
Automating DAML-S Web Services

Composition Using SHOP2

Dan Wu1, Bijan Parsia2, Evren Sirin1, James Hendler1, and Dana Nau1

1 University of Maryland,
Computer Science Department,
College Park MD 20742, USA

{dandan, evren, hendler, nau}@cs.umd.edu
2 University of Maryland, MIND Lab, 8400 Baltimore Ave,

College Park MD 20742, USA
bparsia@isr.umd.edu

Abstract. The DAML-S Process Model is designed to support the ap-
plication of AI planning techniques to the automated composition of
Web services. SHOP2 is an Hierarchical Task Network (HTN) planner
well-suited for working with the Process Model. We have proven the cor-
respondence between the semantics of SHOP2 and the situation calculus
semantics of the Process Model. We have also implemented a system
which soundly and completely plans over sets of DAML-S descriptions
using a SHOP2 planner, and then executes the resulting plans over the
Web. We discuss the challenges and difficulties of using SHOP2 in the
information-rich and human-oriented context of Web services.

1 Introduction

As Web services – that is, programs and devices accessible via standard Web
protocols – proliferate, it becomes more difficult to find the specific service that
can perform the task at hand. It becomes even more difficult when there is no
single service capable of performing that task, but there are combinations of
existing services that could. Sufficiently rich, machine-readable descriptions of
Web services would allow the creation of novel, compound Web services with
little or no direct human intervention. Semantic Web languages, such as the
Web Ontology Language (OWL) [1] or DAML+OIL[2], provide the foundations
for such sufficiently rich descriptions.

In May 2001, the DARPA Agent Markup Language (DAML) Program re-
leased the first version of DAML-S [4], a set of ontologies for describing the
properties and capabilities of Web services. The purpose of DAML-S markup of
Web services is to support effective automation of various Web services related
activities including service discovery, composition, execution, and monitering.

For our work, we are motivated by issues related to automated Web services
composition. One part of DAML-S, namely its process ontology, provides a stan-
dard language for describing the composition of Web services. Several metaphors
have been used in developing this semantic markup of Web services including



viewing Web services as primitive and complex actions with preconditions and
effects.

Given a representation of services as actions, we can exploit AI planning
techniques for automatic service composition by treating service composition as
a planning problem. Ideally, given a user’s objective and a set of Web services,
a planner would find a collection of Web services requests that achieves the
objective. We believe that HTN planning is especially promising for this purpose,
because the concept of task decomposition in HTN planning is very similar to
the concept of composite process decomposition in DAML-S process ontology.
In this paper, we explore how to use the SHOP2 HTN planning system[5, 6] to
do automatic composition of DAML-S Web services.

This paper is organized in the following manner. In Section 2, we describe a
sample scenario for our research. In Section 3, we give the background knowl-
edge about DAML-S process ontology and SHOP2. In Section 4, we present our
approach for automatic Web services composition. In Section 5, we describe the
implementation. In Section 6, we summarize some related work. And finally, in
Section 7, we conclude our work and present some future research directions.
Throughout this paper, we use the example we described in Section 2 to illus-
trate our approach. But our work is designed to be domain-independent and is
not restricted to only this example.

2 Motivating Example

The example we describe here is based loosely on a scenario described in the
Scientific American article about the Semantic Web [7]. Suppose Bill and Joan’s
mother goes to her physician complaining of pain and tingling in her legs and
the physician proposes the following sequence of activities:

– A prescription for Relafen, an anti-inflammatory drug;
– An MRI scan and an electromyography, both of these are diagnostic tests to

try to determine possible causes for the symptoms;
– A follow-up appointment with the physician to discuss the results of the

diagnostic tests.

Bill and Joan need to do the following things for their mother:

– Fill the prescription at a pharmacy;
– Make appointments to take their mother to the two treatments;
– Make an appointment for the doctor’s follow-up meeting.

For the three appointment times, there are the following preferences and
constraints:

– For the two treatments:
• Bill and Joan would prefer two appointment times that are close together

scheduled at one or two nearby places, so that only one person needs to
drive, and that person drives only once.



• Otherwise, they would prefer two appointment times on different days,
so that each person needs to drive once.

– The appointment time for doctor’s follow up check must be later that the
appointment times for the two treatments.

– An appointment time must fit the schedule of the person that will drive to
the appointment.

