
Plan Databases: Model and Algebra

Fusun Yaman1, Sibel Adali2, Dana Nau1, Maria L. Sapino3, and V.S.
Subrahmanian1

1 University of Maryland, College Park MD,20705, USA
{fusun,nau,vs}@cs.umd.edu

2 Rensselaer Polytechnic Inst.,Troy, NY, 12180, USA
sibel@cs.rpi.edu

3 Università di Torino, C.So Svizzera, 185-10149,Torino, Italy
mlsapino@di.unito.it

Abstract. Despite the fact that thousands of applications manipulate
plans, there has been no work to date on managing large databases of
plans. In this paper, we first propose a formal model of plan databases.
We describe important notions of consistency and coherence for such
databases. We then propose a set of operators similar to the relational
algebra to query such databases of plans.

1 Introduction

Most of AI planning has focused on creating plans. However, the complemen-
tary problem of querying a collection of plans has not been studied. Querying
plans is of fundamental importance in today’s world. Shipping companies like
UPS and DHL create plans for each package they have to transport. Multiple
programs and humans need to query the resulting database of plans in order to
determine how to allocate packages to specific drivers, to identify choke areas
in the distribution network, and to determine which facilities to upgrade, etc.
Likewise, every commercial port creates detailed plans to route ships into the
port. Port officials need to determine which ships are on schedule, which ships
are off schedule, which ships may collide with one another (given that one of
them is off schedule) and so on. A similar application arises in the context of
air traffic control - prior to takeoff, every flight has a designated flight plan and
flight path. It is not uncommon for planes to be off schedule and/or off their
assigned path. In other words, the plane may not be at the assigned location
at the assigned time. Maintaining the integrity of air traffic corridors, especially
in heavily congested areas (e.g. near Frankfurt or London airport), is a major
challenge. Air traffic controllers need to be able to determine which flights are on
a collision course, which flights are not maintaining adequate separation, which
flights may intrude onto another flight’s airspace and when.

These are just three simple applications where we need the ability to query
collections of plans. We emphasize that in this paper, we are not interested in
creating plans, just in querying them. The long version of this paper discusses

Third International Symposium on Foundations of Information and Knowledge Systems (FoIKS) , 2004 



issues such as how to update databases of plans (which does involve some plan-
ning).

In this paper, we develop a formal model of a plan database. We then
describe two important properties of such databases - consistency and coher-
ence and present results that these properties are polynomially checkable. We
then present a relational-algebra style plan algebra to query plan databases. In
addition to the relational style operators, our algebra contains operators unique
to plan databases.4

2 Plan Database Model

In this section, we introduce the basic model of a plan database. The concept of
a plan is an adaptation of the notion of a plan in the well known PDDL planning
language [4].

Definition 1. A planspace, PS, is a finite set of relations. A planworld pw
over a planspace PS is a finite instance of each relation in PS.

We use the standard notion of a relational schema and domain of an attribute
when describing planspaces. There are certain special relations called numeric
relations.

Definition 2. A numeric relation in a planspace is a relation R(A1, . . . , An, V )
where 〈A1, . . . , An 〉 forms a primary key and V is of type real or integer.

Note that a numeric relation R(A1, . . . , An, V ) represents a function fR that
maps dom(A1) × . . . × dom(An) → dom(V ).

Example 1 (Package Example). A shipping company’s planspace may use the
following relations to describe truck locations, truck drivers, packages and valid
routes:

• at(object, location): specifies the location of drivers, trucks and package.,
• route(location1, location2): specifies that there is a viable route from location1
to location2.

• in(package, truck): specifies information about which truck carries which
package.

• driving(driver, truck): specifies who is driving which truck.
• fuel(truck, level): a numerical relation specifying the fuel level of each truck.

2.1 Actions

In this section, we define two types of actions, simple actions that occur in-
stantaneously, and durative actions that take place over a period of time and
4 Due to space constraints, we are unable to present operators to update plan

databases.



possibly require certain conditions to be true during this time. A term over Ai

is either a member of dom(Ai) or a variable over dom(Ai). If R(A1, . . . , An) is a
relation in a planspace and ti (1 ≤ i ≤ n) is a term over Ai, then R(t1, . . . , tn) is
an atom. Likewise, if Ai, Aj are attributes, then Ai = Aj is an atom - if Ai, Aj

are both attributes such that dom(Ai), dom(Aj) are subsets of the reals, then
Ai ≤ Aj , Ai < Aj , Ai ≥ Aj and Ai > Aj are atoms. If A is an atom, then A and
¬A are literals.

If R(A1, . . . , An, V ) is a numeerical relation and δ is a real number, then
incr(R, δ), decr(R, δ) and assign(R, δ) are nu-formulas. These formulas say that
the V column of R must be increased or decreased by (or set to) the value δ.

Definition 3. A simple action w.r.t. a planspace PS is a 5-tuple consisting
of

• Name: A string α(A1, . . . , An), where each Ai is a variable called a parameter
of the action.

• Precondition pre(α): a conjunction of literals over the planspace.
• Add list add(α): set of atoms (denote what becomes true after executing the
action).

• Delete list del(α): set of atoms (denote what becomes false after executing
the action).

• Numeric update list update(α): set of nu-formulas.

If ci ∈ dom(Ai) for 1 ≤ i ≤ n, then α(c1, . . . , cn) is an instance of α(A1, . . . , An).
As is standard practice in AI planning, we assume that all actions are range
restricted, i.e., that all variables appearing in the condition and effects are pa-
rameters of the action. Thus, each action is unambiguously specified by its name.

