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Abstract

There are numerous applications where we need to
ensure that multiple moving objects are sufficiently
far apart. Furthermore, in many moving object do-
mains, there is positional indeterminacy — we are
not 100% sure exactly when a given moving object
will be at a given location.[Yamanet al,, 2004
provided a logic of motion but did not provide algo-
rithms to ensure that moving objects are kept suf-
ficiently far apart. In this paper, we extend their
logic to include a “far” predicate. We develop the
CheckFar algorithm that checks if any given two
objects will always be sufficiently far apart at dur-
ing a time interval. We have run a set of experi-
ments showing that o@heckFar algorithm scales
very well.

1 Introduction

All of us fly in airplanes. We know that flight plans are al-
most never 100% accurate. We all have a vested interest
ensuring that planes we fly in are sufficiently far from other
planes that are flying in the sky at the same time. The goal
this paper is to develop a hybridgical and constraint based
frameworkto ensure that moving objects withositional un-
certainty (where will the object be at a given time) remain
sufficiently far apart.

Our work builds on[Yamanet al, 2004 who developed
the concept of a “go-theory”. A go-theory is a finite set of
“go-atoms.” A go-atom can express statements sucBlasé
pl leaves location L1 some time between 10 and 12 and a

(o)

manet al., 2004 define interpretations and a notion of satis-
faction. Fornear(o1, 02, d, t1, t2) atom to be a logical conse-
quence of a go-theor§, for every interpretatiof that satis-
fies G, it must be the case that for all timés < ¢t < t,, the
distance between the locations@fando, at timet is less
than or equal t@l. Thus,—near(()o1,02,d,t1,t2) is a logical
consequence dF if for every interpretatior which satisfies

G there existaitimet; < t < t, the distance between the lo-
cations ofo; ando, at timet (according to the interpretation
T) is greater tham. In contrast, foffar(o1, 02, d, t1,t2) to be
entailed bysS, it must be the case that for every interpretation
7 which satisfieg7 and forevery time point; <t < t,, the
distance between the locationscgfando, at timet is greater
thand. Thus, entailment ofar() atoms is not the same as en-
tailment of eithemear() atoms or-near() literals.

In this paper, we define the semantic§af{) and develop
an algorithm callecCheckFar to check entailment of ground
far() atoms by a go-theorg. We have conducted extensive
experiments on the computational feasibilityGifeckFar —
our experiments show in a compelling way that in real world
ﬂtuationé, CheckFar will work very well indeed. In our

experiments we answered far queries in less than 0.6 seconds

fpr go theories up to 1000 atoms per object.

2 Background On go-Theories

We now provide a quick overview of go-theories frbfa-
manet al, 2004. We assume the existence of several sets of
constant symbolsR is the set of all real number§) is the

set of names of object® = R x R is the set of all points

in two-dimensional cartesian space. We assume the existence

of three disjoint sets of variable symbolgg, Vo, and Vp,

rives at location L2 at some time between 30 and 40 andanging oveR, O andP, respectively. Areal termt is any

during the flight the speed of the plane is between 5 dnd 6
They provide algorithms to check if a given plane is within

member ofR UVg. Object terms and point terms are defined
similarly. Ground terms are defined in the usual way. We now

a given region at a given time point. They also introducedefine atoms as follows.

ground atoms of the formear (o1, 02, d, t1, ta) — intuitively,
this means that at all times during the intertalto, 0, and
0o are guaranteed to be withihunits of each other.

In this paper, we introduce a predicate symbol called

far(o1, 09, d, t1, t3) — intuitively, this means that at all times
during the intervaky,ts, 0, andoy are guaranteed to be at
leastd units apart.

One may think thahear() andfar() are complements of
each other. Unfortunately, this is not true. Yaman efYak

e If 01,05 are object terms, and, ¢4, ¢t are positive real
terms, themear (o1, 02, d, t1, t2) is anatom Intuitively,
this atom says thai;, o, are within distancel of each
other during the time intervai , ¢o].

e If ois an object termpP;, P, are point terms, ant} , ¢,
are positive real terms, then(o, Pi, P, t1,t2) is an

1We built an application to manage separation between ships in
port shipping lanes.



atom Intuitively, this atom says that objeatis in the

of MT, denotedMT |= L, iff every model ofMT is also a

rectangle whose lower left (resp. upper right) corner ismodel of L.