Assume that there are the requisite Web services for finding appointment
times and making appointments at the relevant clinics, Bill and Joan could use
those services to schedule their mother’s appointments. It would be difficult for
Bill and Joan to finish their task with an optimal plan by consulting the Web
services manually, because:

– They may have to try every available pair of close appointment times at any
two nearby treatment centers in order to find one that fits their schedules.

– Furthermore, if they first choose an appointment time for one treatment and
then find they have to use this same time for the other treatment, then they
will have to reschedule the first appointment.

Instead, suppose we use the DAML-S process ontology to encode a description
of how to compose Web services for tasks such as the one faced by Bill and
Joan. If we have an agent technology which can find an execution path based on
this predefined task decompositions, then we can perform Bill and Joan’s Web
services composition task automatically.

3 Background

3.1 DAML-S

In the DAML-S process ontology, services are modelled as processes. There are
three kinds of processes: atomic processes, composite processes and simple pro-
cesses. In DAML-S, an atomic process is a model of a “single step” (from the
point of view of the client) Web service that is directly executed to accomplish
some task. Executing an atomic process consists of calling the corresponding
Web-accessible program with its input parameters bound to particular values.
A composite process represents a compound Web service, i.e., it can be de-
composed into other atomic or composite processes. The decomposition of a
composite process is specified through its control constructs. The set of control
constructs includes: Sequence, Unordered, Choice, If-Then-Else, Iterate,
Repeat-Until, Repeat-While, Split and Split+Join. A simple process is an
abstraction of an atomic or composite process (or of a possibly empty set of
these). It is not considered to be directly executable, but provides an abstract
view of an action. Like atomic processes, simple processes are, themselves, single-
step, but unlike atomic processes, it’s possible to peek at the internal structure of
a simple process (if available) or to replace the simple process with an expansion
of it.



In the process ontology, each process has several properties, including, (op-
tional) inputs, preconditions, (conditional)outputs and (conditional) effects. pre-
conditions specify things that must be true of the world in order for an agent
to execute a service. effects characterize the physical side-effects that execution
of a Web-service has on the world. inputs and outputs correspond to knowledge
preconditions and effects. That is, necessary states of our knowledge base before
execution and modifications to our knowledge base as a result of the execution.
Note that not all services have physical side-effects, in particular, services that
are strictly information-providing do not. Here is part of the DAML-S definition
of an atomic process called PharmacyLocator used in our treatment scheduling
example:

<daml:Class rdf:ID="PharmacyLocator">

<rdfs:subClassOf rdf:resource=

"http://www.daml.org/services/daml-s/0.7/Process.daml

#AtomicProcess"/>

</daml:Class>

<rdf:Property rdf:ID="LocationPreference">

<rdfs:subPropertyOf rdf:resource=

"http://www.daml.org/services/daml-s/0.7/Process.daml

#input"/>

<rdfs:domain rdf:resource="#PharmacyLocator"/>

<rdfs:range rdf:resource= "http://www.mindswap.org/services/

shop2/concepts.daml#LocationPreference"/>

</rdf:Property>

The process model of a compound Web service includes the designation of the
top-level composite process corresponding to that service plus a decomposition
of that composite process into a structured collection of (perhaps further de-
composed) subprocesses.3 Web services composition is sometimes thought of as
the process of generating a (potentially) complexly structured composite process
description which is subsequently executed. On this model, composite processes
are the output of composition. In this paper, we take composite processes as in-
put to a planner, that is, as descriptions of how to compose a sequence of single
step actions. Thus, for us, the goal of automated Web services composition is
find a collection of atomic processes instances which form an execution path for
some top-level composite process.

3.2 SHOP2

SHOP2 is a domain-independent HTN planning system, which won one of the
top four awards out of the 14 planners that competed in the 2002 International

3 Here, we assume that a compound Web service always has a complete decomposition
bottoming out in atomic processes. Such a composite process is exectuable.



Planning Competition. HTN planning is an AI planning methodology that cre-
ates plan by task decomposition. This is a process in which the planning system
decomposes tasks into smaller and smaller subtasks, until primitive tasks are
found that can be performed directly.

