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ABSTRACT
Game-tree search algorithms have contributed greatly to the
success of computerized players in two-player extensive-form
games. In multi-player games there has been less success,
partly because of the difficulty of recognizing and reasoning
about the inter-player relationships that often develop and
change during human game-play. Simplifying assumptions
(e.g., assuming each player selfishly aims to maximize its
own payoff) have not worked very well in practice.

We describe a new algorithm for multi-player games, So-
cially-oriented Search (SOS), that incorporates ideas from
Social Value Orientation theory from social psychology. We
provide a theoretical study of the algorithm, and a method
for recognizing and reasoning about relationships as they
develop and change during a game. Our empirical evalu-
ations of SOS in the strategic board game Quoridor show
it to be significantly more effective against players with dy-
namic interrelationships than the current state-of-the-art al-
gorithms.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Graph and tree search strategies

General Terms
Economics, Algorithms

Keywords
game-tree search, multi-player games

1. INTRODUCTION
Search algorithms such as the classical Minimax search

algorithm [13] are perhaps the most important component
of computer programs for games of strategy. In two-person
games, these algorithms have been highly successful, and
there are many games in which the best computerized play-
ers perform as well or better than the best human players
(e.g., [14, 15]). However, such algorithms have generally
been much less successful in multi-player games—partly be-
cause they lack ways of recognizing and reasoning about
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inter-player relationships, which are a very influential com-
ponent of the strategic behavior of human players [18]. For
example, consider situations where a player has lost any
“practical”chance of winning the game, but its actions might
determine which of the other players will eventually win—or
where a local grievance in the early stages of the game gives
birth to vindictive actions in later stages. In both cases, in-
terpersonal relationships will have considerable weight when
the players reason about future courses of action.

The standard approach to dealing with this problem has
been to make simplifying assumptions. For example, the
Max-n algorithm [8], a generalization of Minimax to n-player
games, assumes that the players will each try selfishly to
maximize their own utility values, while being indifferent
to the other players; and the Paranoid algorithm [16] as-
sumes that a player’s opponents will always select the ac-
tions that are worst for that player, without considering their
own chances of winning.

Such simplifying assumptions rarely hold in real-world
games. For example, in games such as Risk or Diplomacy,
it is very common for players to decide that one player (or
a small group of players) is too strong, and join forces tem-
porarily to fight that player (a fact that was successfully
exploited by the MP-Mix algorithm presented in [20]). Such
interpersonal relationships can also develop when games are
played repeatedly [2].

The fundamental question is how to describe and rea-
son about these relationships during game play. Our
approach is to model the players’ interpersonal relationships
by incorporating ideas from Social Value Orientation (SVO)
theory into game-tree search.

Social Value Orientation (SVO) theory was first described
by Messick and McClintock in [4], and [3] gives a recent
overview. In this theory, the space of interpersonal behav-
iors is viewed as a two-dimensional spectrum in which one
axis represents altruism versus aggression, and the other rep-
resents varying degrees of individualism. SVO theory states
that these differences in interpersonal orientations might
arise due to reasons including subjective preferences and be-
liefs, and ascriptive characteristics such as nationality and
ethnicity (for example see Grid-Group theory [9]). These
orientations often change dynamically during interactions,
based on the players’ actions in the previous rounds [1].

Our new algorithm, Socially Oriented Search (SOS), uses
a social-range matrix structure, based on SVO theory, to
keep track of inter-player relationships and use them to guide
the search. Since the interpersonal values are often unknown
and change dynamically during play, we also present an on-



  

1

(6,4,0)

2 2 2

3 3 3 3 3 3

(6,4,0)(3,5,2)(1,3,5)

(1,3,5) (6,3,1) (6,4,0) (6,4,0) (1,4,5)(3,5,2)

(a) (b) (c)

(d)

Figure 1: Propagating with the Max-n assumption

line learning technique that adapts the stored relationship
values as the game progresses. In our evaluations of the
algorithm in the Quoridor game, it played significantly bet-
ter than the Max-n and Paranoid algorithms when playing
against adversaries with varying interpersonal orientations.

