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Abstract

There are numerous applications where we need to
ensure that multiple moving objects are sufficiently
far apart. Furthermore, in many moving object do-
mains, there is positional indeterminacy — we are
not 100% sure exactly when a given moving object
will be at a given location.[Yamanet al., 2004]
provided a logic of motion but did not provide algo-
rithms to ensure that moving objects are kept suf-
ficiently far apart. In this paper, we extend their
logic to include a “far” predicate. We develop the
CheckFar algorithm that checks if any given two
objects will always be sufficiently far apart at dur-
ing a time interval. We have run a set of experi-
ments showing that ourCheckFar algorithm scales
very well.

1 Introduction
All of us fly in airplanes. We know that flight plans are al-
most never 100% accurate. We all have a vested interest in
ensuring that planes we fly in are sufficiently far from other
planes that are flying in the sky at the same time. The goal of
this paper is to develop a hybridlogical and constraint based
frameworkto ensure that moving objects withpositional un-
certainty (where will the object be at a given time) remain
sufficiently far apart.

Our work builds on[Yamanet al., 2004] who developed
the concept of a “go-theory”. A go-theory is a finite set of
“go-atoms.” A go-atom can express statements such as ‘Plane
p1 leaves location L1 some time between 10 and 12 and ar-
rives at location L2 at some time between 30 and 40 and
during the flight the speed of the plane is between 5 and 6”.
They provide algorithms to check if a given plane is within
a given region at a given time point. They also introduce
ground atoms of the formnear(o1, o2, d, t1, t2) — intuitively,
this means that at all times during the intervalt1, t2, o1 and
o2 are guaranteed to be withind units of each other.

In this paper, we introduce a predicate symbol called
far(o1, o2, d, t1, t2) — intuitively, this means that at all times
during the intervalt1, t2, o1 ando2 are guaranteed to be at
leastd units apart.

One may think thatnear() and far() are complements of
each other. Unfortunately, this is not true. Yaman et. al.[Ya-

manet al., 2004] define interpretations and a notion of satis-
faction. Fornear(o1, o2, d, t1, t2) atom to be a logical conse-
quence of a go-theoryG, for every interpretationI that satis-
fiesG, it must be the case that for all timest1 ≤ t ≤ t2, the
distance between the locations ofo1 ando2 at timet is less
than or equal tod. Thus,¬near(()o1, o2, d, t1, t2) is a logical
consequence ofG if for every interpretationI which satisfies
G there existsa timet1 ≤ t ≤ t2, the distance between the lo-
cations ofo1 ando2 at timet (according to the interpretation
I) is greater thand. In contrast, forfar(o1, o2, d, t1, t2) to be
entailed byS, it must be the case that for every interpretation
I which satisfiesG and forevery time pointt1 ≤ t ≤ t2, the
distance between the locations ofo1 ando2 at timet is greater
thand. Thus, entailment offar() atoms is not the same as en-
tailment of eithernear() atoms or¬near() literals.

In this paper, we define the semantics offar() and develop
an algorithm calledCheckFar to check entailment of ground
far() atoms by a go-theoryG. We have conducted extensive
experiments on the computational feasibility ofCheckFar —
our experiments show in a compelling way that in real world
situations1, CheckFar will work very well indeed. In our
experiments we answered far queries in less than 0.6 seconds
for go theories up to 1000 atoms per object.

2 Background On go-Theories
We now provide a quick overview of go-theories from[Ya-
manet al., 2004]. We assume the existence of several sets of
constant symbols:R is the set of all real numbers,O is the
set of names of objects,P = R × R is the set of all points
in two-dimensional cartesian space. We assume the existence
of three disjoint sets of variable symbols,VR, VO, andVP,
ranging overR, O andP, respectively. Areal term t is any
member ofR ∪VR. Object terms and point terms are defined
similarly. Ground terms are defined in the usual way. We now
define atoms as follows.