Py (resp.P) at some point in the time intervél , ¢o].

e If o is an object term,P;, P, are point terms, and
t,t,ty,t4,v",vT are positive real terms, then
go(o, Py, Po,t,t] 5,5, v, v") is an atom called a
go atom Intuitively, this atom says that objeatleaves
point P; at some time injt;, tj’] and arrives at poinPs,
during [t; , 3], traveling in a straight line with a mini-
mum speed~ and maximum speed*.

Ground atoms are defined in the usual waygd@theoryis

a finite set ofgroundgo-atoms.Note that go-theories do not
containnear() or in() atoms.

Notation. If g = go(o, Py, P2, t; ,t ,t5 ,t4, v~ ,v"), then,

obj(g) =0, v (g9)=v, vt(g) =0T,

locy(g) = P1, ti(9)=ty, ti(9)=t],
loca(g) = Poy 15 (9) =13, 13(9) =1t3.
If G is a go-theory and is an object id, theestriction of G
to o, denoted=° is the set{g € G | 0bj(g) = o}.
An interpretationis a continuous functio : O x Rt —
P. Intuitively, Z(o, t) is o's location at time.

Definition 1 Let g = go(o, Py, Po,ty, 11, t5 ,t4 v, v)
be a ground atom and be an interpretation.Z satisfiesg
w.r.t. atime intervall’ = [ty, t5] iff:

o t; €[ty ,tf]andZ(o,t;) = P

o ty € [ty,td] andZ(o,tz) = P,

o Vit € [t1,t2], Z(o,t) is onthe line segmefP,, P]

o Vi, t' € [t1,t2], t < t' impliesdist(Z(o,t),P;) <
dist(Z(o,t’), P1), wheredist is the function that com-
putes the Euclidean distance between two points.

e For all but finitely many times inft;, s3], v =
d(|Z(o,t)|)/dt is defined and~(g) < v < v (g).

This intuitively says thaf = ¢ w.r.t. a time intervall’ =
[t1,to] Iff o starts moving at; and stops moving at and
furthermore, durindty, t], the object moves away froiR,
towards P, without either stopping or turning back or wan-
dering away from the straight line connectiftgand P,. We
are now ready to define the full concept of satisfaction.

7T satisfiesa ground literal (denoted = A) in these cases:

1. T = go(o, P1, Pty t1, t5 ,t5, v, vt) iff there exists
an intervalt, ¢2] such thatl = A w.rt. [t1,¢2].

2. T = near(oy,09,d,t1,ts) iff dist(Z(o1,t),Z(02,t)) <
dforallt; <t <ts.

3.Z E in(o, Py, Py,ty,ts) iff there are numbers €
[tl,tg], xr € [Plx,PQm} andy S [Ply,ng] such that
Z(o,t) = (x,y).

4. 7 = -Aiff Z does not satisfy.

3 far() atoms

We are now ready to extend the logic[ivamanet al., 2004
to includefar() atoms. Ifo;, 0o are objects, and, ¢1, ¢, are
real terms, theffar(o1, 02, d, t1, t2) is afar() atom.

Definition 2 (satisfaction offar() atoms) Supposef is a
groundfar atom andZ is an interpretation.Z = f iff for
all t1 <t <ty diSt(I(Ol,t), I(Og,t)) > d.