Our main contributions can be summarized as follows:

• SOS, a novel multi-player search algorithm that con-
siders interpersonal orientations.

• A theoretical analysis of the solution computed by SOS
and conditions under which SOS converges to well-
known multi-player algorithms.

• A learning version of the algorithm that learns and
adapts social orientations when they are unknown.

• An empirical evaluation comparing the performance of
SOS with both Max-n and Paranoid algorithms.

2. BACKGROUND AND RELATED WORK
In search algorithms for extensive-form games, when a

player needs to select an action, it spans a search tree where
nodes correspond to states of the game, edges correspond to
moves and the root of the tree corresponds to the current
state. We refer to this player as the root player. The leaves
of the tree are evaluated according to a heuristic evaluation
function and the values are propagated up to the root.

In sequential two-player games (where players alternate
turns) values from the leaves are propagated according to
the Minimax principle [13]. That is, in levels where it is the
root player’s turn, we take the maximum among the children
while in levels where it is the opponent’s turn, we take the
minimum of the children.

The sequential multi-player game with n players (n > 2),
where the players take turns in a round robin-fashion, is
more complicated. The assumption is that for each node the
evaluation function returns a vector H of n values where hi

estimates the merit of player i. The straightforward gener-
alization of the two-player Minimax algorithm to the multi-
player case is the Max-n algorithm [8]. It assumes that each
player will try to maximize its own component of the heuris-
tic vector, while disregarding the values of other players.
Minimax can be seen as a specific instance of Max-n, where
n = 2. An example of the Max-n propagation procedure is
depicted in figure 1, where we see that each player i (player
numbers are inside the nodes) selects the action which max-
imizes element i of the vector without considering the values
of the other elements.

A different approach, called the Paranoid approach, was
first introduced in [11] as part of a proof for search pathol-
ogy in multi-player games trees, and later was presented in
[16]. In this algorithm the root player takes a paranoid as-
sumption that the opponent players will work in a coalition
against him and try to minimize its heuristic value. This
paranoid assumption allows the root player to reduce the
game to a two-player game: the root player against a meta
player that includes all the other players. Figure 2 depicts
the same game tree as the previous Max-n example, but now
values were propagated according to the Paranoid assump-
tion. Here, the root player assumes that players 2 and 3 will
select the action that minimizes his value.
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Figure 2: Propagating with Paranoid assumption

Since there is no definitive answer to which approach is
better, and the answer is probably both domain and evalu-
ation function dependent [17], a recent algorithm, MP-Mix,
proposed switching between search strategies dynamically
according to the game situation [20]. This algorithm exam-
ines the current situation and decides, according to the play-
ers’ relative strength values, whether the root player should
propagate values according to the Max-n principle, the Para-
noid principle, or the newly presented Directed Offensive
principle. In this strategy, the root player first chooses a
target opponent it wishes to attack. It then explicitly se-
lects the path which results in the lowest evaluation score
for the target opponent.

The above algorithms share two common assumptions:
the first is that when propagating values, the adversaries
use the same heuristic evaluation function as the searching
player, while the second states that the adversaries are using
a fixed, pre-determined preference ordering on the heuristic
values. The first assumption has been dealt with through
specific opponent modeling techniques. For example, the
Prob-MaxN algorithm [19] is a extension of the Max-n al-
gorithm where, given a set of possible evaluation functions
as an input, the algorithm dynamically adapts the proba-
bilities of each individual adversary’s membership to these
prior models. In [10], when playing repeatedly against the
same opponent, the authors’ algorithm learned its oppo-
nent’s weaknesses and exploited them in future games.Regarding
the second assumption, these models are limited and unable
to describe and reason about the more complex relationships
that players might encounter in multi-player games.