• If o1, o2 are object terms, andd, t1, t2 are positive real
terms, thennear(o1, o2, d, t1, t2) is anatom. Intuitively,
this atom says thato1, o2 are within distanced of each
other during the time interval[t1, t2].

• If o is an object term,P1, P2 are point terms, andt1, t2
are positive real terms, thenin(o, P1, P2, t1, t2) is an

1We built an application to manage separation between ships in
port shipping lanes.



atom. Intuitively, this atom says that objecto is in the
rectangle whose lower left (resp. upper right) corner is
P1 (resp.P2) at some point in the time interval[t1, t2].

• If o is an object term,P1, P2 are point terms, and
t−1 , t+1 , t−2 , t+2 , v−, v+ are positive real terms, then
go(o, P1, P2, t

−
1 , t+1 , t−2 , t+2 , v−, v+) is an atom called a

go atom. Intuitively, this atom says that objecto leaves
pointP1 at some time in[t−1 , t+1 ] and arrives at pointP2

during [t−2 , t+2 ], traveling in a straight line with a mini-
mum speedv− and maximum speedv+.

Ground atoms are defined in the usual way. Ago theoryis
a finite set ofgroundgo-atoms.Note that go-theories do not
containnear() or in() atoms.
Notation. If g = go(o, P1, P2, t

−
1 , t+1 , t−2 , t+2 , v−, v+), then,

obj(g) = o, v−(g) = v−, v+(g) = v+,
loc1(g) = P1, t−1 (g) = t−1 , t+1 (g) = t+1 ,
loc2(g) = P2, t−2 (g) = t−2 , t+2 (g) = t+2 .

If G is a go-theory ando is an object id, therestriction ofG
to o, denotedGo is the set{g ∈ G | obj(g) = o}.

An interpretationis a continuous functionI : O×R+ →
P. Intuitively, I(o, t) is o’s location at timet.

Definition 1 Let g = go(o, P1, P2, t
−
1 , t+1 , t−2 , t+2 , v−, v+)

be a ground atom andI be an interpretation.I satisfiesg
w.r.t. a time intervalT = [t1, t2] iff:

• t1 ∈ [t−1 , t+1 ] andI(o, t1) = P1

• t2 ∈ [t−2 , t+2 ] andI(o, t2) = P2

• ∀t ∈ [t1, t2], I(o, t) is on the line segment[P1, P2]
• ∀t, t′ ∈ [t1, t2], t < t′ implies dist(I(o, t), P1) <

dist(I(o, t′), P1), wheredist is the function that com-
putes the Euclidean distance between two points.

• For all but finitely many times in[t1, t2], v =
d(|I(o, t)|)/dt is defined andv−(g) ≤ v ≤ v+(g).

This intuitively says thatI |= g w.r.t. a time intervalT =
[t1, t2] iff o starts moving att1 and stops moving att2 and
furthermore, during[t1, t2], the object moves away fromP1

towardsP2 without either stopping or turning back or wan-
dering away from the straight line connectingP1 andP2. We
are now ready to define the full concept of satisfaction.
I satisfiesa ground literal (denotedI |= A) in these cases:

1. I |= go(o, P1, P2, t
−
1 , t+1 , t−2 , t+2 , v−, v+) iff there exists

an interval[t1, t2] such thatI |= A w.r.t. [t1, t2].
2. I |= near(o1, o2, d, t1, t2) iff dist(I(o1, t), I(o2, t)) ≤

d for all t1 ≤ t ≤ t2.
3. I |= in(o, P1, P2, t1, t2) iff there are numberst ∈

[t1, t2], x ∈ [P1
x, P2

x] and y ∈ [P1
y, P2

y] such that
I(o, t) = (x, y).

4. I |= ¬A iff I does not satisfyA.

The above definition can be extended in the obvious way to
handle quantification — in this paper, we will only consider
the ground case.
I satisfies (or is a model of)a set of ground atomsMT iff

I satisfies everyA ∈ MT. MT is consistentiff there is an in-
terpretationI such thatI |= MT. L is a logical consequence

of MT, denotedMT |= L, iff every model ofMT is also a
model ofL.