A simple action is executed instantaneously (in 0 time) and its effects are de-
scribed by its add list, delete list and update list. We assume the nu-formulas
in the numeric update list are executed in the following order: all incr updates
first, then all decr updates, and then all assign updates.

Definition 4. Suppose α(t) is an action instance. L(α(t)) denotes the set of
all numerical variables updated by α(t), R(α(t)) denotes the set of numerical
variables read by α(t) and L∗(α(t)) is the set of all numerical variables whose
value is being increased or decreased (but not assigned) by α(t).

A simple action instance α(t) is executable in planworld pw if pre(α(t)) is satis-
fied by pw. The concept of mutual exclusion of actions specifies when two actions
cannot co-occur.

Definition 5. Two simple action instances α(t) and β(z) are mutually ex-
clusive if any of the following hold:

pre(α(t)) ∩ (add(β(z)) ∪ del(β(z))) 	= ∅ pre(β(z)) ∩ (add(α(t)) ∪ del(α(t))) 	= ∅
add(α(t)) ∩ del(β(z)) 	= ∅ del(α(t)) ∩ add(β(z)) 	= ∅
L(α(t)) ∩ R(β(z)) 	= ∅ L(β(z)) ∩ R(α(t)) 	= ∅
L(α(t)) ∩ L(β(z)) 	= L∗(α(t)) ∩ L∗(β(z))



α(t) and β(z) are mutually compatible (i.e. they can occur at the same time) if
they are not mutually exclusive.

If A is an atom (resp. nu-formula, literal, conjunction of literals) and w ∈
{AtStart, AtEnd,OverAll} then w : A is an annotated atom (resp. nu-formula,
literal, conjunction of literals).

Definition 6. A durative action w.r.t. a planspace PS is a 5-tuple consisting
of

• Name: this is the same as for simple actions.
• Condition cond(α): set of annotated literals.
• Add List add(α): set of w : A where A is an atom and w ∈ {AtStart, AtEnd}.
• Delete list del(α): set of w : A where A is an atom and w ∈ {AtStart, AtEnd}.
• Numeric update list update(α): set of w : A where A is a nu-formula and
w ∈ {AtStart, AtEnd}.

Instances of durative actions are defined in the same way as for simple actions.

An action instance is an expression of the form α(t) for a vector t of the
form (c1, . . . , cn) that assigns a constant to each variable in the name.

Example 2. We present a durative action, load-truck(p,t,l), which loads package
p into truck t at location l.

• cond(load-truck(p,t, l)) = {atStart : at(p,l), atStart : at(t,l), overAll :
at(t,l)}. This says that when we start executing the load-truck(p,t,l) action,
the truck and package should both be at location l and that throughout the
execution of the load-truck action, the truck must be at location l (e.g. it
cannot start moving during the loading operation).

• add(load-truck(p,t,l)) = {atEnd : in-truck(p,t)}. This says that the atom
in-truck(p, t) is true at the end of the loading operation.

• del(load-truck(p,t,l)) = {atStart : at(p,l)}. Once we start executing the ac-
tion, package p is no longer deemed to be at location l.

• update(load-truck(p,t,l)) = {}. There is no numeric update to be performed.

Other actions include unload-truck for unloading a package from truck, board-
truck when a driver boards a truck, disembark-truck for disembarking the driver,
and walk for displacing the driver on foot.

2.2 Plans and Plan Databases

In this section, we formally define a plan (and a plan database). Intuitively, a
plan consists of a set of actions and constraints on the start and/or end times
of actions. Due to space constraints, we use natural numbers to model time
(formal calendars can be used with no difficulty). We use the variables st(α(t))
and et(α(t)), respectively, to denote the start and end times of an action.



Note that any durative action α(t) can be split into three simple action in-
stances. αstart(t) describes what happens at the start of the durative action.
αinterval(t) is a simple action describing the conditions that must hold during
the duration of the action (no changes occur during execution). αend(t) is a sim-
ple action describing changes at the end. We use SIMPLE(α(t)) to denote this
set of three simple actions associated with α(t). For α(t) to be executable, the
precondition of αstart(t) must hold when we start executing α and the precon-
dition of αend(t) must hold at just before we finish executing. During execution,
the precondition of αinterval(t) must be true. We now state this formally:

Definition 7. Suppose pwi denotes the planworld at time i. An action instance
α(t) is executable in a sequence of planworlds [pw1, . . . , pwk] if all of the fol-
lowing hold:

• αstart(t) is executable in pw1;
• ∀i, 1 < i < k, αinterval(t) is executable in pwi;
• αend(t) is executable in pwk;

where k = et(α(t))

Furthermore action instances α(t) and β(z) are mutually exclusive an action in
SIMPLE(α(t)) and an action in SIMPLE(β(z)) are mutually exclusive and
happen at the same time.

Informally speaking, a plan is a set of action instances that are pairwise
mutually compatible with each other and that are executed in accordance with
some temporal constraints. We define execution constraints below.

Definition 8. An execution constraint for an action α(t) is an expression
of the form st(α(t)) = c or et(α(t)) = c where c is a natural number.

Definition 9. A plan w.r.t. a (finite) set A of actions is a pair 〈A′, C 〉 where
A′ is a set of action instances from A and C is a set of execution constraints
w.r.t. actions in A′.5

A plan is definite if for all actions in A′, there are two execution constraints
in C, one for constraining the start time and the other constraining the end time.