One difference between SHOP2 and most other HTN planning systems is
that SHOP2 plans for tasks in the same order that they will later be executed.
Planning for tasks in the order that those task will be performed makes it possible
to know the current state of the world at each step in the planning process, which
makes it possible for SHOP2’s precondition-evaluation mechanism to incorporate
significant inferencing and reasoning power, including the ability to call external
programs. This makes SHOP2 ideal as a basis for integrating planning with
external information sources, including Web based ones.

In order to do planning in a given planning domain, SHOP2 needs to be
given the knowledge about that domain. A SHOP2 knowledge base consists of
operators and methods (plus, various non-action related facts and axioms). Each
operator is a description of what needs to be done to accomplish some primitive
task, and each method tells how to decompose some compound task into partially
ordered subtasks.

Definition 1 (Operator) A SHOP2 operator is an expression of the form (h(−→v )
Pre Del Add) where

– h(−→v ) represents a primitive task with a list of input parameters −→v
– Pre represents the operator’s preconditions

– Del represents the operator’s delete list which includes the list of things that
will become false after operator’s execution.

– Add represents the operator’s add list which includes the list of things that
will become true after operator’s execution.

Definition 2 (Method) A SHOP2 method is an expression of the form (h(−→v ) Pre
T ) where

– h(−→v ) represents a compound task with a list of input parameters −→v
– Pre represents the method’s preconditions

– T represents a partially ordered list of subtasks which consist the decompo-
sition of h(−→v ).

In addition to the usual logical atoms, preconditions of SHOP2 methods
and operators may also contain calls to external programs and assignments to
variables. These are useful for integrating planning with queries to information
sources on the Web. For example, the following expression

(assign v (call f t1 t2 . . . tn))

will bind the variable symbol v with the result of calling external procedure f

with arguments t1 t2 . . . tn.



Definition 3 (Planning Problem) A planning problem for SHOP2 is a triple (S,
T , D), where S is initial state, T is a task list, and D is a domain description. By
taking (S, T , D) as input, SHOP2 will return a plan P = (p1p2...pn), a sequence
of instantiated operators that will achieve T from S in D.

4 From DAML-S to SHOP2

The execution of an atomic process is a call to the corresponding web accessible
program with its input parameters instantiated.4 The execution of a composite
process ultimately consists in the execution of a collection of specific atomic
processes. Instead of directly executing the composite process as a program on a
DAML-S interpreter, we can treat the composite process as specification for how
to compose a sequence of atomic process executions. In this section, we will show
how to encode a composite process composition problem as a SHOP2 planning
problem, so SHOP2 can be used with DAML-S Web services descriptions to
automatically generate a composition of Web services calls.

4.1 Encoding DAML-S Process Models as SHOP2 Domains

In this section, we introduce an algorithm for translating a collection of DAML-
S process models K into a SHOP2 domain D. In our translation, we make the
following assumption:

Assumption 1 Given a collection of DAML-S process models K = {K1, K2, . . . , Kn},
we assume:

– All atomic processes defined in K can either have effects or outputs, but
not both. According to the situation calculus based semantics of DAML-S[8],
outputs characterize knowledge effects of executing Web services and effects
characterize physical effects for executing Web services. An atomic process
with only outputs models an strictly information-providing Web service. And
an atomic process with only effects models an world-altering Web service. In
general, we don’t want to actually affect the world during planning. However,
we do want to gather certain information from information-providing Web
services, which entails executing them at plan time. To enable information
gathering from Web services at planning time, we require that the atomic
processes to be either exclusively information-providing or exclusively world-
altering.

– There is no composite process in K with DAML-S’s Split and Split+Join

control constructs. SHOP2 currently doesn’t handle concurrency. Therefore
in our translation, we only consider DAML-S process models that have no
composite process using Split and Split+Join control construct. We also
assume only a non-concurrent interpretation of Unordered (as permitted

4 Here, we assume that before the execution of an atomic process the preconditions
for executing the atomic process have been satisfied.



by DAML-S). We intend to address how to extend SHOP2 to handle con-
currency in the future work.

We encode a collection of DAML-S process definitions K into a SHOP2
domain D as follows:

– For each atomic process with effects in K, we encode it as a SHOP2 operator
that simulates the effects of the world-altering Web service.

– For each atomic process with output in K, we encode it as a SHOP2 operator
whose precondition include a call to the information-providing Web service.

– For each simple or composite process in K, we encode it as one or more
SHOP2 methods. These methods will tell how to decompose an HTN task
that represents the simple or composite process.