3 far() atoms
We are now ready to extend the logic in[Yamanet al., 2004]
to includefar() atoms. Ifo1, o2 are objects, andd, t1, t2 are
real terms, thenfar(o1, o2, d, t1, t2) is afar() atom.

Definition 2 (satisfaction offar() atoms) Supposef is a
groundfar atom andI is an interpretation.I |= f iff for
all t1 ≤ t ≤ t2, dist(I(o1, t), I(o2, t)) > d.

We say a go theoryG entailsf iff wheneverI |= G, it is
also the case thatI |= f . The far()-entailment problemis
that of checking whether a given go-theory entails aground
far()-atom. The entailment of a negated near literal does
not imply entailment of the associated far atom. Similarly
entailment of a negated far literal does not imply entailment
of the associated near atom. However, the following results
hold:

Lemma 1 Suppose G is a go theory and sup-
pose far(o1, o2, d, t1, t2) and near(o1, o2, d, t1, t2)
are ground. If G |= far(o1, o2, d, t1, t2), then
G |= ¬near(o1, o2, d, t1, t2). If G |= near(o1, o2, d, t1, t2),
thenG |= ¬far(o1, o2, d, t1, t2).

The following result tells us that checking for entailment
of a groundfar()-atom is co-NP complete.

Theorem 1 Let G be a go theory andf = far(o, o′, d, t1, t2)
be a ground atom. Checking ifG |= f is coNP-complete.

We will omit the proofs due to space constraints.

4 Far Algorithm
Finding an algorithm to solve thefar()-entailment problem is
a complex task. Our solution involves the following steps.
First we partition a go-theory into clustersGo of go-atoms
about the same objecto. Next, for any given go-atomg, we
define thetemporal certainty intervalwhich specifies a time
interval when the object is guaranteed to be on the line seg-
ment[loc1(g), loc2(g)]. Third, we define thepositional cer-
tainty intervalthat finds the smallest subsegment of the above
line in which the vehicle is guaranteed to be at timet. Both
temporal and positional certainty intervals are defined w.r.t.
a given ordering of go-atoms. Our fourth step is to explain
how to solve thefar()-entailment problem when a go-theory
has only two go-atoms (one for each object) andt1 = t2 in
the far() atom whose entailment we are trying to check. Our
fifth step generalizes this to the case whent1 ≤ t2. Finally,
we show how to remove the assumption thatG contains only
two go-atoms.

Due to space constraints, we will proceed under the as-
sumption thatG is non-collinear as defined below. Extending
our algorithm to remove this assumption is straightforward2

Our implementations do not require this assumption.

2[Yamanet al., 2004] provides a technique to merge multiple
collinear go-atoms into “movements” that are non-collinear. The
same technique can be used here.



Definition 3 A go theoryG is non-collineariff there are no
go-atomsg, g′ ∈ G such thatobj(g) = obj(g′) and the fol-
lowing two conditions both hold:

• The intersection of line segments[loc1(g), loc2(g)] and
[loc1(g′), loc2(g′)] is a line segment[P,Q] such thatP
is visited beforeQ in bothg andg′ and

• t−1 (g) ≤ t+2 (g′) andt−1 (g′) ≤ t+2 (g).

4.1 Temporal and Positional Certainty Intervals
In this section, we define the notions of temporal and posi-
tional uncertainty.

Definition 4 (C(G, o,v)) Let G be a go theory ando be an
object id. Letv be any total ordering onGo. The set
C(G, o,v) of linear constraints associated withG, o,v is de-
fined as follows:

• ∀g = go(o, P1, P2, t
−
1 , t+1 , t−2 , t+2 , v−, v+) ∈ Go

– t−1 ≤ Sg ≤ t+1 andt−2 ≤ Eg ≤ t+2
– v−× (Eg −Sg) ≤ dist(P1, P2) ≤ v+× (Eg −Sg)

• for everyg, g′ ∈ Go such thatg v g′: Eg ≤ Sg′ .