Goals. In AI planning, a plan normally is generated to achieve some goal that
is represented as a set of literals g. Though we do not define goals explicitly,
there is no loss of generality because each goal g can be encoded in the plan
as a special action whose pre-condition is g and whose effects are empty. The
duration of this action specifies how long the goal conditions should be protected
in the plan world after the completion of the plan.

We only consider definite plans in this paper, rather than allowing the start
and end times of actions to vary.
5 A minor problem here is how to handle plans in which the same action (e.g., re-

fuel(truck1)) occurs more than once. An easy way to ensure that distinct action
instances have a different names it to give each action instance an additional pa-
rameter called an action identifier that is different for each distinct action instance,
e.g., refuel(truck1,instance01) and refuel(truck1,instance02).



Example 3. Suppose we have packages p1, p2 at locations l1, l2 respectively. We
have one truck t1 at l1 and a driver d in it. We want to deliver p1 and p2 to l3.
One possibility is to load p1, then pick up p2, and then go to the destinations.
Here, 〈A′, C 〉 is:

• A′ = { a1 = load-truck(p1, t1, l1), a2 = drive-truck(t1, l1, l2, d), a3 =
load-truck(p2, t1, l2), a4 = drive-truck(t1, l2, l3, d), a5 = unload-truck(p1, t1, l3),
a6 = unload-truck(p2, t1, l3)}

• C = {st(a1) = 1, et(a1) = 2, st(a2) = 3, et(a2) = 5, st(a3) = 6, et(a3) = 7,
st(a4) = 8, et(a4) = 12, st(a4) = 13, et(a4) = 14, st(a4) = 13, et(a4) = 14}
C indicates an intuitive order for a package: load, drive, unload. Notice that

two unload operations are performed concurrently.

Note that each action in a plan is an abstract realization of a physical process.
For example, the action drive(t1, l1, l2, d) is a syntactic representation of the
physical action that a driver performs of driving from one place to another. Due
to exogenous events, an action may not always succeed when carried out in the
real world.

Definition 10. A plan database is a 4-tuple 〈PS, pw, plans, now〉, where PS
is a planspace, pw is the current planworld, plans is a finite set of plans and
now is the current time.

3 Consistency and Coherence of Plan DBs

Not all plan databases are consistent. For example, if we have only 50 gallons
of fuel at a given location at some time T , and two different plans each plan to
use 40 of those 50 gallons at that location at time T , then we would have an
inconsistency. Coherence, on the other hand, intuitively requires that the plans
be executable: all plans in the database must, for example, have preconditions
that are valid w.r.t. the other plans in the database and the initial planworld.
To formalize these notions, we first introduce the concept of future planworlds.

3.1 Future Planworlds

Throughout this section, we let PLDB = 〈PS, pw, plans, now〉 be some arbi-
trary but fixed plan database. We use Splans(i) (resp. Eplans(i)) to denote the
set of all actions in plans whose start (resp. end) time is i. Iplans(i) is the set
of the actions that start before time i and end after time i. The set of active
actions at time i w.r.t. a given set plans of plans is defined as:

Activeplans(i) =(⋃
α∈Splans(i) αstart

) ⋃ (⋃
α∈Eplans(i) αend

) ⋃ (⋃
α∈Iplans(i) αinterval

)
.

Suppose plans is given, the current time is i, and the plan world at time i
is pwi. What should the planworld at time ti+1 be, according to plans? We use
PWi

plans(R) to denote the extent of relation R at time i w.r.t. plans.



Definition 11 (future planworlds). For all R,

PW0
plans(R) = R

PWi+1
plans(R) = (PWi

plans(R) − DelR(i, plans))
⋃

AddR(i, plans),

where AddR(i, plans) and DelR(i, plans) are the set of all insertions and
deletions, respectively to/from relation R by all actions in Splans(i) ∪ Eplans(i).
In the special case where R is a numeric relation, all tuples whose values are
updated will be in DelR(i, plans) and AddR(i, plans) will contain the updated
tuples with the new values, v′. If a numeric variable is updated at time i by a set
of concurrent plan updates, then its new value will be computed as the old value
plus the sum of all increases and decreases.

Assumptions. The above definition assumes that (i) when an action is success-
fully executed, its effects are incorporated into the planworld one time unit after
the action’s completion; (ii) all the actions in plans are successfully executable
until information to the contrary becomes available; (iii) none of the actions are
mutually exclusive with each other.

We now formally define the concept of consistency. Intuitively, consistency
of a plan database requires that at all time points t, no two actions are mutually
exclusive.

Definition 12. Let P be a set of plans, now be the current time and e be the
latest ending time in P . P is consistent if for every t, now ≤ t ≤ e, ActiveP (t)
does not contain any two simple actions that are mutually exclusive.

The following algorithm can be used to check consistency of a set P of plans.

Algorithm ConsistentP lans(P, now)
L = ordered time points either at or one time unit before an action

starts or ends in P ;
while L is not empty do

t = First member of L; L = L - {t};
if (∃α, β ∈ ActiveP (t)) α and β are mutually exclusive

then return false;
return true.

The reader can verify that the loop in this algorithm is executed at most 4n
times, where n is the number of actions in P . Note that consistency of a plan
database does not mean that the plan can be executed. To execute all the plans
in a plan database, we need to ensure that the precondition of each action is
true in the state (i.e. at the time) in which we want to execute it. The notion of
coherence intuitively captures this concept.

Definition 13. Suppose pw is the planworld at time now and P is a consistent
set of plans. Suppose e is the latest ending time of any action in P . P is coherent
iff for every now ≤ t ≤ e every simple action in ActiveP (t) is executable in⋃

R PWt
P (R) where pw =

⋃
R PWnow

P (R) .