We say a go theoryr entails f iff wheneverZ = G, itis
also the case th& = f. Thefar()-entailment problemis
that of checking whether a given go-theory entailgreund
far()-atom.  The entailment of a negated near literal does
not imply entailment of the associated far atom. Similarly
entailment of a negated far literal does not imply entailment
of the associated near atom. However, the following results
hold:

Lemmal Suppose G is a go theory and sup-
pose far(01,02,d, tl,tg) and near(ol,OQ,d, t1,t2)
are ground. If G | far(o1,09,d,t1,t2), then

G ): ﬁnear(ol, 092, d, tl, tg). If G ): near(ol, 02, d7 tl, tg),
thenG ': ﬂfar(ol, 09, d, t1, tg).

The following result tells us that checking for entailment
of a groundfar()-atom is co-NP complete.

Theorem 1 Let G be a go theory andl = far(o, o', d, t1, t2)
be a ground atom. Checkingd = f is coNP-complete.

We will omit the proofs due to space constraints.

4 Far Algorithm

Finding an algorithm to solve thear()-entailment problem is
a complex task. Our solution involves the following steps.
First we partition a go-theory into cluste¢&® of go-atoms
about the same objeot Next, for any given go-atorg, we
define thetemporal certainty intervalvhich specifies a time
interval when the object is guaranteed to be on the line seg-
ment(loci(g),loca(g)]. Third, we define the@ositional cer-
tainty intervalthat finds the smallest subsegment of the above
line in which the vehicle is guaranteed to be at timéBoth
temporal and positional certainty intervals are defined w.r.t.
a given ordering of go-atoms. Our fourth step is to explain
how to solve thefar()-entailment problem when a go-theory
has only two go-atoms (one for each object) and= ¢ in
thefar() atom whose entailment we are trying to check. Our
fifth step generalizes this to the case wher ¢,. Finally,
we show how to remove the assumption tGatontains only
two go-atoms.

Due to space constraints, we will proceed under the as-
sumption that> is non-collinear as defined below. Extending

The above definition can be extended in the obvious way @ algorithm to remove this assumption is straightforward
handle quantification — in this paper, we will only consider o, implementations do not require this assumption.

the ground case.

7 satisfies (or is a model o8 set of ground atom&I T iff
7 satisfies everyl € MT. MT is consistentff there is an in-
terpretatioriZ such thaZ = MT. L is alogical consequence

2[Yamanet al, 2004 provides a technique to merge multiple
collinear go-atoms into “movements” that are non-collinear. The
same technigue can be used here.



Definition 3 A go theoryG is non-collineariff there are no
go-atomsg, ¢’ € G such thatobj(g) = obj(g¢’) and the fol-
lowing two conditions both hold:

e The intersection of line segmenitsc; (g), loca(g)] and
[loc1(g"),loca(g')] is a line segmenttP, Q] such thatP
is visited before) in bothg and¢’ and

o t;(9) <t3(g') andty (¢') < t;(g).

4.1 Temporal and Positional Certainty Intervals

In this section, we define the notions of temporal and pos

tional uncertainty.

Definition 4 (C(G, 0,C)) LetG be a go theory and be an
object id. LetC be any total ordering onG°. The set
C(G, o, C) of linear constraints associated with, o, C is de-
fined as follows:

o Vg =go(o, P, Pty 1, t5,t5, 07 ,v") € G°
-t <8, <tfandt; <E, <t}
— v X (Ey—8y) <dist(Py, P2) < vt x(Ey—S,)
o foreveryg, ¢’ € G°suchthaty C ¢': E; < Sy.
S, and I, are variables associated with an atognwhich

intuitively denote the start time and end time of the movement e

described byy. WhenG®° has only one atong,we will use
C(g) as a short hand notation.

Example 1 Letg = go(o, (40, 10), (70, 50), 12,13, 21, 21, 4,
10) and ¢’ = go(o, (70,50), (30, 80), 20,21, 30, 31, 4, 10).
Suppose&r = {g,¢'} andg C ¢'. ThenC(G, o, C) contains
the following constraints:

¢ 12<5,<13,21 < E, <21,

o 4x (E,—S,) <50<10x (E,— S,).
¢ 20< S, <21,30< E, <31,

o 4x (Ey —8y) <50<10x (Ey —8,),
o EggSg/.