3. SOCIALLY ORIENTED SEARCH

Figure 3: Social Behavior Spectrum

In this paper, we use “Social Value Orientation theory”
to refer to a class of theories from the behavioral science
literature [4, 3, 6] stating that people differ in their inter-
personal orientations, and that they are consistent over time.
Figure 3 describes a two-person preference model of the ma-
jor personal and interpersonal orientations that can occur
between players. In this model [6], the player’s utility is de-
fined on the horizontal axis, and the outcome of the “other”
player is on the vertical axis, and the values reflect a linear
combination of payoffs to both players.

Our Socially Oriented Search algorithm utilizes a recently
suggested social-range matrix model [7] that supports the
description of interpersonal orientations as captured in the
two-dimensional social behavior spectrum. The social ma-
trix construct makes it possible to model “socially hetero-
geneous” systems where players may have different social
orientations to each of the other players. The fundamen-
tal building block of our search procedure, the social-range-
matrix, is defined as follows: for a game consisting of n
players, the social-range matrix is an n×n matrix where el-
ement cij ∈ [−1, 1] represents how much player i cares about
player j. A value of 1 indicates a completely cooperative re-
lationship whereas −1 indicates an aggressive one. Values
in between represent varying degrees of social orientation,
with 0 indicating complete apathy.1 Given a utility vector,
U , with a utility for for each player, the weighted sum of the
utility vector and the ith row of the social range matrix is
referred to as the perceived utility for player i.

3.1 The SOS Algorithm
Our Socially Oriented Search (SOS) algorithm (presented

as algorithm 1) models inter-player relationships with a social-
range matrix and incorporates them into the search by weight-
ing the evaluation values in the leaf nodes to obtain the per-
ceived utility. Since most games are too complex to search
completely, the typical approach is to pre-select a level to
cutoff the search and estimate the strength of the states at
this level by a heuristic evaluation function. This evaluation
is a vector where element i represents the relative strength
of the game state for player i. Our algorithm transforms

1Note that the social behaviors on the left side of the graph
are deliberately excluded from our work, since these be-
haviors (e.g. Masochism, Sado-Masochism), are considered
mental disorders.

Algorithm 1 SOS(s, eval, d, c, p): Given an evaluation
function, eval, and a social range matrix, c, compute and
return the perceived utility of state s by searching to depth
d. p is the player whose turn it is to move at s and N is the
number of players in the game.

// Transform evaluation to incorporate social preferences.
// Notice the matrix-vector multiplication.
If d is 0, return c * eval(s)

// Determine maximum of values for children nodes.
Let mv1, . . . ,mvn be the children of s and
bestEvaluation = −∞
for i = 1, . . . , n do
v = SOS(mvi, eval, d− 1, c, p mod N)
if v > bestEvaluation then
bestEvaluation = v
bestMove = v

end if
end for

// Return the move with the best perceived utility
return bestMove
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Figure 4: SOS propagation using the social-range
matrix c.

this vector into the perceived evaluation, where element i
is the dot product of the heuristic evaluation and row i of
the social range matrix. The values are then propagated so
that each player maximizes their element of the perceived
evaluation.

Figure 4 illustrates an example of a depth-2 search that
is guided by the social-range matrix c. In this particular
matrix, players 1 and 2 are not completely cooperative, as
they do not value each other’s utility as much as their own
but they do have a positive orientation towards one another
and they are ignorant of the utility for player 3. Player 3 is
selfish, valuing its own utility and ignoring all others. Based
on this matrix, the SOS algorithm selects the middle branch
as the best decision, leading to a perceived utility of 8 for
player 1.

The social range matrix guides an SOS search, selecting
the move leading to the maximum perceived utility instead
of selecting the move that maximizes or minimizes a single
element in the evaluation vector (i.e., the Max-n and Para-
noid algorithms). The ability to modify the social range



matrix makes our algorithm more flexible than either Para-
noid or Max-n. In fact, one can achieve a Max-n or Para-
noid search with the appropriate social range matrix. Max-
n assumes that all players are selfish and ignorant of other
players utility. Property 1 characterizes the features of a
social-range matrix that lead to Max-n behavior.

Property 1. Using the identity matrix with the SOS al-
gorithm is equivalent to Max-n.