Clearly, we would always like a plan database to be both consistent (no conflicts)
and coherent (executable). The following algorithm may be used to check for
coherence.

Algorithm CoherentP lans(P, now, pw)
L = ordered time points either at or one time unit before an action

starts or ends in P ;
while L is not empty do

t = First member of L; L = L - {t};
if (∃α ∈ ActiveP (t))pw 	|= pre(α) then return false;
if (∃α, β ∈ ActiveP (t)) α and β are mutually exclusive

then return false;
pw = (pw − ⋃

R DelR(t, P ))
⋃

(
⋃

R AddR(t, P ));
return true.

Goals. In AI planning, a plan normally is generated to achieve some goal that
is represented as a set of lierals g. Though we do not define goals explicitly,
there is no loss of generality because each goal g can be encoded in the plan
as a special action whose pre-condition is g and whose effects are empty. The
duration of this action specifies how long the goal conditions should be protected
in the plan world after the completion of the plan.

Suppose we already know a given plan database is consistent (coherent), and
we want to modify the set of plans in the plan database (but not the other compo-
nents of the plan DB). The following two theorems provide sufficient conditions
to check if the modified set of plans is consistent (coherent).

Theorem 1. Suppose a plan database PLDB = 〈PS, pw, plans, now〉 is con-
sistent. Let PLDB′ = 〈PS, pw, plans′, now〉. PLDB′ is consistent if

• Actions(plans′) ⊆ Actions(plans) and
• Constraints(plans′) ⊆ Constraints(plans),

where Actions(plans′) is the set of all actions in all plans in plans′ and
Constraints(plans′) is the set of all constraints in all plans in plans′.

Theorem 2. We use the same notation as in theorem 1. Suppose a plan database
PLDB = 〈PS, pw, plans, now〉 is coherent and plans′ satisfies the conditions
in Theorem 1. PLDB′ is coherent if:

1. Cond(plans′) ∩ Effects(plans− plans′) ≡ ∅, or
2. All actions in plans′ end before any action in plans− plans′ starts.

Here Cond(P ) is the set of preconditions of all actions in P and Effects(P ) is
the set of all the effects of all actions in P .

4 Plan Database Algebra

We now define a plan database algebra (PDA for short) to query plan databases.
PDA contains selection, projection, union, intersection, and difference operators.



In addition, we introduce a coherent selection operator cs and a coherent pro-
jection operator cp which is used to ensure coherence properties. A new fast
forward operator can be used to query the database about future states. Note
that this is different from a temporal database where future temporal states are
explicitly represented. In a plan database, all we are given explicitly is that var-
ious actions are scheduled to occur at various times, and need to reason about
when these actions are performed and their effects in order to answer queries
about future states. Just reading the database is not adequate.

4.1 Future Plan Databases

In order to achieve this goal, we first define the concept of future plan databases.
Recall that in Section 3.1, we introduced “future planworlds”. This definition
assumed that the plan database was coherent.

However, this may not always be the case. Future plan databases describe
the state of the plan database by projecting into the future. We assume we start
with a consistent (but not necessarily coherent) database.

Definition 14. Suppose 〈 PS, pw, plans, now 〉 is a plan database and that the
current time is now. The future plan database PossDB at time i for i ≥ now
is defined inductively as follows:

1. For i = now: PossDBi(〈 PS, pw, plans, now 〉) = 〈 PS, pw, plans, now 〉 and
plansi = plans.

2. For i > now: Suppose
PossDBi−1(〈 PS, pw, plans, now 〉) = 〈 PS, pwi−1, plansi−1, (i − 1) 〉.
Then PossDBi(〈 PS, pw, plans, now 〉) = 〈 PS, pwi, plansi, i 〉, where:
(a) pwi = (pwi−1−⋃

R DelR(i−1, plansi−1))
⋃

(
⋃

R AddR(i−1, plansi−1)).
(b) plansi = {〈A,C 〉 | 〈A,C 〉 ∈ plansi−1, (A ∩ CannotStart) = ∅}}.
(c) CannotStart = {α | αsub ∈ Active, sub ∈ {end, start, interval}, pwi 	|=

pre(αsub)}.
(d) Active = Activeplansi−1(i)

The above definition inductively defines the plan database at time i by con-
structing it from the plan database at time (i − 1).

4.2 Selection Conditions

Before defining selection, we first need to define selection conditions. Suppose
PS is some arbitrary but fixed planspace. As usual, we assume the existence of
variables over domains of all attributes in the relations present in the planspace.
In addition, we assume the existence of a set of variables Z1, Z2, . . . ranging over
plans, a set A1, A2, . . . of variables ranging over actions, and a set Y1, Y2, . . . of
variables ranging over tuples (of a planworld). A plan term is either a variable
of any of the above three kinds, a constant of the appropriate kind, or of the
form V.a where V is a variable of the above kinds and a is an attribute of the



term denoted by V . If V1, . . . , Vk are all plan terms then 〈V1, . . . , Vk 〉 is a plan
term denoting a tuple. Terms denoting actions and plans have special attributes
START and END that correspond to the start and end time of actions and plans. In
addition, terms denoting actions have a special name attribute. In the following
definition, we assume the existence of some arbitrary but fixed planspace.