Sg and Eg are variables associated with an atomg which
intuitively denote the start time and end time of the movement
described byg. WhenGo has only one atomg,we will use
C(g) as a short hand notation.

Example 1 Letg = go(o, (40, 10), (70, 50), 12, 13, 21, 21, 4,
10) and g′ = go(o, (70, 50), (30, 80), 20, 21, 30, 31, 4, 10).
SupposeG = {g, g′} andg v g′. ThenC(G, o,v) contains
the following constraints:

• 12 ≤ Sg ≤ 13, 21 ≤ Eg ≤ 21 ,
• 4× (Eg − Sg) ≤ 50 ≤ 10× (Eg − Sg).
• 20 ≤ Sg′ ≤ 21, 30 ≤ Eg′ ≤ 31 ,
• 4× (Eg′ − Sg′) ≤ 50 ≤ 10× (Eg − Sg),
• Eg ≤ Sg′ .

We now use linear programming methods to define the tem-
poral certainty interval of a go atom.

Definition 5 (TCI(G, o,v, g)) LetG be a go theory,o be an
object, andv be a total order onGo such thatC(G, o,v) has
a solution. Thetemporal certainty interval, TCI(G, o,v, g),
of an atomg ∈ Go w.r.t. v is the time interval[T−, T+]
where

• T− is the result of solving the linear program: “maxi-
mizeSg subject toC(G, o,v)”,

• T+ is the result of solving the linear program: “mini-
mizeEg subject toC(G, o,v)”.

TCI(G, o,v, g) is undefined ifT− > T+.

WhenGo has only one atomg we will TCI(g) as a short
hand notation. Intuitively,TCI(G, o,v, g) is the interval
when we know for sure that objecto is within the line speci-
fied in go-atomg.

Example 2 Let g and g′ be the two go atoms in Example
1. TCI(g) is [13, 21]. If G = {g, g′} and g v g′, then
TCI(G, o,v, g′) = [21, 30].

Conversely, given a time pointt and a ground go-atomg, we
wish to know the potential segment on the line connecting
loc1(g) andloc2(g) where the object associated withg could
possibly be. To find this, we need another linear program.

Definition 6 (PCI(G, o,v, g, t)) Let G be a go theory,o
be an object, andv be a total order on atoms ofGo such
that C(G, o,v) has a solution. Let g be an atom inGo

such thatTCI(G, o,v, g) is defined andt be any time
point in TCI(G, o,v, g). Thepositional certainty interval,
PCI(G, o,v, g, t), of atomg at time t w.r.t. orderingv is
defined as follows:

• LetC(g, t) be the set of constraints:

– dg,t

v+(g) ≤ t− Sg ≤ dg,t

v−(g)

– D−dg,t

v+(g) ≤ Eg − t ≤ D−dg,t

v−(g)

where D = dist(loc1(g), loc2(g)). Note that this is
a linear program wheng is fixed because many terms
above (such asD, v−(g),v+(g) are constants).

• Letdmin
g,t be the result of solving the linear program

minimizedg,t subject toC(G, o,v) ∪ C(g, t).

• Letdmax
g,t be obtained by maximizing the objective func-

tion in the above linear program (instead of minimizing).
• Let P−(G, o,v, g, t) be the point exactlydmin

g,t

units away from loc1(g) on the line connecting
loc1(g), loc2(g) and likewise, letP+(G, o,v, g, t) be
the point exactlydmax

g,t units away fromloc1(g) on the
same line.

The positional certainty intervalPCI(G, o,v, g, t) is the
line segment fromP−(G, o,v, g, t) to P+(G, o,v, g, t).

WhenGo has only one atomg we use the shorter notation
PCI(g, t).
Lemma 2 Let g be a go atom such thatTCI(g) is defined,
I be an interpretation, and supposet ∈ TCI(g). If I |= g,
thenI(o, t) is on the line segmentPCI(g, t).