Paranoid assumes that all players are aggressive toward the
principle player with the exception of the principle player
itself which is selfish. Property 2 formally characterizes the
features of a social-range matrix that lead to Max-n or Para-
noid behavior.

Property 2. A matrix in which element cii = 1, cji =
−1, ∀j 6= i, and all other entries are 0 represents the Para-
noid assumption from the point of view of player i. Using
it with the SOS algorithm is equivalent to player i using the
Paranoid algorithm.

Coalitions, where a group of players try to maximize/minimize
the combined utility of another set of players, can also be
represented by social range matrices, as well as an infinite
number of other social preferences.

3.2 Online learning SOS
Since the social preferences of each player are not usually

known ahead of time, learning algorithms can be used to
estimate the social-range matrix based on previous moves.
Our learning rule estimates a player’s social preferences as
the average effect of the player’s last k moves. We can es-
timate the effect of a move from state s1 to state s2 as the
difference in the normalized heuristic evaluations:

∆(s1, s2) =
eval(s2)

max eval
− eval(s1)

max eval
,

where max eval is the maximum evaluation for any player’s
component of the evaluation. So, given a history of k moves
for player i, we estimate the ith row of the social-range ma-
trix as the average effect of the k last moves. Higher values of
k provide a richer information set to infer the social-range
matrix while lower values allow the matrix to be adapted
more quickly to a player whose social preferences change
often over the course of the game.

4. THEORETICAL ANALYSIS
In this section we document some of the theoretical prop-

erties of the SOS algorithm. We demonstrate that SOS
computes an equilibrium point, that SOS always permits
immediate and shallow pruning but may also leverage deep-
pruning under special circumstances, and that the behavior
of SOS may converge to that of Max-n or Paranoid based
on the social orientations and evaluation function.

4.1 Perceived Equilibria
For an n-player game, a player’s strategy is a plan that

completely determines the player’s behavior for any poten-
tial situation that may arise during the course of the game.
A strategy profile, S = {s1, s2, . . . , sn}, is a set of strategies,
one for each player, that completely defines all actions for
the game. A strategy profile is a Nash Equilibrium if there
is no player that can unilaterally change their strategy and

obtain a higher utility. The utility vector corresponding to
this strategy profile is an equilibrium point. This concept
assumes each player is completely selfish. For a game where
players’ social orientations may vary, we have a similar con-
cept: the Perceived Nash Equilibrium [7]. A strategy profile
is a perceived Nash equilibrium if there is no player that
can unilaterally change their strategy to obtain a higher per-
ceived utility. Similarly, the perceived utility associated with
this strategy profile is a perceived Nash equilibrium point.

Assuming that the social range matrix correctly repre-
sents all players’ social preferences then we can prove that
our generalized search procedure identifies a perceived equi-
librium point in a similar fashion as the proof Luckhart et
al. use in showing that Max-n identifies an equilibrium [8].

Theorem 1. Given a perfect-information, n-player, non-
cooperative game and the players’ social orientations in the
form of a social-range matrix, SOS computes a perceived
Nash equilibrium point.

Proof. Let S = {s1, s2, ..., sn} denote the strategy pro-
file computed by SOS that leads to the payoff vector pro-
duced by our algorithm. The payoff vector, where element i
of the vector is the perceived utility for player i, propagated
to the root of the search tree based on this set of strategies
is U(S). U(S) is a perceived equilibrium point if there is no
alternate strategy set S′ = s1, s2, ..., s

′
j , ..., sn where player

j utilizes a different strategy and U(S′)[j] > U(S)[j]. Now,
assume a strategy set exists such that U(S′)[j] > U(S)[j],
where S is the strategy set identified by our SOS. This means
that there is a different set of moves that would lead to
a greater perceived utility for player j. More specifically,
there must be at least one node in the game tree where the
move selected by j would be better if a different move were
selected. This contradicts the definition of our algorithm
where the move selected at each node maximizes the mov-
ing player’s perceived utility.

