Preprocessing Search Spaces for Branch

and Bound Search

Qiang Yang * Dana S. Nauf

Abstract

Heuristic search procedures are useful in a large number of prob-
lems of practical importance. Such procedures operate by searching
several paths in a search space at the same time, expanding some
paths more quickly than others depending on which paths look most
promising. Often large amounts of time are required in keeping track
of the control knowledge.

For some problems, this overhead can be greatly reduced by pre-
processing the problem in appropriate ways. In particular, we discuss
a data structure called a threaded decision graph, which can be created
by preprocessing the search space for some problems, and which cap-
tures the control knowledge for problem solving. We show how this
can be done, and we present an analysis showing that by using such
a method, a great deal of time can be saved during problem solving
processes.
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1 Introduction

Heuristic search procedures are useful in a large number of problem domains.
Most heuristic search procedures (for example, A*, SSS* B* AO*, and
alpha-beta) have been shown to be special cases of best-first Branch-and-
Bound search [3, 5]. These procedures search several solution paths at the
same time, expanding some paths more quickly than others depending on
which paths look most promising.

One source of computational overhead during such search is the time
spent keeping track of the alternate partial solutions that the procedure is
examining. Typically, the search algorithm stores these partial solutions on
a list called the agenda, open list, or active list, in order of their estimated
cost. Any time a new partial solution is generated, its estimated cost must
be compared with the estimated costs of the other partial solutions already
on the list, in order to find the appropriate place to put it on the list. Thus,
significant computational overhead is required just to maintain the active
list.

Certain problem domains have special properties which allow us to elim-
inate this overhead. In particular, in some problem domains it is possible
to do automatic preprocessing or “compiling” of the search space, to extract
control knowledge which can be used to do the heuristic search without hav-
ing to maintain the active list explicitly. In this paper, we discuss what kind
of domains allow us to do such preprocessing, how to do the preprocessing,
how to use the information gathered from the preprocessing, and how much
time can be saved by doing this preprocessing. We also present an exam-
ple from a problem domain of particular interest to us: generative process
planning for the manufacture of machined parts.

2 Problem Characteristics

Preprocessing of the search space is possible whenever the following condi-
tions are satisfied:

1. With the exception of feasibility /infeasibility of nodes, the search space
has the same shape regardless of the particular problem instance being
considered. Thus, if P and P’ are two problem instances, then there is
a one-to-one mapping between the nodes of their search spaces S and
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S’', such that if some feasible node a in S has n children b;, 1 =1...n,
then its corresponding node a' in S’ will either have n children ¥, for
t = 1...n such that b; corresponds to b}, or be infeasible.

2. Corresponding nodes need not have the same cost—but if two nodes a
and b in S; have cost(a) > cost(d), then for the corresponding nodes a'
and b in ', we must have cost(a’) > cost(d').

Nearly all heuristic search problems satisfy the first condition above, but
fewer satisfy the second one. However, there are still many problems which do
satisfy it. One example is generative process planning for the manufacture
of machined parts. In our generative process planning system SIPS[6], a
machinable part is considered to be a collection of machinable features. For
each feature, SIPS finds an optimal plan for that feature via a best-first
Branch-and-Bound search in its knowledge base. SIPS’s knowledge base
consists of information on a large number of different machining processes,
organized in a taxonomic hierarchy. For two different machinable features,
different machining processes may have different costs—but if process a costs
more than process b on feature f, it generally also costs more than process b
on feature f' as well.

Robotic route planning[4] is another problem domain which also satisfies
the second condition. In this domain, a route map corresponds to a graph, in
which a node represents a region and an arc represents connectivity between
two regions. The cost of a node can be the time needed to pass through
the region it represents, and the feasibility of a node indicates whether or
not the region is passable. In general, although the passability of a region
may change from one problem instance to another, the relative costs of the
regions stay the same. In such cases, preprocessing is possible.

3 Threaded Decision Graphs

Suppose that for a given problem instance the search space is as shown in
Figure 1. The goal is to search for the cheapest leaf node for which all
the nodes along the path from the root are feasible. In Figure 1, suppose
the problem solver is checking the conditions associated with node ¢. If ¢
succeeds, we know that the next node to check will be f, since ¢ must be the
current minimum costly node to be checked, and f’s cost is the same as c’s.