The following algorithm shows how to translate a DAML-S definition of an
atomic process with only effects into a SHOP2 operator.5

TRANSLATE-ATOMIC-PROCESS-EFFECT(Q)
Input: a DAML-S definition Q of an atomic process A with only effects.
Output: a SHOP2 operator O.
Procedure:

1. −→v = the list of input parameters defined for A in Q

2. Pre = conjunct of all preconditions of A, as defined in Q

3. Add = collection of all positive effects of A, as defined in Q

4. Del = collection of all negative effects of A, as defined in Q

5. Return O = (A(−→v ) Pre Del Add)

The above algorithm translates each atomic DAML-S definition into a SHOP2
operator that will simulate the effects of a world-altering Web service by chang-
ing its local state via an operator. Such Web services will never be executed at
planning time, for obvious reasons.

The following algorithm shows how to translate a DAML-S definition of an
atomic process with only outputs into a SHOP2 operator.

TRANSLATE-ATOMIC-PROCESS-OUTPUT(Q)
Input: a DAML-S definition Q of an atomic process A with only outputs.
Output: a SHOP2 operator O.
Procedure:

1. −→v = the list of input parameters defined for Aas in Q

2. Pre = a conjunct of all the preconditions of A, as defined in Q, plus one more
precondition of the form (assign y (call Monitor A −→v )), where Monitor is a
procedure which will handle SHOP2’s call to Web services

3. Add = y

4. Del = ∅

5 Conditional effects can be easily encoded into SHOP2 operators. Here, for simplicity,
we assume that effects (and outputs) are not conditional.



5. Return O = (A(−→v ) Pre Del Add)

The above algorithm translates each atomic DAML-S definition into a SHOP2
operator that will call the information-providing Web service in its precondi-
tion. In this way, the information-providing web service is executed during the
planning process. The operator for these atomic processes are entirely “book-
keeping”, thus none of these operators will appear in the final plan.

The following algorithm shows how to translate a DAML-S definition of a
simple process into SHOP2 method(s).

TRANSLATE-SIMPLE-PROCESS(Q)
Input: a DAML-S definition Q of a simple process S.
Output: a collection of SHOP2 methods M .
Procedure:

1. −→v = the list of input parameters defined for Sas in Q

2. Pre = conjunct of all preconditions of S as defined in Q

3. (b1, . . . , bm) = the list of atomic and composite processes that realizes or
collapse into S as defined in Q.

4. for i = 1, . . . , m
– Mi = (S(−→v ) Pre bi)

5. return M ={M1, . . . , Mm}

The following algorithm shows how to translates a DAML-S definition of a
composite process with Sequence control construct into a SHOP2 method.

TRANSLATE-Sequence-PROCESS(Q)
Input: a DAML-S definition Q of a composite process C with Sequence control

construct.
Output: a SHOP2 method M .
Procedure:

1. −→v = the list of input parameters defined for Cas in Q

2. Pre = conjunct of all preconditions of C as defined in Q

3. B = Sequence control construct of C as defined in Q

4. (b1, . . . , bm) = the sequence of component processes of B as defined in Q

5. T = ordered task list of (b1, . . . bm)
6. Return M = (C(−→v ) Pre T )

The algorithms for translating composite processes with other control con-
structs such as Unordered, Choice, If-Then-Else, Iterate, Repeat-Until
and Repeat-While control constructs are similar to the one for Sequence, and
so we omit the details here.

To keep the above pseudocode simple, we did not specify the recursive trans-
lations within a composite process. E.g., What happens if we have a Sequence
of If-Then-Else or further nestings? Our way for handling this problem is to
treat each control construct within a composite process as a composite process.
For above example, in our translation, we will have a SHOP2 method for the



composite process with Sequence construct construct and a method for each
nested If-Then-Else control construct.

Also we did not explicitly describe how our algorithm handles composite pro-
cesses with outputs. In DAML-S, one can specify that an output of a composite
process is equal to an output of one of its subprocesses whenever the composite
process is instantiated. Also, for a composite process with a Sequence con-
trol construct, one can specify that the output of one subprocess is an input to
another subprocesses. SHOP2 does not have the concept of an output, but we
handle this problem by assigning a unique number to each instance of a SHOP2
domain’s methods and operators. There is a, predicate (OutputInstanceValue),
which indicates for each method or operator instance Instance the value Value of
the particular output Output.