4.2 Pruning
In general, SOS is only capable of immediate and shallow

pruning, however, deep-pruning is also possible under cer-
tain circumstances. Our algorithm follows the same propa-
gation rule as Max-n with the exception of the linear trans-
formation that is applied to the node evaluations on the
search frontier. Therefore, as long as the heuristic evalua-
tion meets the assumptions that make such pruning possible
for Max-n (i.e., the minimum evaluation for each player and
the maximum sum of player evaluations is known) then we
can perform immediate and shallow pruning. We will not
reproduce the proofs here because, with the exception of
the evaluation transformation, they are identical to those
for Max-n [16].

As discussed by Sturtevant and Korf [16], the Paranoid
algorithm allows for deep pruning by reducing the game to
two players, the principle player and a coalition of attackers
cooperating against the principle player. Therefore, in addi-
tion to immediate and shallow pruning, we are also able to
take advantage of alpha-beta style pruning when the social-
range matrix meets the criteria of the Paranoid matrix as
presented in Property 2.

Examining the Paranoid matrix, we see that reducing the
game to a two-player game really means that only a single
column of the matrix is non-zero. In other words, if col-
umn i is the non-zero column then every player’s perceived



utility is oriented around either maximizing or minimizing
player i’s utility (referred to as cooperating and attacking
players, respectively). These players would be max and min
respectively on their turns in the corresponding two-player
game tree, which in turn makes alpha-beta pruning possible
[16]. This means that any situation where the social-range
matrix has only one non-zero column can be deep-pruned us-
ing alpha-beta, not just when there is one cooperating player
and n− 1 attacking players as is the case of Paranoid.

4.3 Convergence to Max-n and Paranoid
SOS does not always produce different results than Max-

n or Paranoid. For example, properties 1 and 2 mention
that when the social orientations match the underlying as-
sumptions of either algorithm then the behavior will coincide
with the corresponding algorithm. This section expands this
concept, using features of the evaluation function as well as
information about players’ social orientations to determine
when the social orientations can have an effect on the algo-
rithm performance and when they can be ignored since the
performance converges to that of Max-n or Paranoid.

The identity matrix is not the only matrix that will result
in identical behavior to Max-n. Theorem 2 shows that scal-
ing the diagonal of the identity matrix by any positive, real
number will also produce the same behavior as Max-n.

Theorem 2. Given a perfect-information, n-player game
and the players’ social orientations in the form of a social-
range matrix, c, the equilibrium strategies computed by SOS
and Max-n are identical given that c is the zero matrix except
for a positive, non-zero diagonal.

Proof. Assume that SOS does select a different strategy
than Max-n. The strategies discovered by SOS and Max-n
will differ if there is at least one decision in the game tree
where Max-n selects a state s1 and SOS selects state s2 on
player i’s turn. For Max-n to select s1 over s2 means that
the i’th component of the evaluation for s1 must be greater
than that of the evaluation for s2. In other words, eval(s1) =
{e1, ..., ei, ..., eN} and eval(s2) = {e′1, ..., ei−ε, ..., e′N}, where
ε is a non-zero, positive real-number such that ei − ε is still
a valid evaluation. Letting cii be player i’s entry in the
i’th row of the social-range matrix, SOS will choose s2 and
produce a different strategy set if:

(ei − ε)cii ≥ (ei)cii

which reduces to

cii ≤ 0.

This contradicts the non-zero and positive diagonal.

In addition to the inter-player relationships, having knowl-
edge of the evaluation function can also provide insights into
the performance of a search algorithm. In general, an eval-
uation function with finer granularity (number of possible
values) is better as more values means that the strength of
states can be estimated more accurately. Also, Nau et al.
[12] recently showed that evaluation functions with a finer
granularity are less likely to exhibit pathological behavior
during Minimax search. We use a granularity-based model
of the evaluation function as well to analyze how the rela-
tionship between social orientations and evaluation function
granularity can impact the behavior of SOS. The function
we consider is of the form:

eval : state→ 〈e1, e2, . . . , en〉 | ∀i, ei ∈ {0, δ, 2δ, . . . ,max eval},

where max eval is the maximum possible value for any sin-
gle element of the evaluation vector and δ represents the dis-
tance between consecutive values of the evaluations. With
max eval fixed, finer grained evaluations can be achieved by
reducing δ and coarser-grained evaluations can be achieved
by increasing δ.