Conversely, given a time poimtand a ground go-atom, we
wish to know the potential segment on the line connecting
loci(g) andlocs(g) where the object associated witttould
possibly be. To find this, we need another linear program.

Definition 6 (PCI(G,0,C,g,t)) Let G be a go theoryp

be an object, andC be a total order on atoms af’° such
that C(G,0,C) has a solution. Let g be an atom iG°

such thatTCI(G,o0,C,g) is defined andt be any time
point inTCI(G,o0,C,g). Thepositional certainty interval
iPCI(G,0,C,g,t), of atomy at timet w.r.t. orderingC is

defined as follows:

e LetC(g,t) be the set of constraints:

dg, dg,

’UJ“.q(;) <t Sg S v*q(;)

D—dgy ¢ D—dy ¢
- ng)t<Eq_t< v_(;)t

where D = dist(loci(g),loca(g)). Note that this is
a linear program whery is fixed because many terms
above (such a®, v~ (g),v*(g) are constants).

Let dgjtm be the result of solving the linear program

minimized, ; subjecttoC(G,0,C) U C(g, ).
Letd;'/* be obtained by maximizing the objective func-
tion in the above linear program (instead of minimizing).
Let P~(G,0,C,g,t) be the point exactlyd;""
units away fromloci(g) on the line connecting
loci(g),loca(g) and likewise, letP(G,0,C, g,t) be
the point exactlyl;i* units away fromloc, (g) on the
same line.

The positional certainty interval PCI(G,0,C, g,t) is the
line segment fronP~ (G, 0,C, g,t) to PT(G,0,C, g,1).
When G° has only one atony we use the shorter notation
PCI(g,t).

Lemma 2 Let g be a go atom such th&CI(g) is defined,
T be an interpretation, and supposec TCI(g). If T E g,

We now use linear programming methods to define the temthenZ (o, ) is on the line segmedC1(g, ).

poral certainty interval of a go atom.

Definition 5 (T'CI(G,0,C, g)) LetG be ago theoryy be an
object, and= be atotal order orG° such thaC (G, o, C) has
asolution. Theemporal certainty intervalTCI(G, o0, C, g),
of an atomg € G° w.rt. C is the time intervalT—, 7]
where

e T~ is the result of solving the linear program:nfaxi-
mizeS, subject toC(G, 0, C)”,

e T+ is the result of solving the linear program:nfini-
mize E, subject toC(G, 0,C)".

TCI(G,0,C,g) is undefined i~ > T.

When G° has only one atong we will TCI(g) as a short
hand notation. Intuitively,TCI(G,o0,C,g) is the interval
when we know for sure that objeatis within the line speci-
fied in go-atony.

Example 2 Let g and ¢’ be the two go atoms in Example
1. TCI(g)is [13,21]. If G = {g,¢'} andg C ¢, then
TCI(G,0,C,¢") = [21,30].

4.2 Binary go-theories about a single time point

A binary go-theory is one which contains two go-atofs=
{g,¢'} whereobj(g) = o,0bj(g’) = o’. Consider a ground
far() queryfar(o,0’,t1,t2,d) wheret; = t,. We need to
check if the distance betweenand o’ is guaranteed to be
greater tham at timet. The following lemma presents neces-
sary and sufficient conditions for entailment of such queries
under the above assumptions.

Lemma 3 Let G {g9,¢'} be a go-theory such that
obj(g) = oandobj(g’) = o and letf = far(o,0’,d,t,t)
be a ground atomG |- f iff

e t € TCI(g)andt € TCI(¢') and

e The minimum distance between line segméXiid (g, t)
andPC1I(g',t) is greater thar.