4.2 Binary go-theories about a single time point
A binary go-theory is one which contains two go-atomsG =
{g, g′} whereobj(g) = o, obj(g′) = o′. Consider a ground
far() query far(o, o′, t1, t2, d) wheret1 = t2. We need to
check if the distance betweeno and o′ is guaranteed to be
greater thand at timet. The following lemma presents neces-
sary and sufficient conditions for entailment of such queries
under the above assumptions.

Lemma 3 Let G = {g, g′} be a go-theory such that
obj(g) = o and obj(g′) = o′ and letf = far(o, o′, d, t, t)
be a ground atom.G |= f iff

• t ∈ TCI(g) andt ∈ TCI(g′) and
• The minimum distance between line segmentsPCI(g, t)

andPCI(g′, t) is greater thand.

Example 3 Letg = go(o, (40, 10), (70, 50), 12, 13, 21, 21,
4, 10) and g′ = go(o′, (55, 20), (45, 80), 17, 18, 32, 33, 2, 6)
be two atoms. LetG = {g, g′} andf = far(o, o′, 5, 19, 19).
TCI(g) = [13, 21] andTCI(g′) = [18, 32] both include the



Figure 1: The polygon on the left is the space envelope ofg′

during[19, 21] and the volume on the right is 5-neigbourhood
of g during time interval[19, 21]. g andg′ are as defined in
Examples 4,5 and 6.

time point 19. At time 19, o is somewhere on the line segment
PCI(g, 19) = [(58, 34), (65.2, 43.6)] and object o’ is on the
line segmentPCI(g′, 19) = [(54.67, 21.97), (53.08, 31.84)].
The minimum distance between these two lines is 33.73 which
is greater than 5 soG |= f .

Consider the atomnear(o, o′, d, t, t) atom instead of
far(o, o′, d, t, t) then the second bullet of Lemma 3 becomes:
“The maximum distance between line segmentsPCI(g, t)
and PCI(g′, t) is less than or equal tod”. This maxi-
mum distance is achieved at the end points ofPCI(g, t) and
PCI(g′, t), e.g.P−(g, t) andP+(g′, t). However the mini-
mum distance betweenPCI(g, t) andPCI(g′, t) is not nec-
essarily at the end points hence its computation is more com-
plex.

4.3 Binary go-theories with temporal intervals
The complexity of computing far queries gets magnified even
more when we consider the caset1 ≤ t2. For the near atom
this is easy because it is enough to check the distance at the
end points ofPCI(g, t) and as shown in[Yamanet al., 2004]
end points ofPCI(g, t) are piecewise linear functions over a
time interval. This is not enough for the far atom. For this
reason answering far queries over time intervals requires a
different approach then the one in[Yamanet al., 2004].

We first define thespace envelopeof a go-atom. Intu-
itively, the space envelope of a go-atomg is the set of all
(x, y, t)-triples such that there exists a modelI of g in which
I(obj(g), t) = (x, y). In other words, it defines where and
when it ispossiblefor objecto to be.

Definition 7 Let g be a ground go-atom such thatTCI(g)
is defined and letT = [t1, t2] be any time interval such that
T ⊆ TCI(g). Thespace envelope, SE(g, T ) of g during
intervalT is {(x, y, t) | t ∈ T and(x, y) ∈ PCI(g, t)}.
Theorem 2 SE(g, T ) is a convex set.

Example 4 Letg′ = go(o′, (55, 20), (45, 80), 17, 18, 32, 33,
2, 6) be a go atom. The space envelope ofg′ over time interval
[19, 21], is shown in Figure 1 on the left side. It is easy to see
thatSE(g′, [19, 21]) is convex.

We now define the set of points that are closer than a given
distanced to any possible location of an object at a given
time.