Theorem 3. Given a perfect-information, n-player game,
the players’ social orientations in the form of a social-range
matrix, c, and an evaluation function,
eval : state→ 〈e1, e2, . . . , en〉 | ∀i, ei ∈ {0, δ, 2δ, . . . ,max eval},
the equilibrium strategies computed by SOS are guaranteed to
be identical to those of Max-n if, for each player i:

δ >

maxe′j

N∑
j 6=i

cij ∗ e′j −minej

N∑
j 6=i

cij ∗ ej

cii
.

Proof. Consider the turns in the game tree for an in-
dividual player. By definition, on player i’s turn, Max-n
always selects the state that maximizes the i’th component
of the utility vector. This means that given that Max-n
chooses s1 over s2 then we know their evaluations must be
of the form
eval(s1) = {e1, . . . , ei, . . . , eN} and eval(s2) = {e′1, . . . , ei −
xδ, . . . , e′N} where x is a positive integer such that ei−xδ is
still a valid evaluation. SOS will incorporate the true social
orientation of player i and make the same decision if:

(ei − xδ)cii +

N∑
j 6=i

cij ∗ e′j < ciiei +

N∑
j 6=i

cij ∗ ej .

We can guarantee that this condition is true for all possible
evaluation vector pairs e and e′ if e′ is chosen so as to maxi-
mize the summation on the left-hand side and e is chosen so
as to minimize the summation on the right-hand side. This
gives us:

(ei − xδ)cii + max
e′j

N∑
j 6=i

cij ∗ e′j < ciiei + min
ej

N∑
j 6=i

cij ∗ ej .

Simplifying this equation we get the result displayed in The-
orem 3 which must hold for all players for SOS to select the
same move at every level of the search tree as Max-n.

Intuitively, the relationship presented in Theorem 3 states
that with coarser evaluation functions, the social orienta-
tions can deviate further from the assumed relationship model
of Max-n and yet the behavior of Max-n and SOS will con-
verge. This is significant because the result that finer-grained
evaluation functions make social orientations have greater ef-
fect further increases the appeal of modeling and using them
with SOS.

Recognizing situations where the behavior of SOS will
converge to that of Paranoid is also important. Given the
social-range matrix, if we know that SOS will behave exactly
as a Paranoid then the social-range matrix can be approxi-
mated by the Paranoid matrix and SOS gains the advantage
of deep-pruning without sacrificing anything by ignoring the
social relationships. Theorem 4 formally describes the rela-
tionship between the granularity of the evaluation function
and paranoid matrix.



Theorem 4. Given a perfect-information, n-player game,
the players’ social orientations in the form of a social-range
matrix, c, and an evaluation function,
eval : state→ 〈e1, e2, . . . , en〉 | ∀i, ei ∈ {0, δ, 2δ, . . . ,max eval},
the equilibrium strategies computed by SOS are guaranteed to
be the same as those of Paranoid if, for the principle player
player i:

δ >

maxe′j

N∑
j 6=i

cij ∗ e′j −minej

N∑
j 6=i

cij ∗ ej

cii
,

and for every other player k:

δ >

maxej

N∑
j 6=i

ckj ∗ ej −mine′j

N∑
j 6=i

ckj ∗ e′j

cki
.