4.2 Encoding DAML-S Web Services Composition Problem as
SHOP2 Planning Problem

A formal semantics has been given for DAML-S service description in terms of
an action theory based on the situation calculus [8] [9]. The following definition
of a DAML-S service composition problem follows naturally from this semantics.

Definition 3 (DAML-S Service Composition) Let K = {K1, K2, . . . , Km} be a
collection of DAML-S process models satisfying Assumption 1 (from section 4.1),
T be a top level composite process defined in K and −→c be a list of input parame-
ters instance for T , S0 be the initial state,and P = (p1, p2, . . . , pn) be a sequence
of atomic processes defined in K with input parameters instance −→c1 ,−→c2 , . . . ,−→cn

respectively. Then P is a composition for T (−→c ) with respect to K in S0 iff in
action theory, we can prove:

Σ ` (∃s)(Do(T (−→c ), S0, s))

with p1(−→c1), p2(−→c2), . . . , pn(−→cn) as an instance of s. Here

– Σ is the axiomatization of K and S0 as defined in action theory.

– T (−→c ) is the complex action defined for T as in action theory with input
parameters instance −→c

– p1(−→c1 ), p2(−→c2), . . . , pn(−→cn) are the primitive actions defined for atomic pro-
cesses p1, p2, . . . , pn as in action theory with input parameters instances
−→c1 ,−→c2 , . . . ,−→cn.

– Do is an additional extralogical symbol defined in situation calculus and
action theory. Intuitively, Do(δ, s, s′) will macro-expand into a situation cal-
culus formula that says that it is possible to reach situation s’ from situation
s by executing a sequence of actions specified by δ.

We first state a theorem about a special case.



Theorem 1 Let K = {K1, K2, . . . , Kn} be a collection of DAML-S process models
satisfying assumption 1 but also no atomic processes with outputs, T be a top
level composite process defined in K, −→c be a list of input parameters instances
for T , and S0 be the initial state. Let P = (p1, p2, . . . , pn) be a sequence of atomic
processes defined in K with input parameters instance −→c1 ,−→c2 , . . . ,−→cn respectively.
Let D = TRANSLATE-PROCESS-MODEL(K). Then P is a composition for
T (−→c ) with respect to K in S0 iff P is a plan for planning problem (S0, T(−→c ),
D).
Outline of Proof. We have proven that a service composition problem and
its corresponding SHOP2 planning problem map to the same theorem proving
problem in action theory.

We now generalize the above theorem to remove the restriction of no atomic
processes with the outputs.

As shown in the TRANSLATE-ATOMIC-PROCESS-OUTPUT proce-
dure earlier, the precondition for the operator translated from an atomic process
with output, SHOP2 will call a Monitor procedure to handle SHOP2’s call to
external information-providing Web services. This Monitor will monitor the cur-
rent state of SHOP2, so that information can only be added into the current
state if it has not been changed by the planner. We assume here that informa-
tion will not be changed by other agents during SHOP2 planning time and we
will address this problem in the future work.

Soundness and completeness proofs of classical planners assume that the
preconditions can be evaluated relative to the current state. However, if a pre-
condition involves call to the external program, this is no longer the case. We
have to guarantee that all programs calls to be

– executable (with all parameters grounded)
– terminable (with finite computation)
– repeatable (with same result for the same call)

to ensure that the planner is sound and complete.
Given the dataflow model of DAML-S, no atomic process is, in fact, exe-

cuted unless all its necessary inputs are bound, we know that when we call an
information-providing service, all of its parameters must be grounded. If we can
assume that information provided by all Web services will not change during
SHOP2 planning time and all web services invocations are terminable, then we
can establish the soundness and completeness proof of SHOP2.

Theorem 2 Let K = {K1, K2, . . . , Kn} be a collection of DAML-S process
models satisfying assumption in Section 4.1, T be a top level composite pro-
cess defined in K and −→c be a list of input parameters instance for T , S0 be
the initial state. Ka = K - {atomic processes with outputs in K} and P be
a sequence of atomic processes defined in K with input parameters instance
−→c1 ,−→c2 , . . . ,−→cn respectively. Let D = TRANSLATE-PROCESS-MODEL(K).
Da = TRANSLATE-PROCESS-MODEL(Ka). If every execution of the information-
providing Web services defined in K is guaranteed to terminate, then P is a plan
for planning problem (∅, T (−→c ), D) iff P is a plan for planning problem (S0,



T (−→c ), Da).
Outline of Proof. Because calls to the information-providing services are al-
ways terminable, information is always available whenever needed. Therefore,
SHOP2 will have the same planning process for two problems.