Definition 8 (d-neighbourhood) Letg be a ground go-atom
such thatTCI(g) is defined. Let d be a real number and
let T = [t1, t2] be a time interval such thatT ⊆ TCI(g).
Thed-neighbourhoodofg duringT , denotedNbr(g, T, d) =
{(x, y, t) | t1 ≤ t ≤ t2 and (x, y) ∈ NearPts(g, t, d)}
whereNearPts(g, t, d) = {(x, y) | ∃(x′, y′) ∈ PCI(g, t)
anddist((x, y), (x′y′)) ≤ d}.
Intuitively NearPts(g, t, d) is the set of all pointsp such that
all points on the line segmentPCI(g, t) which ared units or
less in distance fromp at timet. SimilarlyNbr(g, T, d) is the
set of all points(x, y, t) such that it is possible forobj(g) to
be withind units of(x, y) at some timet in intervalT .

Theorem 3 (i) Nbr(g, T, d) is a convex set.(ii) If d = 0,
thenNbr(g, T, d) = SE(g, T ).

Example 5 Letg = go(o, (40, 10), (70, 50), 12, 13, 19, 21,
4, 10) be a go atom. The5-neighborhood ofg over time in-
terval [19, 21] is shown on the far right hand side of Figure 1.
It is easy to see that it is a convex set.

The following theorem states necessary and sufficient condi-
tions under which{g, g′} |= f .

Theorem 4 Letf = far(o, o′, d, t1, t2) andG = {g, g′} be a
go theory whereobj(g) = o andobj(g′) = o′. G |= f iff

• [t1, t2] ⊆ TCI(g) and[t1, t2] ⊆ TCI(g′)
• Nbr(g, [t1, t2], d) ∩ SE(g′, [t1, t2]) = ∅

Thus, an algorithm to solve thefar()-entailment problem only
needs to check both these conditions.[Mantyla, 1988] pro-
vides polynomial algorithms to check for the intersection of
two convex sets — these can be used directly to check the
second condition above.

Example 6 Letg = go(o, (40, 10), (70, 50), 12, 13, 21, 21, 4,
10) andg′ = go(o′, (55, 20), (45, 80), 17, 18, 32, 33, 2, 6) be
two go atoms. LetG = {g, g′} andf = far(o, o′, 5, 19, 21).
Then TCI(g) = [13, 21] and TCI(g′) = [18, 32].
Both include the time interval[19, 21]. Figure 1 shows
Nbr(g, [19, 21], 5) andSE(g′, [19, 21]). It is apparent from
the figure that the two do not intersect: henceG |= f .

4.4 Arbitrary Go-theories with temporal intervals
We now remove the restriction thatG is a binary go-theory.
Doing so introduces several complications. For any singleo,
there may be many possible total orderings associated with
Go. Furthermore, for some theories we can predict the pos-
sible locations of an object not only in the certainty interval
of an atom, but also during a time interval that spans over
several atoms. The following lemma gives the necessary and
sufficient conditions when this can be done.

Lemma 4 Let G be a go-theory,o be an object, andv be a
total order onGo such thatC(G, o,v) has a solution. Sup-
poseg1 v g2 . . . v gn are the atoms ofGo. TCI(G, o,v
, gi) ∪ TCI(G, o v, gi+1) . . . ∪ TCI(G, o,v, gj) is a sin-
gle time intervaliff for every 1 ≤ i ≤ k < j ≤ n with
TCI(G, o,v, gk) = [T−

k , T+
k ] the following are true

• T+
k = T−

k+1

• loc2(gk) = loc1(gk+1)



Definition 9 Let G be a go-theory,o be an object, andv
be a total order onGo such thatC(G, o,v) has a solution.
SupposeS ⊆ Go. S is temporally relevantto time interval
[t1, t2] is iff

• The atoms inS satisfy the conditions in lemma 4 and
• There are atoms g, g’ in S such thatt1 ∈ TCI(G, o,v

, g) andt2 ∈ TCI(G, o,v, g′)

Example 7 Letg1 = go(o, (40, 10), (70, 50), 12, 13, 21, 21, 4,
10) and g2 = go(o, (70, 50), (30, 80), 20, 21, 30, 31, 4, 10)
be go atoms. IfG = {g1, g2} and g1 v g2 then
C(G, o,v) has a solution. MoreoverTCI(G, o,v, g1) =
[13, 21], TCI(G, o,v, g2) = [21, 30] and TCI(G, o,v
, g1) ∪ TCI(G, o,v, g2) is a single interval. Suppose
T = [19, 30] then{g1, g2} is temporally relevant toT .