Definition 15. Atomic selection conditions (ASCs) are inductively defined as
follows:

1. If Y is a tuple term and R is a relation, then Y ∈ R is an ASC.
2. If P is a plan term and A is an action term, then A ∈ P is an ASC.
3. If t1, t2 are terms of the same type, then pt1 = pt2 is an ASC.
4. If t1, t2 are terms of the same type and the type has an associated linear

ordering ≤, then t1 op t2 is an ARC, where op ∈ {≤, <, >,≥, <>}.
Definition 16. A simple plan database condition (simple PDC) is inductively
defined as: (i) every ASC is a simple PDC, and (ii) if X1, X2 are simple PDCs,
then so are (X1 ∧ X2) and (X1 ∨ X2).

If X is a simple plan database condition and I is either a variable (over
integers) or an integer, then the expression [I] : X is a plan database condition
(PDC).

The condition [I] : X holds if the condition X evaluates to true at time I in
the underlying plan database. If I is a constant, then the PDC is called a time
bounded expression. Otherwise, we say that the PDC is an unbounded expression.

Definition 17 (satisfaction). Let X be a ground simple PDC and PLDB =
〈 PS, pw, plans, now 〉 be a plan database. The satisfaction of all atomic selection
conditions by a PLDB is defined in the obvious way. In addition, if p is a plan
term, then PLDB satisfies p.END op c if for all actions α ∈ p, et(α) ≤ now,
z = max{e | et(α) = e, α ∈ p} and z op c holds. Similarly, PLDB satisfies
p.START op c if there is an action α ∈ p such that st(α) < now, z = min{s |
st(α) = s, s ≤ now, α ∈ p} and z op c holds. If α is an action term and p is a
plan, then PLDB satisfies α ∈ p if p ∈ plans, p = 〈A′, C 〉 and α ∈ A′. If a is an
action term in plan p then PLDB satisfies α.START op c iff st(α) = s, s ≤ now
and s op c holds. Similarly, PLDB satisfies α.END op c iff et(α) = e, e < now and
e op c holds. If R is a relation name then PLDB satisfies Y ∈ R succeeds for a
tuple term Y iff tuple Y is in the relation R according to pw. Suppose i is an
integer, PLDB satisfies [I] : X if and only if X is true in PossDBi(PLDB).
If [I] : X is a non-ground PDC then, PLDB satisfies [I] : X if there exists a
ground instance [I] : Xγ such that PLDB |= [I] : Xγ. If [I] : X is an unbounded
(i.e. I is a variable) PDC then PLDB satisfies [I] : X iff there exists an integer
i such that PLDB |= [I] : X.

As usual, we use the symbol |= to denote satisfaction.

Example 4. To find all actions that finish before time 20, we can write (A.END ≤
20). To find all plans that will finish successfully, we can write [I] : (Z.END ≤ I).
In this expression, we want to find a time instance I where all plans in the
database at time I finish successfully (before time I).



The following algorithm finds all plans that successfully end before time i.
The algorithm is useful if a plan database is not coherent. If the plan database is
coherent, we know for certain that all the plans in the plan database will succeed
unless an exogenous real world event intervenes (which would lead to a database
update).

Algorithm PlansSuccessfullyEnd(PDB, i)
Ans = ∅;
〈 PS, pwi, plansi, i 〉 = PossDBi(PDB);
while plansi 	= ∅ do

Select 〈A, C 〉 ∈ plansi; plansi = plansi − {〈A, C 〉};
if there is no α ∈ A such that et(α) > i then Ans = Ans ∪ {〈A, C 〉}

return Ans.

It is easy to see that that above algorithm can be executed in time propor-
tional to the number of plans in the plan database.

4.3 Selection

The selection operation finds all plans (and their associated information) that
satisfy a specific condition.

It is important to note that selection may not preserve coherence. For in-
stance, suppose we have a database containing five plans p1, . . . , p5 and suppose
p1, p2, p3 satisfy the selection condition. Then these are the plans that the user
wants selected. However, p2 may have actions in it that depend upon the prior
execution of p4 (otherwise the preconditions of p2 may not be true). Coherence
would require that we add p4 to the answer as well. For this reason, we define two
versions of the selection operator - ordinary selection which does not necessarily
guarantee coherence, and coherent selection which would add a minimal number
of extra plans to guarantee coherence.

Definition 18. Suppose PLDB = 〈 PS, pw, plans, now 〉 is a plan database
and [I] : X is a PDC involving a plan variable Z. The plan selection operation,
denoted by σ[I]:X PLDB(Z) = 〈 PS, pw, plans′, now 〉, is computed as plans′ =
{〈A, C 〉 | 〈A, C 〉 ∈ sol(Z)}, where

sol(Z) = {〈A, C 〉 ∈ plans | PLDB |= [I] : X/{Z = 〈A, C 〉} and
	 ∃I ′ < I such that PLDB |= [I ′] : X/{Z = 〈A, C 〉}}.

Proposition 1. If PLDB is consistent, then according to Theorem 1,
σ[I]:X PLDB(Z) is also consistent. If PLDB is coherent and σ[I]:X PLDB(Z)
satisfies either of the conditions in Theorem 2, then σ[I]:X PLDB(Z) is also
coherent.

Example 5. Suppose we want to retrieve all plans in which a certain driver,
say Paul, drives the truck. We can write the following plan selection query:
σ[I]:X PLDB(Z) where X = (A = drive-truck( , , , paul) ∧ A ∈ Z).