5 Implementation

To realize our agent technology, we started with an implementation of a DAML-S
to SHOP2 translator. This translator is a Java program that reads in a collection
of DAML-S process definitions files and outputs a SHOP2 domain file. As shown
in the translation algorithm in section 4.1, when planning for any problem in
this domain, SHOP2 will actually call the information-providing Web services to
collect information while maintaining the ability of backtrack by merely simulat-
ing the effect of world-altering Web services. The output of SHOP2 is a sequence
of world-altering Web services calls that can be subsequently executed.

We built a monitor which handles SHOP2’s calls to external information-
providing Web services during planning. We wrote a DAML-S Web services ex-
ecutor which communicates with SOAP based Web services described by DAML-
S groundings to WSDL descriptions of those Web services. Upon SHOP2’s re-
quest, the monitor will call this DAML-S Web services executor to execute the
corresponding Web service. Since the information-providing services are always
defined as atomic processes, the service is executed by invoking the WSDL ser-
vice in the grounding. The monitor also caches the responses of the information-
providing Web services to avoid invoking a Web service with same parameters
more than once during planning. This will save the network communication times
and improve planning efficiency, and establishes the repeatability condition re-
quired for proving SHOP2’s soundness and completeness. Also information can
only be added into the current state if it has not been changed by the planner.
We assume that the cached information will not be changed by other agents
during planning and we will generalize this in our future work.

We also built a SHOP2 to DAML-S plan converter, which will convert a the
plan produced by SHOP2 to DAML-S format which can be directly executed by
the DAML-S executor.

We ran our scenario from section 2 on this system. In doing so:

– Our system communicated with real Web services. Unfortunately, the current
Web services available on the Web have only WSDL descriptions without any
semantic markup. Therefore, we created DAML-S markup for the WSDL
decriptions of these online services and for some services it was also necessary
to create the WSDL descriptions since the service was only offered via filling a
form on a web page such as CVS Online Pharmacy Store. It was not possible
to use real services for some of the services either because none was available
as Web services, e.g. a doctor’s agent providing the patient’s prescription,
or it was infeasible to use a real Web service for the demo, e.g. making an
appointment with a doctor each time the program is executed. For these
services, we implemented Web services to simulate these functionalities.



– We built Web services that allow the access to user’s personal information
sources. For example, it is necessary to learn the user’s schedule to be able to
generate a plan for the example task in our demo. It is possible to get this in-
formation from the sources available on the user’s machine such as a Personal
Information Manager like Microsoft’s Outlook. We have implemented “local”
SOAP based services that will retrieve this kind of information. WSDL and
DAML-S descriptions are also generated for these local services so that they
can be composed and executed in the same way as other remotely available
services.
Finally, some information gathering services were implemented as direct Java
calls from SHOP2 over a Java/SHOP2 bridge. For example, we have a ser-
vice which asks the user for acceptable distances to the treatment center by
popping up a window on the user’s client to accept input. Changing the data
entered at this point will possibly yield a different plan to be generated al-
lowing the planner produce custom plans depending on personal preferences.

– We also encoded a description of how to compose Web services for tasks such
as the one faced by Bill and Joan in section 2 in DAML-S. The description
is given as a DAML-S composite process that is composed of several other
composite processes that are defined as sequence, choice or unordered pro-
cesses. This DAML-S description constitutes the top level composite process
described in Section 4.2 and is translated into a SHOP2 domain for planning.
We encode most of the constraints mentioned in section 2 as Web service
preconditions. Right now, there is no standard process modelling language
for specifying Web service preconditions. Therefore, we directly encode the
Web services preconditions in SHOP2 format.

To test the effectiveness of our approach, we have run SHOP2 on several
instances of the problem described in Section 2. These problem instances varied
from cases where it was easy to schedule satisfactory appointments to a case
in which no nearby treatment centers had treatment time slots that were close
together, so that Bill and Joan would both have to drive Mom for treatments
on separate days. In all of these cases, SHOP2 was easily able to find the best
possible solution. Fig. 1 shows a snapshot of some information collected during
SHOP2 planning process and a plan produced by SHOP2.