3



Similarly, if c fails, the next node to check in the search space must be j.
This is because at the time ¢ is being checked, nodes a,b,d, e, h and k must
all have been checked, since they all have costs less than that of ¢’s. Control
information like this is independent of the particular problem instances, and
can be gathered before the problem solving process starts. Therefore, we can
assign a success thread from node ¢ to node f, and failure thread from c to
J. During the course of finding the cheapest actions to achieve a given goal,
once we reach node c, if all the conditions are satisfied, we can follow the
success thread of ¢ to get to the next node to be checked. On the other hand,
if they are not satisfied, then the failure thread at ¢ can be followed to get
to the next node to be checked. Figure 2 shows such a structure.

Figure 1: An example search space. The numbers associated with the nodes
are their cost values.

If all the deterministic control information is gathered, it is no longer
necessary to maintain an active list for storing control information. Before
problem solving starts, the information can be used to construct a data struc-
ture that contains one or more occurrences of each action, and for each action
occurrence there is a success pointer and a failure pointer. We will call such
a data structure a threaded decision graph of the original search space. Prob-
lem solving can then be completely guided by its threaded decision graph.
Figure 3 shows the threaded decision graph for the search space in Figure 1.



Figure 2: The search sapce in Figure 1 with threads inserted at node c. The
think solid line is c’s success thread, and the thick dotted line its failure
thread.

Two special nodes in Figure 3 are worth noting. The node marked “suc-
cess” is called a success node. If this node is reached through the success
threads, the search process terminates with success. The path from the root
node to success in the threaded decision graph contains the solution path
which should be returned. The node marked “fail” is called a failure node,
which marks the termination of the search process without success.

In the following, we first discuss in detail how problem solving is done
with the help of threaded decision graphs. We then consider how such a data
structure could be automatically constructed.

4 Search with the Threaded Decision Graphs

Given a search space, assume that we have constructed its threaded decision
graph. A request to solve the problem would correspond to finding out the
cheapest path in the tree. For the given threaded decision graph, this is
done by checking the conditions associated with each node, starting from the
root node. The success thread of the current node should be followed if the
node is tested to be feasible, and the failure thread should be followed if it is
infeasible. Each node is also marked as “success” or “failure” depending on



the result of its feasibility test.

If, during the traversal process, a success node is reached via a success
thread, then the search ends with success.

If a failure node is reached through failure thread, then no actions satis-
fying the criteria exist. In this case, search is terminated with failure.

After tracing down the failure thread of some node, it is possible to reach
some other node whose ancestor in the original search tree failed the feasibil-
ity test. For example, suppose node b in figure 3 is infeasible and node f is
being checked. If f is infeasible then the next node to be checked should be
J. Since b is an ancestor of j which failed, no feasibility test need be done at
J, and the failure thread of it should automatically be followed. In general,
whenever a node n is reached via some failure thread, it should always be
checked to see if n has any ancestor m which failed the feasibility test. If
so, the failure thread of node n should be followed, without conducting its
feasibility test.

To check if a given node has any infeasible ancestor is straightforward:
we can retrieve the traversal information associated with the parent node of
the given node in the original search space. It has an infeasible ancestor if
its parent node is unvisited or marked as infeasible.

5 The Construction of Threaded Decision
Graphs

In this section, we consider the problem of how the threaded decision graphs
are constructed. For simplicity, we assume the search space is finite. Later
we will discuss cases where the search space is not finite.

With the above restrictions, the following algorithm generates the threaded
decision graph. This algorithm is a modified version of best-first search.

procedure Construct
A:={a0}
(A is the active list, and aq is the root of the search space)
While A is not empty do
begin
n := pop(4);
IfA is empty, then



Failure-thread(n):=Failure-node
else Failure-thread(n):= head(A);
If n is a leaf node, then
Success-thread(n):=Success-node
else begin
A:=insert(A, Children(n));
Success-thread(n):=head(A)
end{else}
end{while}
end Construct

During preprocessing of the search space, each node in the tree appears
at the head of the active list once and only once, and the resultant threaded
decision graph has the same number of nodes as the original search space.
Since every node has only two threads, the success and the failure threads,
the number of threads of the threaded decision graph is twice the number of
nodes as that of the search space. The same argument also guarantees the
absence of cycles of threads.