Proof. Similar to Theorem 3, we must show the con-
ditions under which SOS is guaranteed to make the same
choices as Paranoid during propagation. The justification
for the principle player is identical to the one already shown
in the proof of Theorem 3. The difference is that all other
players are attacking and trying to minimize the principle
player’s score whereas in Max-n they are assumed to be max-
imizing their own utility. Therefore, given that player i is
the principle player and that Paranoid chooses s1 over s2 on
player k’s turn then we know their evaluations must be of
the form
eval(s1) = {e1, . . . , ei, . . . , eN} and eval(s2) = {e′1, . . . , ei +
xδ, . . . , e′N} where x is a positive integer such that ei +xδ is
still a valid evaluation. SOS will incorporate the true social
orientation of player i and make the same decision if:

(ei + xδ)cki +

N∑
j 6=i

ckj ∗ e′j > ckiei +

N∑
j 6=i

ckj ∗ ej .

Now, we can guarantee that this condition is true for all
possible evaluation vector pairs e and e′ if e′ is chosen so as
to minimize the summation on the left-hand side and e is
chosen so as to maximize the summation on the right-hand
side. This leaves us with:

(ei + xδ)cki + min
e′j

N∑
j 6=i

ckj ∗ e′j > ckiei + max
ej

N∑
j 6=i

ckj ∗ ej .

This reduces to the equation in Theorem 4.

5. EXPERIMENTAL EVALUATION
In this section we provide a discussion of the experimen-

tal analysis we performed on our algorithm. All experiments
are performed on a four-player version of the game Quoridor.
We show that by explicitly modeling social preferences, SOS
gains a siginificant advantage over algorithms that make sim-
plifying assumptions. We also show that our approach to
learning the social-range matrix, although simple, is quite
effective.

5.1 Game description
Quoridor2 is a full-information board game for 2 or 4 play-

ers, that is played on a 9x9 grid (see figure 5). In the 4 player

2More information on that game can be found of the cre-
ator’s website: http://www.gigamic.com/

Figure 5: Quoridor board game

version, each player starts with five walls and a single pawn
that is located at the middle grid location on one of the
four sides of the square board. The objective is to be the
first player to reach any of the grid locations on the opposite
side of the board. The players move in clock-wise, sequential
order, and at each turn, the player chooses to either:

1. move his pawn horizontally or vertically to one of the
neighboring squares.

2. place a wall piece on the board to facilitate his progress
or to impede that of his opponent.

The walls occupy the width of two grid spaces and can
be used to block pathways around the board as players can-
not jump over them and must navigate around them. When
placing a wall, an additional rule dictates that each player
has to have at least one free path to a destination on the op-
posing side of the board. That prevents situations in which
players team-up to enclose a pawn inside 4 walls. Walls are
limited and useful resource and they cannot be moved or
picked up after they are placed on the board.

Quoridor is an abstract strategic game which bears some
resemblance of chess and checkers. The state-space com-
plexity of Quoridor is composed by the number of ways to
place the pawns multiplied by the number of ways to place
the walls, minus the number of illegal positions. Such esti-
mation was computed in [5] for the two-player version of the
game and as such places the game in the middle between
Backgammon and Chess in terms of the size of the search
space. Obviously that search space increases dramatically
when playing the 4-player version of the game.

5.2 Experimental Design and Results
We implemented a game environment in C++. The game

board was represented as a graph and Dijkstra’s algorithm
was used to check the legality of wall positions (i.e., to check
that there exist a path to the goal). We used a simple and
straightforward heuristic evaluation function that sum the
total distance of each of the players to the goal. Each player
seeks to minimize his own distance while maximizing the op-
ponents’ distances. Moreover, to cope with the large branch-
ing factor of the game, we limited the possible locations that
a wall can be placed to a fixed radius around the pawns.

In the first set of experiments, we played the Max-n, Para-
noid, and SOS algorithms against a set of random SOS play-
ers that looked only one move ahead. In the initialized stage
of each game we first randomized the social orientation of the
three random players, as well as the position of the search-
based player (as playing order might effect the result). After
the initialization stage, in order to provide a robust compari-
son, each player was played against the same random setting
from the same position.
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Figure 6: Results of playing Max-n, Paranoid, and
SOS players in 500 Quoridor games against 3 ran-
dom social-preference playing opponents. Two dif-
ferent SOS players were examined, one with abso-
lute knowledge of the social-range matrix and an-
other using naive learning method to approximate
it.
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Figure 7: Results of playing Max-n and our SOS
player in 500 Quoridor games against two random-
preference players. The SOS player had absolute
knowledge of the social-range matrix when playing.