Example 3 Letg = go(o, (40, 10), (70, 50), 12,13, 21, 21,
4,10) and g’ = go(¢’, (55,20), (45,80), 17, 18,32, 33,2, 6)
be two atoms. Let’ = {g,¢'} and f = far(o,0’, 5,19, 19).
TCI(g) = [13,21] andTC1(g") = [18, 32] both include the



Time

Definition 8 (d-neighbourhood) Let g be a ground go-atom
such thatT'CI(g) is defined. Let d be a real number and
let T = [t1,t2] be a time interval such thal C T'CI(g).
Thed-neighbourhoodf g duringT’, denotedVbr(g, T, d) =
{(z,y,t) | t1 <t < tyand(x,y) € NearPts(g,t,d)}
where NearPts(g,t.d) = {(x,y) | 3(«',y') € PCI(g.t)
anddist((z,y), (z'y’)) < d

- Intuitively Near Pts(g,t,d) is the set of all pointg such that
all points on the line segme®CI(g, t) which ared units or
) - less in distance from at timet. Similarly Nbr(g, T, d) is the
Figure 1: The polygon on the left is the space envelopg of set of all points(z, y, ¢) such that it is possibie faib;j(g) to
during[19, 21] and the volume on the right is 5-neigbourhood pe withind units of (z, ) at some time in interval .

of g during time interval19, 21]. g andg’ are as defined in . . .
Examples 4,5 and 6. Theorem 3 (i) Nbr(g,T,d) is a convex set(ii) If d = 0,

thenNbr(g,T,d) = SE(g,T).

xample 5 Letg = go(o, (40, 10), (70, 50), 12,13, 19, 21,
,10) be a go atom. Thé-neighborhood of; over time in-

21

20.5-

time point 19. Attime 19, o is somewhere on the line segme
PCI(g,19) = [(58,34),(65.2,43.6)] and object 0’ is on the . , - X
ine segmenPC(g', 19) = [(54.67,21.97), (53,08, 31.84)). (evall19,21] is shown on the fa right hand side of Figure 1.
The minimum distance between these two lines is 33.73 Whiéh y :

is greater than 5 s@- = f. The following theorem states necessary and sufficient condi-

1 1 /

Consider the atomnear(o,0’,d,t,t) atom instead of tions under whici{g, '} |= f.
far(o, o', d, t,t) then the second bullet of Lemma 3 becomes:Theorem 4 Let f = far(o,0’,d,t1,t2) andG = {g,¢'} be a
“The maximum distance between line segme'€'7(g,t)  go theory wherebj(g) = o andobj(g’) = o'. G = fiff
and PCI(g',t) is less than or equal tod”. This maxi- o [t1,t2] C TCI(g) and|ty,ts] € TCI(g')
mum distance is achieved at the end point®6fI(g,¢) and Nb ot d) A SE(G 1) — 0
PCI(g,t), e.9. P~ (g,t) andP*(g',t). However the mini- o Nbr(g, [t 2], d) (9, [t1, t2]) =
mum distance betweeRC1(g,t) andPCI(g’,t) isnotnec- Thus, an algorithm to solve tHer()-entailment problem only
essarily at the end points hence its computation is more conmeeds to check both these conditioisantyla, 1988 pro-

plex. vides polynomial algorithms to check for the intersection of
) ] ) ] two convex sets — these can be used directly to check the
4.3 Binary go-theories with temporal intervals second condition above.

The complexity of computing far queries gets magnified eVelExample 6 Letg = go(o, (40, 10), (70,50), 12, 13,21, 21, 4,
more when we consider the cage< t,. For the near atom 10) andg’ = go(o’, (55, 20), (45, 80), 17, 18,32, 33,2, 6) be
this is easy because it is enough to check the distance at thgo go atoms. Le — {g, ¢’} and f — far(o, o/, 5. 19, 21).
end points of°C1(g, ¢) and as shown ifiyamanetal, 2004 Then TCI(g) — [13,21] and TCI(¢) — [18,32].

end points ofPCI(g, t) are piecewise linear functions over a gty include the time interval19,21].  Figure 1 shows

time interval. This is not enough for the far atom. For thisNbr(g [19,21],5) and SE(¢, [19,21]). It is apparent from
reason answering far queries over time intervals requires g ﬁg["e that the two do not intersect: her@e-= f.
different approach then the one[ivamanet al., 2004.