Suppose the initial plan database PLDB, contains the following plans;



• P1 = 〈{a1 = board-truck(paul, t1, c1), a2 = board-truck(paul, t1, c2),
a3 = board-truck(ted, t2, c3)}, { st(a1) = 1, et(a1) = 3, st(a2) = 9, et(a2) = 11,
st(a3) = 1, et(a3) = 3}〉

• P2 = 〈{a4 = drive-truck(t1, c1, c2, paul), a5 = drive-truck(t2, c1, c2, ted)},
{st(a4) = 4, et(a4) = 8, st(a5) = 6, et(a2) = 11}〉

• P3 = 〈{a6 = walk(paul, c2, c3)}, {st(a6) = 12, et(a6) = 16}〉
and the current time is 0. In this case, the above query returns only P2. However
the plan database which contains just P2 is not coherent at time 0 because at
time 4, Paul will not be in truck t1 which is one of the conditions of action a4.
The coherent selection operation will fix this.

Example 6. Suppose we want to retrieve all plans in which the same driver has
to deliver items to at least three different places. We can write the following plan
selection expression: σ[I]:X PLDB(Z) where X = (A1 = drive-truck( , , L1, D)∧
A2 = drive− truck( , , L2, D)∧A3 = drive− truck( , , L3, D)∧A1 ∈ Z ∧A2 ∈
Z,∧A3 ∈ Z ∧ L1 	= L2 ∧ L1 	= L3 ∧ L2 	= L3).

4.4 Coherent Selection

Selection is guaranteed to preserve consistency, but not coherence. Fortunately,
we can restore coherence by using the algorithm ClosePlans below. The algo-
rithm invokes a subroutine called SupportivePlans(P, F, t). For every action
α ∈ F , SupportivePlans nondeterministically6 selects a plan in P that con-
tains an action β with an effect e which establishes the precondition of α. It also
ensures that st(β) (resp. et(β)) is less than t, if e is an effect of βstart (resp. βend).
SupportivePlans returns the set of selected plans. The algorithm is guaranteed
to terminate if the input plan DB plans is coherent wrt pw and now.

Algorithm ClosePlans(PS, pw, plans, now, plans′)
last = Latest ending time in plans’;
t = now; pwt = pw;
while t ≤ last do

A ≡ Activeplans′(t)
if A ≡ ∅ then

pwt+1 = pwt;t= t+1;
else if ∀α ∈ A, pwt |= pre(α) then

pwt+1 = pwt − Delplans′(t) + Addplans′(t);
t = t + 1;

else
F ≡ {α|α ∈ A, pwt 	|= pre(α)};
P = SupportivePlans(plans− plans′, F, t);
t = Earliest start time of actions in P;

6 Note that any nondeterministic operation can be made deterministic by defining a
linear order on all choices and simply choosing the choice that is minimal w.r.t. the
linear order. Due to space limitations, we do not pursue this option here.



plans′ ≡ plans′ ∪ P
last = Latest ending time in plans’;

return plans′

We now define the coherent selection operator cs that guarantees coherence.

Definition 19. Suppose PLDB = 〈 PS, pw, plans, now 〉 is a plan database
and [I] : X is a PDC involving a plan variable Z. The coherent selection
operation, denoted by cs[I]:X PLDB(Z) = 〈 PS, pw, plans∗, now 〉, is given by:

• 〈 PS, pw, plans′, now 〉 = σ[I]:X PLDB(Z)
• plans∗= ClosePlans(PS, pw, plans, now, plans′)

Example 7. Let us return to Example 5, where we want to select all plans in
which Paul drives. The coherent selection operation would return the plan DB
containing both P2 and P1 which will be coherent.

4.5 Projection

The projection operation selects plans which contain actions that satisfy a spe-
cific condition. For a plan, only the actions that satisfy the conditions are kept,
the others are removed from the plan. As in the case of selection, the coherence
property may be violated after a projection. Later, we will introduce a coherence
preserving projection operation that establishes coherence by reinserting some
actions and/or plans removed during projection to reestablish the necessary co-
herence property.

Definition 20. Suppose PLDB = 〈 PS, pw, plans, now 〉 is a plan database and
[I] : X is a PDC involving a variable A denoting an action. The action pro-
jection operation, denoted ΠC PLDB(A) = 〈 PS, pw, plans′, now 〉, is defined
as:

• plans′ = {〈A∗, C∗ 〉 | 〈A′, C 〉 ∈ plans,A∗ = {α | α ∈ A′ and α ∈
sol(A)}, C∗ = rest(C,A∗)},

where

• sol(A) = {α | 〈A′, C 〉 ∈ plans and PLDB |= [I] : X/{A = α} and
	 ∃I ′ < I such that PLDB |= [I ′] : X/{A = α}} ∪ {α | 〈A′, C 〉 ∈ plans and
st(α) ≤ now};

• rest(C,A∗)} =
⋃

α∈A∗{all execution constraints for α in C}.
We note that the action projection will return actions that satisfy the given

conditions and started already.

Proposition 2. If PLDB is consistent then so is Π[I]:X PLDB(A). If PLDB
is coherent and Π[I]:X PLDB(A), satisfies either of the conditions in Theorem
2, then Π[I]:X PLDB(A), is also coherent.



Example 8. Suppose we want to retrieve plans only consisting of drive-truck ac-
tions. Specifically, we only want to keep those actions for which there exists,
in their own plan, another delivery that has the same driver, and the second
delivery happens after x time units. We can use the following plan projec-
tion query: Π[I]:X PLDB(A) where X = (A1 = drive-truck( , , , D) ∧ A2 =
drive-truck( , , , D) ∧ A1 	= A2 ∧ et(A1) − et(A2) = x,∧(A = A1 ∨ A = A2)).