6 Related Work

McIlarith and Son [10] proposed an approach to building agent technology based
on the notion of generic procedures and customizing user constraints. They argue
that an augmented version of the logic programming language Golog provides
a natural formalism for programming Web services. These contributions are
realized in their development of the ConGolog interpreter which communicates
with Web services via the Open Agent Architecture (OAA) but the service and
procedure ontologies are written in first-order logic. Our system more directly
supports the use of existing Web services by being able to ground directly in the



Fig. 1. Example Running Result

existing WSDL services rather than creating a separate execution system for
semantically described services. Also, we suspect that their approach will not be
as efficient as an HTN planner.

Matskin and Mao [11] applies software synthesis and composition methods
to Web services composition. Their work is based on similarities between Web
service composition and component-based system development in software en-
gineering. They use DAML-S for service descriptions and adopt Structural Syn-
thesis Program (SSP) method for automated service composition. Service com-
position is based on the input-output information of services components and
requires little domain knowledge. This approach treats each service as an atomic
entity without inspecting the internal process model and therefore lacks the
ability to reason about different decompositions in a composite process.

RETSINA is an open multi-agent system that provides infrastructure for dif-
ferent types of deliberative, goal directed agents. RETSINA system includes a
planner [13] based on the HTN planning paradigm. The RETSINA planner also
extends HTN planning by adding interleaving of planning and execution which
basically allows the acions execute before a plan is completely formed, similar
to our approach. Paolucci et al. [13] also describes using RETSINA planner in
the context of creating autonomous Web services that can automatically inter-
act with each other. However, authors do not give details about how the HTN
planning is employed in the system. It is not clear whether DAML-S Process



Model was used or planning domain was given a priori to the planner agent. For
this reason, we cannot make a comparison with our approach.

7 Conclusion

In this paper, we have defined a translation from DAML-S process models to
the SHOP2 domains, and from DAML-S composition tasks to SHOP2 plan-
ning problems. We have described our implemented system which performs this
translation, uses an extended SHOP2 implementation to plan with and over
the translated domain, and then executes the resulting plans. In the process of
defining the translation and building the system, we observed that:

– In our current approach, the planner always executes output producing ac-
tions as it plans. While this is fine for many situations, it may not always
be appropriate. For example, the execution of some Web services may take
a very long time. It would be better if the planner could continue to plan
while waiting for this information.

– In our paper, we assume that all effects are physical. In complex situations,
there may be other changes, such as in the mental states of the agents in-
volved, that are not modelled. We will explore this problem in our future
work.

– There is a fundamental difference between exclusively information providing
and possibly world-altering atomic processes. We typically want to execute
information providing atomic processes at various points in the planning
process, while we never want to execute world-altering ones. Contrariwise,
at composition execution time, the primary interest is in the execution of
world-altering processes. Indeed, in our system we do not include any in-
formation providing processes in compositions. Furthermore, currently we
do not permit world-altering processes to be information providing, at least
in the sense that they must have no outputs. This simplification made the
system fairly easy to implement without substantial modification of SHOP2.
Mapping information-gathering processes to so-called “book-keeping” opera-
tors may be somewhat unaesthetic. It seems possible to encode them directly
as external code calls in preconditions for the processes that receive the in-
formation as input, or more generally as part of the axiomatic inferential
structure of the planner’s state, though this would probably require some
substantial dataflow analysis.

Information providing (whether exclusively so, or not) is and is likely to
be a significant fraction of the available and salient Web services. Many Web
contexts seem to be information rich but action poor. In such environments,
we’d want to reconsider the strict partition of services into exclusively in-
formation providing and output free. For example, world-altering services
with outputs might supply information needed to decide subsequent courses
of action. Clearly, such a service shouldn’t be executed at planning time,
which suggests that we will need to investigate generating conditional plans
by SHOP2 style HTN planning.



Conditional plans will also help eliminate the constraint on informa-
tion change during planning. Currently, both for theoretical and practical
reasons, we only execute an information providing process once during plan-
ning for any given input, and subsequently retrieve a cached result. Given
SHOPs speed, this is not that unreasonable a restriction for many cases, but
conditional plans would permit planning for various contingencies.