We now generalize definitions 7 and 8 to accommodate non-
binary go-theories.

Definition 10 (SE(G, o,v, T )) Let G be a go-theory,o be
an object, andv be a total order onGo such thatC(G, o,v)
has a solution. IfT = [t1, t2] is a time interval, then
SE(G, o,v, T ) is the set of all points(x, y, t) such that

• t ∈ T andt ∈ TCI(G, o,v, g) for someg ∈ Go,
• (x, y) is onPCI(G, o,v, g, t).

SE(G, o,v, T ) is not defined if there is a time pointt ∈ T
such that for allg ∈ Go, t 6∈ TCI(G,v, g).

Note thatSE(G, o,v, T ) is not necessarily convex when
T spans over multiple go atoms. We can generalizeNbr to
Nbr(G, o,v, T, d) in a similar manner — these are omitted
due to space constraints.Nbr(G,v, T, d) also may not be
convex. We now state a theorem describing the conditions
under which a go theoryG entails afar() atom.

Theorem 5 Suppose G is a go-theory ando, o′ are objects.
The ground atomf = far(o, o′, d, t1, t2) is a logical conse-
quence ofG iff for every pair of total ordersv andv′ onGo

andGo′ such thatC(G, o,v) andC(G, o′,v′) are solvable:

• ∃S ⊆ Go such thatS is temporally relevant to[t1, t2]

• ∃S′ ⊆ Go′ such thatS′ is temporally relevant to[t1, t2]
• Nbr(G, o,v, [t1, t2], d) ∩ SE(G, o′,v′, [t1, t2]) = ∅.

Example 8 Let g1 and g2 be go atoms in Example 7 and
g′ = go(o′, (55, 20), (45, 80), 17, 18, 32, 33, 2, 6). Let G =
{g1, g2, g

′} and f = far(o, o′, 5, 19, 30). If g1 v g2 and
v′= ∅ then Figure 2 showsNbr(G, o,v, [19, 30], 5) and
SE(G, o′,v′, [19, 30]). The figure also shows that the sets
intersect - henceG 6|= f .

As Nbr(G, o,v, T, d) andSE(G, o′,v, T ) are not always
convex, computing their intersection is tricky. We partition
T into subintervalsT1, T2, . . . , Tn (we call this aconvex
partition of T ) such that for alli < n, the end point ofTi

is the end point of the temporal certainty interval of some
g ∈ Go ∪ Go′ . It is easy to verify thatn ≤ |Go| + |Go′ |.
For eachTi, Nbr(G, o,v, Ti, d) and SE(G, o′,v, Ti) are
convex and we leverage this in theCheckFar algorithm
below.

Figure 2: The space envelope ofo′ with respect toG and
5-neighbourhood ofo w.r.t. G andv during time interval
[19, 30]. G andv are as defined in Example 8

Algorithm CheckFar(G,v,v′, f )
Supposef = far(o, o′, d, t1, t2);
if C(G, o,v) or C(G, o′,v′) has no solutionthen return true
Let So ⊆ Go such thatSo is temporally relevant to[t1t2]
Let So′ ⊆ Go′ such thatSo′ is temporally relevant to[t1t2]
if no suchSo or So′ existsthen return false
Let T1, T2 . . . Tn be the convex partition of[t1, t2]
for each i < n do
if Nbr(G, o,v, Ti, d) ∩ SE(G, o′,v′, Ti]) 6= ∅
then return false

end for
return true

Theorem 6 Suppose G is a go-theory and f =
far(o, o′, d, t1, t2) is a ground atom. Then: f is en-
tailed byG iff for every total orderv andv′ onGo andGo′ ,
the algorithmCheckFar(G,v,v′, f ) returns “true”.