Example 9. Consider once more the selection query in Example 7. A projection
operation with the same condition on the same plan database will yield a plan
database with the following single plan in it: P ′

2 = 〈{a4 = drive(t1, c1, c2, paul)},
{st(a4) = 4, et(a4) = 8}〉. As explained earlier, a4 will fail because there is no
driver in truck1.

4.6 Coherent Projection

We now define a closed plan projection operator cp similar to the coherent
selection operator. It will return the plans with actions that satisfy the selection
criteria as well as the other actions needed to make the projected set of plans
coherent.

Definition 21. Suppose PLDB = 〈 PS, pw, plans, now 〉 is a plan database
and [I] : X is a PRC. The closed plan projection operation , denoted
cp[I]:X PLDB(A) = 〈 PS, pw, plans∗, now 〉, is given by:

• 〈 PS, pw, plans′, now 〉 = π[I]:X PLDB(A,Z)
• plans∗= CloseActions(PS, pw, plans, now, plans′)

The definition of closed projection requires a CloseActions procedure which is a
slight variation of the ClosePlans algorithm. Instead of calling SupportivePlans,
it calls a SupportiveActions which is a slight variant of SupportivePlans: ba-
sically this procedure returns plans restricted to the supporting actions. The
following example shows the use of the coherent projection operator.

Example 10. Let us return to the case of Example 9 and use coherent projection
instead of projection. The resulting plan DB contains two plans:

• P ′
1 = 〈{a1 = board-truck(paul, t1, c1)}, {st(a1) = 1, et(a1) = 3}〉,

• P ′
2 = 〈{a4 = drive-truck(t1, c1, c2, paul)}, {st(a4) = 4, et(a4) = 8}〉.

This database is coherent. Notice the difference between number of actions
added by coherent selection and coherent projection. In the first case, the total
number of actions added into the plan database is three whereas in the second
case it is only one. This is because coherent selection includes a plan with all its
actions, whereas coherent projection only includes the necessary actions.



4.7 Fast Forward

In this section we define the fast-forward operator which returns future states
of a plan database that satisfy various PDC conditions. The fast forward opera-
tion can be thought of as a projection operation into the future. Note however,
that unlike a temporal database, we cannot look just at the relational state - we
must also see how this relational state changes over time as the various actions
in the plan database are executed according to the given schedule.

Definition 22. Suppose PLDB = 〈 PS, pw, plans, now 〉 is a plan database and
[I] : X is a PDC. The fast forward of database PLDB with respect to [I] : X,
is Γ[I]:X(PLDB) = PossDBI(PLDB), where I is the smallest integer such that
PLDB |= [I] : X if such an I exists. If no such I exists, then Γ[I]:X(PLDB) is
undefined.

Proposition 3. If PLDB is consistent/coherent and Γ[I]:X(PLDB) is defined
then Γ[I]:X(PLDB) is also consistent/coherent.

4.8 Union, Intersection, Difference

In this section we describe the union, difference and intersection operations for
plan databases. We first define the notion of union compatibility which simply
states that the data in two plan worlds must have same values for the same nu-
meric variables. The reason for this is that if one plan world says there 10 gallons
of fuel, and another plan world says there are 20, then the union yields something
claiming there are both 10 and 20 gallons of fuel which is problematic. Unlike
intersection and difference, union does not necessarily preserve consistency even
when the plan databases involved are union compatible. However, in Theorem 3
below, we state some conditions that are sufficient to preserve consistency. Two
databases 〈PS, pw, plans, now〉 and 〈PS, pw′, plans′, now〉 are union compatible
if every numeric variable f that is both in pw and pw′ has the same value in
both plan worlds.

Definition 23. Let PLDB1 = 〈 PS, pw1, plans1, now 〉 and
PLDB2 = 〈 PS, pw2, plans2, now 〉 be two union compatible plan databases.
Suppose the plans in plans2 are renamed so that there are no plans with the
same identifier in both databases. Then, the union of PLDB1, PLDB2, denoted
PLDB1 ∪ PLDB2 is given by

PLDB1 ∪ PLDB2 = 〈 PS, pw1 ∪ pw2, plans1 ∪ plans2, now 〉.
The following theorem states conditions guaranteeing consistency of the union
of two union-compatible plan databases.

Theorem 3. Suppose PLDB1 and PLDB2 are consistent. PLDB1 ∪ PLDB2

is consistent if ∀(α ∈ Actions(plans1), β ∈ Actions(plans2)) either of the fol-
lowing holds:

1. (Cond(α) ∪ Effects(α))
⋂

(Cond(β) ∪ Effects(β)) = ∅;



2. st(α) > et(β) or st(β) > et(α);

where Actions(plans) is the set of all actions of all plans in plans, Cond(α) is
the set of conditions of α and Effects(α) is the set of all effects of α.

Theorem 3 is intuitive. If any two actions that access the same atoms do
not overlap in time, then they cannot be mutually exclusive because none of
their simple actions will happen at the same time. Any other two actions with
overlapping executions will not be mutually exclusive since they don’t modify
the truth values of the same atoms.

The intersection and difference between two plan databases can be defined
analogously, but we omit the definitions due to lack of space. Note that union,
intersection, and difference may not be coherent even if the input plan DBs are
coherent. We can define coherent union, intersection and difference operators in
a manner similar to the coherent selection and projection operators.

5 Related Work

To date, there has been no other work on developing plan databases. We are
aware of no formal query language for querying plans analogous to the relational
algebra or relational calculus. However, there are two related areas: case based
planning and temporal databases.

