error is less
than the search’s error. Use static results.
return (curV al, curErr)

end if

error, EMM uses the statically evaluated value and those er-
ror guarantees for that node. For node C, the opposite oc-
curs. In node C EMM concludes that the node is a win for
player 2 with 9% chance of error, as node F would have to
have been evaluated correctly (90% chance) and node G in-
correctly (10% chance). Thus the error resulting from the
search ducks the 10% error resulting from the static evalu-
ation function and error minimizing minimax assigns a loss

A
Player 1

1, 9.1% 1,10%

B
Player 2

1, 19% 1,10%
C

Player 2

-1, 9% -1,10%

D
Player 1

1, 10%
E

Player 1

1, 10%
F

Player 1

1, 10%
G

Player 1

-1, 10%

Figure 2: An example tree using EMM search.

with error 9% for node C. We can now conclude that node
A is a win, with a 9.1% error rate: only if node B is incor-
rect (10%) and node C is correct (91%) is node A incorrect.
This could be compared to when we did not prefer the stat-
ically evaluated error rates, in which case node A would be
incorrect with a probability of 17.29%.

Discussion Error minimax bears some resemblance to the
product rule (Tzeng and Purdom 1983). The product rule
computes the probability that a given node is a win for
player one, then aggregates those probabilities up the tree in
a method similar to the one used by EMM. The major differ-
ence between EMM and product rule search is in the short-
cutting of the aggregation up the tree when the static eval-
uation function is less erroneous than the minimaxed value.
This limits the search of subtrees with pathological charac-
teristics: when searching a subtree deeper produces more
erroneous values, then the error associated with that search
will be higher and the subtree search will be more likely
to be thrown away. In this fashion, EMM can be said to
“recognize” the pathological portions of a game tree, avoid-
ing them, while doing full-depth search on non-pathological
portions of the tree.

Despite this, there are several potential weaknesses
present in EMM. The first is the assumption of a partic-
ular form of static evaluation function. Generally, if one
finds a static evaluation function that is wrong 10% of the
time, those errors do not occur independently at random (as
is implicitly assumed by error minimizing minimax). In-
stead, for many natural static evaluation functions, when
they are wrong about one game state, they are likely to also
be wrong about children of that game state. Further, there is
no obvious way to calculate the error characteristics for nat-
ural static evaluation functions. Finally, alpha-beta pruning
presents a challenge for EMM. We see no obvious analog
pruning technique for EMM, which must search the whole
tree to calculate the errors. As such, EMM will search a
shallower game tree than minimax combined with alpha-
beta pruning in the same amount of computation time. If
the game tree is not pathological, players playing accord-
ing to EMM will be at a serious disadvantage because they
are not able to search as much of the tree as minimax with
alpha-beta. However, if the game tree is pathological, the
deeper searches performed by minimax with alpha-beta ac-

tually degrades performance!
From our analysis of the algorithm, we concluded that it

had promise as a potential alternative to minimax search,
particularly in games known to be pathological. Therefore,
we did experiments to determine the quality of EMM.

Experiments
Our experiments are performed on a board-splitting game
developed by Judea Pearl. In this game two players take
turns dividing a 2-D board, consisting of 1’s and 0’s, into
b equal pieces and discarding all but one piece. Player one
splits the board vertically while player two splits horizon-
tally. The game is over when only one square remains. If
this square is a 1 then the last player to move is declared the
winner, otherwise the other player wins. This is a two player
perfect information zero-sum game.

We focus on two versions of the game that differ only in
the construction of the initial board. The first version is re-
ferred to as a P-game3. The initial board for each P-game is
generated so that each square is randomly and independently
assigned a value of 1 with probability p and a 0 with proba-
bility 1 − p. The board size itself is bb

d
2 c-by-bd

d
2 e where b

and d are the desired branching factor and depth of the game
tree respectively. Minimax has been shown to be pathologi-
cal on P-games using a natural evaluator.

The second version is referred to as a N-game. This con-
struction was introduced by Nau (Nau 1982) to emulate the
dependence of heuristic values among siblings, a common
feature of real games like checkers and chess. For an initial
board of size, bb

d
2 c-by-bd

d
2 e, a value of 1 is assigned to each

edge of the game tree with probability p and −1 with prob-
ability 1 − p. Each leaf of the game tree represents a single
square on the board and its value is determined by summing
the edge values from the root to that leaf, giving the leaf a
value of 1 if the sum is positive and 0 otherwise.

Our experiments compare the performance of three prop-
agation algorithms: minimax, product rule, and EMM. A
product rule search to depth d can be defined recursivey sim-
ilar to minimax:

productd(n) =
u(n) if n is terminal,
eval(n) if d = 0
1−

∏
n′∈m(n) productd−1(n′) if it’s player 1’s move,∏

n′∈m(n) productd−1(n′) if it’s player 2’s move.

We also use two different static evaluation functions:

1. Artificial: An “artificial” static evaluation function is a
binary function, returning the true minimax value of a
state with probability (1− e) and the incorrect value with
probability e, where e is a predetermined error rate.