6 Very Large or Infinite Search Spaces

If the search space is very large, the time it takes to preprocess it may be
prohibitive. In such cases, and in cases when the search space is infinite, we
can preprocess a finite portion of it. This partial threaded decision graph
can be created by running the algorithm Construct for a finite number of
iterations, until one or more goal states appear in the graph.

During the problem solving process, the threaded decision graph can be
used in the same manner as described in the previous sections, until a node
which has no success and failure threads is reached. At this point, conven-
tional Branch-and-Bound search can be utilized as follows: An active list is
constructed by including all of the successor nodes of the current node and
the children of the feasible nodes along the path back to the root node in the
state space. This list is sorted according to the costs of its nodes, and least
costly of these is expanded.

The construction of the threaded decision graph may also be done with the
following strategy: During search through the search space for each particular
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problem instance, every time a node is tested we will look for its success or
failure threads. If they do not exist, we will use the search procedure to
find out which node we should test next. The success or failure threads can
then be assigned to this node. In other words, the threaded decision graph
is partially built on the job.

7 Analysis

By gathering all the possible static control information beforehand, prepro-
cessing of the search space can greatly improve problem solving efficiency.
In order to see this claim more quantitatively, consider a simplified example.
Assume that the search space is in the shape of a tree with a branching factor
of m and depth k (the root of the tree has a depth of 1). To see how much
time the problem solver spends on manipulating the list of incomplete paths
using conventional search methods, consider the following two extreme cases.

In the best case, the search procedure expands only one path down the
tree. The time for manipulating the active list is O(km log m).

In the worst case, the search procedure expands the tree in a breadth
first manner. The total time spent on manipulating the list in this case is
bounded by m x Z}’;(:—l) log(i x m) = O(m*logm*).

On the other hand, search with a threaded decision graph is guided com-
pletely by the success and failure threads, and no additional computational
effort is needed for manipulating the search control information. Therefore,
the time saved by using the threaded decision graph to guide the search pro-
cedure can be between O(kmlogm) and O(m*logm*), where k is the depth
of the tree and m is the branching factor.

8 Discussion

In this paper we presented a technique for preprocessing search spaces in
order to gather control information for problem solving. We also discussed
a number of conditions under which the method works. Through complex-
ity analysis, we demonstrated that by using preprocessing, a great deal of
computational effort is saved during the search process.

Our idea of preprocessing search spaces has some similarity to that of



threading of binary trees for tree traversal[2]. However, the way such thread-
ing is done, and the way it is used, are both clearly different from our threaded
decision graphs.

As described in the paper, our technique only works on state-space graphs.
An extension of the work is to allow the search space to be an AND/OR
graph. When AND branches are allowed, the problem can be very compli-
cated depending on how the costs are assigned its nodes. In the worst case,
the threaded decision graph can contain an exponential number of the oc-
currences of nodes in the original search space. An example of this situation
is given in Figure 4. The problem is that the i** and i + 1** best paths, for
t = 1,2,..., are not next to each other, but on the left and right subtrees
respectively. One way to tackle this problem is to partially preprocess the
search space. For example, we can assign success and failure threads only to
the nodes which are in the first k& best paths.

Another problem which needs more attention is that the relative costs
of some nodes in different problems may not be the same, but may change
with different situations. However, if the cost of nodes change with different
situations in some predictable manner, and if the number of such changes is
finite, the preprocessing technique can still be made to work. For example,
it may be possible to divide the situations into separate classes, each with
a different threaded decision graph. Many domains satisfy this property,
including process planning in automated manufacturing and robotic path
planning.
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Success

Fail

Figure 3: The threaded decision graph for the search space in Figure 1. In
this figure, solid lines represent success threads, while the dotted ones the
failure ones.
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Figure 4: An example And/Or tree in the worst case situation.
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