We first define thespace envelopef a go-atom. Intu- 4.4 Arbitrary Go-theories with temporal intervals
itively, the space envelope of a go-atayiis the set of all  \ye now remove the restriction thét is a binary go-theory.
(z,y, {)-triples such that there exists a modebf g in which  ping 5o introduces several complications. For any single
Z(0bj(g),t) = (x,y). In other words, it defines where and {here may be many possible total orderings associated with
when it ispossiblefor objecto to be. G°. Furthermore, for some theories we can predict the pos-
Definition 7 Let g be a ground go-atom such th#@C1(g) sible locations of an object not only in the certainty interval
is defined and leT” = [t;, 3] be any time interval such that of an atom, but also during a time interval that spans over
T C TCI(g). Thespace envelopeSE(g,T) of g during ~ several atoms. The following lemma gives the necessary and
interval T"is {(x,y,t) | t € T and(z,y) € PCI(g,t)}. sufficient conditions when this can be done.

Theorem 2 SE(g,T) is a convex set. Lemma 4 LetG be a go-theoryp be an object, and_ be a
total ord ° h th C)h lution. Sup-
Example 4 Letg’ = go(o/, (55,20), (45,80), 17,18, 32,33, L0t order onG? such thal’(¢/, o, C) has a solution. Sup

=9 oseqg; C go... C are the atoms ot:°. TCI(G,o0,C
2,6) be ago atom. The space envelopg’aver time interval POSeg: = 92 = In (G,0,C

3 - . ; ,gi) UTCI(G,0 C,gi+1)... UTCI(G,0,C,g,) is asin-
t%%ti‘ljljg;’s[qgw;l]l?i??:g:\:/éxon the left side. Itis easy to Seegle time intervaliff for everyl < i < k < j < n with

TCI(G,o,C,g) = [T, ,T;f] the following are true
We now define the set of points that are closer than a given | T+ — -
distanced to any possible location of an object at a given k k1

time. e loca(gr) = loci(gr+1)



Definition 9 Let G be a go-theoryp be an object, andC

Time

be a total order onG° such thatC(G, 0,C) has a solution. 30-
Supposes C G°. S is temporally relevanto time interval ».
[tl, tg] is iff
e The atoms ir§ satisfy the conditions in lemma 4 and *
e There are atoms g, g’ in S such thate TCI(G,o0,C i
,g)andty € TCI(G,0,C,¢") 22
Example 7 Letg; = go(o, (40, 10), (70, 50), 12, 13,21, 21, 4, 2
10) and go = go(o, (70, 50), (30,80), 20, 21, 30, 31, 4, 10) ol B

be go atoms. IfG = {¢1,92} and g1 C go then X — T
C(G,0,C) has a solution. Moreovel'CI(G,0,C,g1) = T

[13,21], TCI(G,0,C,g2) = [21,30] and TCI(G,0,C  Figure 2: The space envelope of with respect toG and
,91) U TCI(G,0,C,g5) is a single interval. Suppose 5-neighbourhood ob w.rt. G andC during time interval
T = [19, 30] then{g, g2} is temporally relevant ta". [19,30]. G andC are as defined in Example 8

We now generalize definitions 7 and 8 to accommodate non-

binary go-theories. Algorithm CheckFar(G,C,C’, f)

Definition 10 (SE(G, 0,C,T)) Let G be a go-theoryp be ~ Supposef = far(o, 0'7% b, ta); _

an object, and be a total order orG° such thaiC(G, o, C) if C(G,0,E) orC(G, o0 C ) has no solutiorthen return true
has a solution. IfT = [t;,1,] is a time interval, then  LetSo C G such thatS, is temporally relevant tgf: ]
SE(G,o0,C,T) is the set of all point$z, y, t) such that LetS,, C G° such thatS, is temporally relevant t&;¢-]

o if no suchS, or S, existsthen return false
otel f”mdt € TCI(G,0,C, g) for someg € G°, LetT1,T>» ... T, be the convex partition df, 2]
e (z,y)isonPCI(G,0,C,g,t).