The goal of case based planning [6] is to store plans in a “case base” so
that when we need to solve a new planning problem, we can examine the case
base and identify similar plans that can be modified to solve the new planning
problem. Our goal in this paper is very different. We are interested in querying
large databases of plans so that different applications can perform their tasks.
Such applications involve logistics where a transportation company may wish
to examine plans and schedules to determine how to allocate resources (using
operations research methods perhaps) as well as to analyze traffic, as well as
air traffic control where we wish to identify when and where aircraft will be
in the future so as to avoid potential mishaps. Some important aspects of our
framework and consistency and coherence of the database. In contrast, case
based planners do not require consistency nor coherence because the case base
is not a set of plans being executed; rather, it is a library and the queries to this
library concentrate on similarity issues.

There are also connections between our work and work in temporal databases
[9, 2]. In temporal relational databases, we have two kinds of time: transaction
time and valid time. Transaction time databases store information about when
a given tuple was inserted into a relation, when updates were made, etc. There-
fore, such databases deal with past events, not future events. In addition, they
only deal with actions that affect the database. In contrast, in planning, we deal
with actions that are intended to be executed in the future, these actions have
an effect on the real world, and these effects are represented in the database
by making updates to the database at appropriate future time instances. This



involves notions like coherence and consistency that are not relevant for trans-
action time (notions of consistency associated with database locking are very
different). Valid time usually associates with an ordinary relational tuple, either
a single time stamp, or a time interval. These denote the time when an event is
true (or a time interval throughout which the event is true). Even though the
start and end times of actions can be stored in a temporal database, temporal
databases do not reason about the effects of these actions and allow queries that
require reasoning about such effects.

There are also a few pieces of work [5, 3] involving non-deterministic time,
in which one can make statements of the form “An event is valid at some time
point in a given interval” (as compared to being true throughout the interval).
Consistency here can be important [10, 7]. Users might be interested in temporal
queries such as “Find all events starting after some time t or after completion
of some other event e.” Processing such queries requires checking consistency
of temporal constraints. In such temporal constraint databases and query lan-
guages, the temporal constraints used can be much more expressive than those
used in our model. However, the purposes are very different. These works dis-
cuss the occurrence of events at time points in the future, but not about the
fact that these events could be actions that have an impact on the world. As a
consequence, they do not model the fact that their events can trigger updates
to the database. Hence, there is no need in their frameworks for concepts like
consistency, coherence, and closure introduced here, and our definitions of the
algebraic operations are correspondingly different.

6 Conclusions

Many agencies and corporations store complex plans—ranging from production
plans to transportation schedules to financial plans— composed of hundreds
of “interlinked” plan elements. Such applications require not only that plans
be created automatically, but also that they be stored in an appropriate data
model, and that they be monitored and tracked during as they (i.e. the plans)
are executed. To date, most work on plans has focused on the creation of plans.

In this paper, we propose a data model for storing plans so that plans may be
monitored and tracked. We propose the concept of a plan database and provide
algebraic operations to query such databases. These algebraic operations extend
the classical relational operations of selection, projection, join, etc. In addition,
we provide algorithms to update sets of plans as new plans need to be added to
the database, and as old plans are executed (and either adhere or do not adhere
to their intended schedules).

Much future work remains to be done on plan databases, and this paper
merely represents a first step. Topics for future study include scalable disk-
based index structures to query plan databases, cost models for plan algebra
operations, equivalences of queries in plan databases, and optimizing queries to
plan databases.



7 Acknowledgments

This work was supported in part by the following grants, contracts, and awards:
Air Force Research Laboratory F30602-00-2-0505, Army Research Laboratory
DAAL0197K0135, DAAL0197K0135 and DAAD190320026, Naval Research Lab-
oratory N00173021G005, the CTA on Advanced Decision Architectures, ARO
contracts DAAD190010484 and DAAD190310202, DARPA/RL contract num-
ber F306029910552, NSF grants IIS0222914 and IIS0329851 and the University
of Maryland General Research Board. Opinions expressed in this paper are those
of authors and do not necessarily reflect opinion of the funders.

References

1. P. Brucker. Scheduling Algorithms. Springer-Verlag, New York, 1995.
2. J. Chomicki. Temporal query languages: a survey. In Temporal Logic: ICTL’94,

volume 827, pages 506–534. Springer-Verlag, 1994.
3. C. E. Dyreson and R. T. Snodgrass. Supporting valid-time indeterminacy. ACM

Transactions on Database Systems, 23(1):1–57, 1998.
4. M. Fox and D. Long. Pddl2.1: An extension to pddl for expressing temporal planning

domains, 2002. http://www.dur.ac.uk/d.p.long/pddl2.ps.gz.
5. S. Gadia, S. Nair, and Y. Peon. Incomplete Information in Relational Temporal

Databases. Vancouver, 1992.
6. K. J. Hammond. Case-Based Planning: Viewing planning as a memory task (Aca-

demic Press, San Diego, CA, 1989).
7. M. Koubarakis. Database models for infinite and indefinite temporal information.

Information Systems, 19(2):141–173, 1994.
8. D.-T. Peng, K. G. Shin, and T. F. Abdelzaher. Assignment and scheduling com-

municating periodic tasks in distributed real-time systems. Software Engineering,
23(12):745–758, 1997.

9. R. Snodgrass. The temporal query language tquel. ACM Transactions on Database
Systems (TODS), 12(2):247–298, 1987.

10. P. T. V. Brusoni, L. Console and B. Pernici. Qualitative and quantitative temporal
constraints and relational databases:theory, architecture and applications. IEEE
TKDE, 11(6):948–968, 1999.