2. Natural: A natural static evaluation function for P-games
is the one that returns the percent of the remaining board
with winning squares (from the perspective of the player

3“P-game” is short for Pearl-game, as these games were first
introduced by Judea Pearl (Pearl 1984).

1 3 5
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Search Depth

F
ra

ct
io

n
of

 C
or

re
ct

 D
ec

is
io

ns
Artificial evaluator (e=0.1) on P−games

Minimax(b=2)
EMM(b=2)
Product Rule(b=2)
Minimax(b=3)
EMM(b=3)
Product Rule(b=3)

Figure 3: Fraction of correct decisions using the artificial
evaluator (e = 0.1) on P-games.

1 3 5
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Search Depth

F
ra

ct
io

n
of

 C
or

re
ct

 D
ec

is
io

ns

Natural evaluator on P−games

Minimax(b=2)
EMM(b=2)
Product Rule(b=2)
Minimax(b=3)
EMM(b=3)
Product Rule(b=3)

Figure 4: Fraction of correct decisions using the natural
evaluator on P-games.

to move). To make this a binary evaluation (required by
EMM), a state with more wins than losses is evaluated as
a win, while one containing more losses than wins is a
loss. For this evaluation function, we estimated the as-
sociated error (used by EMM) by generating many com-
pletely solved game trees and recording the percent occur-
rence along with the true minimax value of the node. In
our experiments, the product rule still uses the unaltered
natural evaluation.

A pathology is characterized by a decrease in correct deci-
sions with an increase in search depth. Therefore, we mea-
sure performance in terms of the fraction of correct deci-
sions made at the root node, where a returned move is “cor-
rect” when its true minimax value is maximal among moves
at that node. In each trial a game tree is generated, solved,
and searched to several depths with minimax, EMM, and the
product rule.

Figure 3 shows the fraction of correct decisions made by
each algorithm using the artificial evaluator (e = 0.1) on
10,000 non-trivial P-games with d = 10 and branching fac-
tors of 2 and 3. EMM clearly outperforms the other algo-
rithms as the search depth increases. In this set of exper-
iments, EMM is the only algorithm that does not exhibit
pathological characteristics. Figure 4 once again shows the
performance of the three algorithms, but this time the natu-
ral evaluator is used. Here EMM is slightly outperformed by
the product rule, which is unsurprising given that the product
rule was developed specifically for use in P-games with the
natural static evaluation function (Tzeng and Purdom 1983).
However, EMM is non-pathological and significantly out-
performs minimax search.

The results of applying EMM to N-games are also promis-
ing. Figure 5 shows that EMM significantly outperforms
both of the other algorithms and is not pathological. Also,
similar to P-games, when using the natural evaluator, EMM
is slightly outperformed by the product rule, but EMM
performs substantially better than minimax with increasing

search depth.

Related Work
Since the discovery of minimax pathology thirty years ago
(Nau 1979), several explanations have been proposed for
why it does not occur in most real-world games. Probably
the most widely accepted explanation is that pathology is
inhibited by similarity among different parts of the search
tree (Nau 1982; Bratko and Gams 1982; Lustrek, Gams, and
Bratko 2006),

Pearl (Pearl 1984) claimed that although the sibling node
dependence eliminates pathology, it is not sufficient to ex-
plain the lack of pathology in real games such as chess
and checkers. The level of dependence required to combat
pathology does not occur in real games. Pearl suggested
traps as an alternative explanation. Traps are moves that
cause the game to end abruptly, introducing very accurate,
if not perfect, heuristic values at some shallow nodes in the
game tree. This in turn produces more accurate propagated
values and eliminates pathology.

More recently, Lustrek et al. (Lustrek, Gams, and Bratko
2006) cited granularity of the evaluation function as a source
of pathology. The granularity is the number of possible val-
ues that an evaluation function can return with a non-zero
probability. They discovered that the required granularity is
closely related to the branching factor. In the dependent sce-
nario, where sibling values were normally distributed around
the parent, the required granularity to avoid pathology is
rather low. On the other hand, in an independent scenrio,
where sibling values are independent, the required granular-
ity grows exponentially with the branching factor. They sug-
gest that since most chess programs use an evaluation func-
tion with thousands of possible values then this is a likely
reason that chess and other real games are not pathological.

Sadikov et al. (Sadikov, Bratko, and Kononenko 2005)
differentiated between two types of accuracy affecting
pathology: evaluation and decision accuracy. Evaluation ac-

1 3 5
0.85

0.9

0.95

1

Search Depth

F
ra

ct
io

n
of

 C
or

re
ct

 D
ec

is
io

ns
Artificial evaluator (e=0.1) on N−games

Minimax(b=2)
EMM(b=2)
Product Rule(b=2)
Minimax(b=3)
EMM(b=3)
Product Rule(b=3)

Figure 5: Fraction of correct decisions using the artificial
evaluator (e = 0.1) on N-games.