These considerations raise a host of issues regarding plan time vs. com-
position execution time execution of information providing processes, includ-
ing those of deciding which such processes to execute only during planning,
only during plan execution, and during both. Furthermore, in complex, long
running planning sessions, it might make sense to refresh the monitors cache
for certain services at intervals. Presumably, DAML-S descriptions will be
enriched to help support the requisite analysis. We intend to explore these
issues in future work.

– Compared the complexities raised above, composite processes raise no ad-
ditional or special problems — encoding them as SHOP2 methods seems
correct and straightforward, modulo the need to extend SHOP2 to handle
concurrency.

– Simple processes are the odd duck of the lot. Though various members of
the DAML-S coalition have suggested, in conversation, that simple processes
were intended to support HTN planning, we found them niether necessary,
nor convenient, nor useful. In part, their lack of a clear semantics, particu-
larly with regard to the relationship of their inputs, outpus, preconditions,
and effects to those of their corresponding atomic or composite processes.
Furthermore, while the language of the technical overview[3] suggests that a
given simple process can be a view of one atomic process or one composite
process, but not both, neither the langauge nor the ontology actually re-
quire this restriction. We speculated that this would make simple processes
useful for specifying a range of alternative composition paths, but it wasn’t
clear that this was really more convenient (for our purposes) than using the
Choice control construct.

8 Acknowledgments

This work was supported in part by Air Force Research Laboratory grant F30602-
00-2-0505.

References

1. Dean, M., Connolly, D., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness,
D.L., Patel-Schneider, P. F. and Stein, L. A.: Web Ontology Language (OWL)
Reference Version 1.0. Recent Trends and Developments. W3C Working Draft 12
November 2002, http://www.w3.org/TR/2002/WD-owl-ref-20021112/

2. Horrocks, I., van Harmelen, F., Patel-Schneider, P., Berners-Lee, T., Brick-
ley, D., Connoly, D., Dean, M., Decker, S., Fensel, D., Hayes, P., Heflin,J.,



Hendler, J., Lassila, O., McGuinness, D., and Stein, L. A.: DAML+OIL.
http://www.daml.org/2001/03/daml+oil-index.html (2001)

3. The DAML Services Coalition: DAML-S:Semantic Markup for Web Services. Tech-
nical Overview. http://www.daml.org/services/daml-s/0.7/daml-s.html (2002)

4. The DAML Services Coalition(Ankolekar, A., Burstein, M., Hobbs, J.R., Lassila, O.,
Martin, D. , McDermott, D., McIlraith, S.A., Narayanan, S., Paolucci, M., Payne,
T., Sycara, K.):DAML-S: Web Service Description for the Semantic Web. Proceed-
ings of the First International Semantic Web Conference (2002)

5. Nau, D., Munoz-Avila, H., Cao, Y., Lotem, A., Mitchell, S.:Total-Order Planning
with Partially Ordered Subtasks. Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence (2001)

6. Nau, D., Au, T., Ilghami,O., Kuter, U., Murdock, J. W., Wu, D., Yaman, F.: SHOP2:
An HTN Planning Environment. To appear in Journal of Artificial Intelligence
Research (2003)

7. Berners-Lee, T., Hendler, J., Lassila, O.:The Semantic Web. Scientific American
(2001)

8. Narayanan, S., McIlraith, S.: Simulation, Verification and Automated Composition
of Web Services. Proceedings of the Eleventh International World Wide Web Con-
ference, Honolulu, Hawaii (2002)

9. Reiter, R.: Knowledge In Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems, The MIT Press (2001)

10. McIlraith, S., Son, T.: Adapting Golog for Composition of Semantic Web Services.
Proceedings of the Eighth International Conference on Knowledge Representation
and Reasoning, Toulouse, France, (2002)

11. Matskin, M., Rao, J.: Value-Added Web Services Composition Using Automatic
Program Synthesis. Web Services, E-Business, and the Semantic Web, CAiSE 2002
International Workshop, WES 2002, Toronto, Canada, (2002)

12. Paolucci, M., Shehory, O., Sycara,K.: Interleaving planning and execution in a
multiagent team planning environment. Electronic Transactions of Artificial Intel-
ligence, (2001)

13. Paolucci, M., Sycara,K., Kawamura, T.: Delivering semantic web services. Tech-
nical Report CMU-RI-TR-02-28, Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, December 2002