We played both versions of the SOS algorithm, in the first
we assume our Socially-oriented player had absolute knowl-
edge of the social-range matrix in this setting. The second
version was the SOS with learning (k = 5), where the initial
social matrix values were initialized to the Max-n matrix,
presented in property 1, and the algorithm adapted these
values during play. Figure 6 shows that both the versions
of the SOS player significantly outperforms both Max-n and
Paranoid after depth 2 (P < 0.01 in a 2-tail Z-test). In-
terestingly, our simple learning rule performed in a manner
that is completely comparable to the SOS algorithm with
the full and accurate social information.

In the second set of experiments, we replaced one of the
random-preference players with a Max-n or paranoid player
in order to evaluate their head-to-head performance. Thus
prior to each game we randomized two random players and
then plugged in an SOS player as third player. The fourth
player was Max-n in the first set of experiments and Para-
noid in the secondset. We ran 500 games for each depth.
Figures 7 and 8 show that the non-learning algorithm, still
significantly outperforms Max-n and Paranoid when com-
peting directly against them (P < 0.01). Although both
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Figure 8: Results of playing Paranoid and our SOS
player in 500 Quoridor games against two random-
preference players. The SOS player had absolute
knowledge of the social-range matrix when playing.
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Figure 9: Results of playing Max-n and our SOS
player in 500 Quoridor games against two random-
preference players. The SOS player learned the
social-range matrix with our naive learning algo-
rithm and a history of size 5.

Max-n and Paranoid performance decreases, the paranoid
assumption seems to have a greater effect on performance
than the rationality assumption of Max-n.

In the last set of experiments we reproduced the same
setting as in the second set, but this time used the SOS al-
gorithm with learning, where k was set to 5. That is, the
algorithm started each game with a random social matrix
and used the suggested learning rule to adapt the values
during game play. In figures 9 and 10 we can see that the
online learning version of the SOS algorithm also do sig-
nificantly better than Max-n and Paranoid in most cases
(P < 0.01), excluding depth 4 against Max-n, and depth 3
against Paranoid that are not statistically significant.

6. CONCLUSION
In this paper we addressed a fundamental question for

search algorithms for extensive-form, multi-player games:
how to describe and reason about inter-player relationships
during game play? Our approach was to model the play-
ers’ interpersonal relationships by incorporating ideas from
Social Value Orientation theory into game-tree search.

Our Socially Oriented Search (SOS) algorithm models re-
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Figure 10: Results of playing Paranoid and our SOS
player in 500 Quoridor games against two random-
preference players. The SOS player learned the
social-range matrix with our naive learning algo-
rithm and a history of size 5.

lationships with a social-range matrix and uses it to compute
the perceived utilities for each player and guide the search
procedure. Our analytical results show that the algorithm
can mimic the paranoid and Max-n behaviors by setting the
social-matrix elements to specific values, and that the strat-
egy computed by the SOS algorithm is a perceived equilib-
rium. Moreover, our analytical results relate the granular-
ity of the evaluation function to the expected difference in
strategies that will be selected by the SOS algorithm and
Max-n and Paranoid. This relationship shows that using
coarser evaluation functions reduces the ability to recognize
social orientations.

We incorporated a simple learning algorithm into SOS
to learn the social orientations of the players as the game
progresses. The dynamic learning rule uses that the last
k actions of each player to adapt its social-matrix during
game play. In our evaluations of both the learning and non-
learning versions of the algorithm using the Quoridor game,
we found that in most cases they produced significantly bet-
ter play than the Max-n and Paranoid algorithms.

For future work, we plan to evaluate the SOS algorithm
in multi-player games that have both probabilistic elements
(e.g., Risk) and incomplete information (e.g., Hearts). We
also plan to evaluate the learning rule against players that
change their orientations during game, as well as experi-
menting with techniques for learning the value of k.
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