1 3 5
0.4

0.5

0.6

0.7

0.8

0.9

1

Search Depth

F
ra

ct
io

n
of

 C
or

re
ct

 D
ec

is
io

ns

Natural evaluator on N−games

Minimax(b=2)
EMM(b=2)
Product Rule(b=2)
Minimax(b=3)
EMM(b=3)
Product Rule(b=3)

Figure 6: Fraction of correct decisions using the natural
evaluator on N-games.

curacy refers to the difference between heuristic values and
the backed up values. On the other hand, decision accuracy
is a measure of how many correct decisions are made by
a deeper search compared to a shallow one. Their experi-
mental results on the King-Rook-King chess endgame show
that although a heuristic evaluation may be increasingly in-
accurate with deeper search, the decision accuracy may ac-
tually improve. The explanation for this unexpected result
is that heuristic evaluators, by nature, introduce a bias into
the evaluation values. The bias is similar among all nodes
on the search frontier so the relative ordering among nodes
is preserved. It is for this reason that we focus on decision
accuracy as our measure of performance in our experiments.

Tzeng and Purdom show, in (Tzeng and Purdom 1983)
that using a product rule rather than minimax for backup
in P-games results in an algorithm that has no pathologi-
cal tendencies and provide theorems to that effect. Unfortu-
nately, their analysis is limited to “natural” evaluation func-
tion in this paper4, and while their backup rule is shown to
be non-pathological, there are no guarantees that more ac-
curate techniques may exist. The search procedure in this
paper differs from the product rule they propose by being
more generally applicable and by allowing for the search to
perform cutoff, avoiding pathological sections of the game
tree.

All of the work above either suggests potential sources of
pathology or classifies a set of games as being pathologi-
cal. Based on that work, it is clear that identifying a single
or even a handful of sources of pathology is a difficult task.
Instead of isolating the cause of pathology, we propose to
detect when it begins to manifest itself during the propaga-
tion process and truncate the pathological portions of search
at a shallower depth.

4According to our experiments, the product rule does exhibit
pathology when used with an artificial evaluation function.

Conclusion
We have presented an analysis of pathology in game trees
showing certain kinds of subtrees (i.e. type D trees) to in-
crease evaluation error and therefore to be the cause of
pathology in game tree search. Further, we have argued
that such trees exist in all interesting games, even those not
known to be pathological. With that in mind, we present
a new minimax-based algorithm for determining the best
move in arbitrary game trees. The algorithm is designed
to recognize and avoid searching pathological portions of a
game tree, while still searching non-pathological portions of
the tree. In experimentation, the algorithm performed well:
it never exhibited pathology and always performed best or
nearly best among the algorithms tested.

Future work on this algorithm includes theoretical anal-
ysis of its ability to recognize the best move, as well as
looking into adapting something akin to alpha-beta pruning.
Also, an examination of this algorithm in a real game, such
as chess or checkers, is needed to establish the practicality
of our model – it may turn out to be quite difficult to es-
timate the error rates of static evaluation functions for real
games. Finally, the algorithm should be adapted to handle
non-binary static evaluation functions.

In conclusion, we can say that by incorporating the error
of the static evaluation function in the search, we were able
to improve upon the abilities of minimax search. We think
this may be a generally applicable lesson: when heuristic
values exist in an algorithm, it may be advantageous to treat
those values as probabilistically valid rather than blithely as-
suming them accurate.

Acknowledgments. This work was supported in part
by AFOSR grant FA95500610405, NAVAIR contract
N6133906C0149, DARPA’s Transfer Learning and Inte-
grated Learning Program, and NSF grant IIS0412812. The
opinions in this paper are those of the authors and do not
necessarily reflect the opinions of the funders.

References
Beal, D. F. 1980. An analysis of minimax. In M.R.B., C.,
ed., Advances in Computer Chess 2, 103–109. Edinburgh
University Press.
Bratko, I., and Gams, M. 1982. Error analysis of the mini-
max principle. Advances in computer chess 3:1–15.
Lustrek, M.; Gams, M.; and Bratko, I. 2006. Is real-valued
minimax pathological? Artificial Intelligence 170(6-
7):620–642.
Nau, D. S. 1979. Quality of Decision Versus Depth of
Search on Game Trees. Ph.D. dissertation, Duke Univer-
sity.
Nau, D. S. 1982. An investigation of the causes of pathol-
ogy in games. Artificial Intelligence 19(3):257–278.
Osborne, M. J., and Rubinstein, A. 1994. A Course In
Game Theory. The MIT Press.
Pearl, J. 1984. Heuristics: intelligent search strategies for
computer problem solving. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc.
Russell, S., and Norvig, P. 2003. Artificial Intelligence:
A Modern Approach. Prentice-Hall, Englewood Cliffs, NJ,
2nd edition edition.
Sadikov, A.; Bratko, I.; and Kononenko, I. 2005. Bias
and pathology in minimax search. Theoretical Computer
Science 349(2):268–281.
Tzeng, C. H., and Purdom, P. W. 1983. A theory of game
trees. In Proceedings of the 8th International Joint Confer-
ence on Artificial Intelligence (Karlsrahe, West Germany,
Aug. 8-12) Morgan Kaufmann, Los Altos, Calif, 416–419.