5 Implementation
We have implemented theCheckFar algorithm in Matlab.
Our test results show thatCheckFar(G,v,v′, f ) runs in lin-
ear time. Note that a single run ofCheckFar does not check
if G |= f . In fact CheckFar(G,v,v′, f ) should be exe-
cuted for every possiblev,v′ pair that produce a solvable
set of constraints. Although in theory this number is exponen-
tial which leads to coNP-hardness, in practice we expect this
number to be bounded by a manageable constantk. In gen-
eral individual movements can have some uncertainty how-
ever the order in which they are going to be accomplished is
usually well known. Figure 3 shows the running time of 3
far queries as we vary the number of atoms per object when
k = 256. Each data point is an average of 300 runs. For
these experiments we created go theoriesG with at most16
total orderings and all atoms are in a rectangle of size 300
by 400. We queried those theories using three query tem-
platesQ1 = far(o, o′, 1, t1, t2), Q2 = far(o, o′, 50, t1, t2)
andQ3 = far(o, o′, 10000, t1, t2) where[t1, t2] is a random
time interval with length 10. The reader will notice that as the
distance increases, the time to compute the query decreases.
In the case of Q3 which is trivially false it takes almost no
time to return the answer. Queries Q1 and Q2 take at most
0.6 seconds for go theories with 1000 atoms per object.



Figure 3: Time to compute three far queries Q1, Q2 and Q3
whenk = 256.

6 Related Work
To our knowledge, there is no work on a logical foundation
for checking separation between moving objects in the pres-
ence of temporal and spatial uncertainty. However, almost all
models of moving entities like cars, airplanes, ships, humans
and animals are subject to uncertainty about where they are
at a given point in time.

[Gabelaiaet al., 2003; Merzet al., 2003; Wolter and Za-
kharyaschev, ; Cohnet al., 2003] study spatio-temporal log-
ics where time is a discrete sequence rather than being con-
tinuous. [Muller, ] describes a formal theory for reasoning
about motion in a qualitative framework that supports com-
plex motion classes. The work is purely symbolic.[Shana-
han, 1995] discusses the frame problem, when constructing
a logic-based calculus for reasoning about the movement of
objects in a real-valued co-ordinate system.[Rajagopalan and
Kuipers, 1994] focuses on relative position and orientation of
objects with existing methods for qualitative reasoning in a
Newtonian framework. The focus of these works is qualita-
tive - in contrast our work is heavily continuous and rooted in
a mix of geometry and logic rather in just logic alone.far()
queries are not studied in any of these papers.

There is also some peripherally related work in computer
graphics[Lin and Gottschalk, 1998] and in “moving object
databases”[Erwig et al., 1999] – they provide no model the-
ory or algorithms forfar() queries nor allow any uncertainty.

7 Conclusions
The ability to query a large number of objects moving un-
certainly in time and space so that separation constraints be-
tween objects are maintained is critical to many applications
(e.g. air traffic control, shipping port lane management). In
this paper, we have extended the “logic of motion” proposed
by Yaman et. al.[Yamanet al., 2004] via a far() predicate.
We develop a model theory forfar()-entailment. We show
that thefar()-entailment problem is coNP-complete. We de-
velop an efficient algorithm calledCheckFar that effectively
checks if a given total ordering of atoms in a go-theory pre-
serve separation constraints. To check whether two objects
are guaranteed to be at leastd units of distance away from
each other during an interval of time, we must applyCheck-
Far to different possible orderings of the atoms in the go-

theory. In real-world applications such as air traffic control
and a shipping port lane management we have built, we ex-
pect such orderings to be relatively small in number even if
the number of objects is very large. The reason for this is
that usually the flight plan for each airplane consists of a se-
quence of steps which only yields 1 ordering of the atoms per
airplane (whereas our experiments have used 16). Our exper-
iments show thatCheckFar performs very well in practice.
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