for each i < n do
SE(G,0,C,T) is not defined if there is a time pointc T it Nor(G,o,C,Ti,d)NSE(G,0',C",T;]) # 0
such thatforally € G°,t ¢ TCI(G,C, g).

then return false
. . end for
Note thatSE(G, 0,C,T) is not necessarily convex when return true

T spans over multiple go atoms. We can generaNZe to _

Nbr(G,o,C,T,d) in a similar manner — these are omitted Theorem 6 Suppqse G is a gotheory and f =
due to space constraintsVbr(G, C, T, d) also may not be far(o,0’,d,t1,t2) is a ground atom. Then: f is en-
convex. We now state a theorem describing the conditiongailed by iff for every total order_ andC’ on G° and G,
under which a go theorg entails afar() atom. the algorithmCheckFar(G, C, ', f) returns “true”.

Theorem 5 Suppose G is a go-theory amdo’ are objects.

The ground atony = far(o, ¢, d, t1,t3) is a logical conse-
guence of7 iff for every pair of total ordersZ and=’ on G°
andG°’ such thalC(G, 0, C) andC(G, o/, C') are solvable:

5 Implementation

We have implemented th€heckFar algorithm in Matlab.
Our test results show th&@heckFar(G,C, ', f) runs in lin-

ear time. Note that a single run 6heckFar does not check
if G | f. In fact CheckFar(G,C,C’, f) should be exe-
cuted for every possible, C’ pair that produce a solvable
set of constraints. Although in theory this number is exponen-
tial which leads to coNP-hardness, in practice we expect this
number to be bounded by a manageable condtain gen-
eral individual movements can have some uncertainty how-
ever the order in which they are going to be accomplished is
usually well known. Figure 3 shows the running time of 3
; g far queries as we vary the number of atoms per object when
intersect - hencé’ [~ f. k = 256. Each data point is an average of 300 runs. For
As Nbr(G,o0,C,T,d) andSE(G,0',C, T) are notalways  these experiments we created go theofiewith at most16
convex, computing their intersection is tricky. We partition total orderings and all atoms are in a rectangle of size 300
T into subintervalsTy, Ty, ..., T, (we call this aconvex by 400. We queried those theories using three query tem-
partition of T') such that for ali < n, the end point off; platesQl = far(o,0',1,t1,t5), Q2 = far(o,0',50,t,t2)
is the end point of the temporal certainty interval of someandQ3 = far(o, o/, 10000, ¢1, t,) where[t,, 5] is a random
g € G° U G”. ltis easy to verify that < |G°| + |G°|.  time interval with length 10. The reader will notice that as the
For eachT;, Nbr(G,0,C,T;,d) and SE(G,0',C,T;) are distance increases, the time to compute the query decreases.
convex and we leverage this in theéheckFar algorithm In the case of Q3 which is trivially false it takes almost no
below. time to return the answer. Queries Q1 and Q2 take at most
0.6 seconds for go theories with 1000 atoms per object.

e 35 C G° such thatS is temporally relevant td¢;, t5]

e 35" C G such thats’ is temporally relevant td, , 5]
* Nbr(G’ 0, E’ [t17 t2]’ d) N SE(G7 0l7 E/7 [tla tQ]) = (Z)

Example 8 Let g; and g5 be go atoms in Example 7 and
g = go(d, (55,20), (45,80),17,18,32,33,2,6). LetG =
{91,92,¢'} and f = far(o,0’,5,19,30). If ¢ C g and
C'= { then Figure 2 showsVbr(G,o,C,[19,30],5) and
SE(G,0',’,[19,30]). The figure also shows that the sets



theory. In real-world applications such as air traffic control
and a shipping port lane management we have built, we ex-
pect such orderings to be relatively small in number even if
the number of objects is very large. The reason for this is
that usually the flight plan for each airplane consists of a se-
quence of steps which only yields 1 ordering of the atoms per
airplane (whereas our experiments have used 16). Our exper-
iments show tha€heckFar performs very well in practice.

Time (in seconds)
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