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ABSTRACT

Finding the biggest cutter is expected to help in the
selection of the right sets of tools and the right type of cutter
trajectories, and thereby ensure high production rate and meet
the required quality level. In this paper, we describe a new
geometric algorithm to determine the biggest feasible cutter size
for 2-D miilling operations to be performed using a single cutter.
Our algorithm works not only for the common closed pocket
problem, but also for the general 2-D milling problems with
open edges. In particular:

e We give a general definition of the problem as the task of
covering a target region without interfering with an
obstruction region. This definition encompasses the task of
milling a general 2-D profile that includes both open and
closed edges.

e We discuss three alternative definitions of what it means
for a cutter to be feasible, and explain which of these
definitions is most appropriate for the above problem.

e  We present a geometric algorithm for finding the maximal
cutter for 2-D milling operations, and we give an outline of
a proof that our algorithm is correct.

1. INTRODUCTION
NC machining is being used to create increasingly complex
shapes. These complex shapes are used in a variety of defense,
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aerospace, and automotive applications to (1) provide
performance improvements, and (2) create high performance
tooling (e.g., molds for injection molding). The importance of
the machining process is increasing due to latest advances in
high speed machining that allows machining to create even
more complex shapes. Complex machined parts require several
rouging and finishing passes. Selection of the right sets of tools
and the right type of cutter trajectories is extremely important in
ensuring high production rate and meeting the required quality
level. It is difficult for human planners to select the optimal or
near optimal machining strategies due to complex interactions
among tools size, part shapes, and tool trajectories.

Although many researchers have studied cutter selection
problems for milling processes, there still exist significant
problems to be solved. Below are two examples:

e Most existing algorithms only work on 2-D closed pockets
(i.e., pockets that have no open edges), despite the fact that
open edges are very important in general 2-D milling.

e Since there are several different definitions of what it
means for a cutter to be feasible for a region, different
algorithms that purport to find the largest cutter may in fact
find cutters of different sizes.
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Figure 1: Notation and Nomenclature

In this paper, we present and implement an algorithm of
finding maximal cutter for general 2-D milling operations to be
performed using a single cutter.

¢ We formulate the general 2-D milling problem in terms of a
target region and an obstruction region. This problem
formulation encompasses the general problem of how to
mill a 2-D region that has both open and closed edges (see
Section 3 for the definitions).

e We analyze three different definitions of what it means for
a cutter to be feasible, and explain why one of these
definitions is more appropriate than the others.

e We define a “region covering” algorithm that finds the
largest cutter that can cover the target region without
interfering with the obstruction region, and we give an
outline of the correctness proof for our algorithm.

In practice, quite often multiple cutters are used to machine
a complex milling feature. We believe that finding the maximal
cutter is a necessary step in the direction of finding the optimal
set of cutters for machining a complex feature.

2. RELATED WORK

Because of the wide range of the complexity of products,
requirement for machine accuracy, different machining stages,
selecting optimal cutter size is an active area of research.
However, for the task of 2-D milling, most research has focused
on a restricted version of the problem in which the pockets have
only closed edges.

While studying how to machine prismatic parts, Chang et
al. presented an algorithm to select cutters for roughing and
finishing [3]. Their work encompasses almost all the features

found on prismatic parts, such as slots, steps. Their algorithm is
based on geometric constraints. The basic idea is trying to fit
the possible large circle into contours to select possible large
cutter to save processing time. They take both cutter change
time and geometric constraints into consideration. They stated
the problem as follows. If there exists a set of cutters, and after
machining with these cutters, only finishing machining is
needed for fillet radii corners, so the problem is to determine
the cutter with the largest radius in this set. The main concern is
to make sure that the material left behind by the cutter at each
of the convex vertices can be removed by one pass along the
boundary of the finishing cutter. A convex vertex is defined as a
vertex at which the interior angle is less than 180°. For each
convex vertex, the radius of the circle touching the edges
forming the vertex as well as the fillet circle is found. Then they
check to see if this circle intersects any of the edges of the
bounding polygon or any of the islands. If an edge that violates
the circle is found, the circle has to be modified or the radius
has to be reduced to remove this violation. The aim is to make
the circle tangential to this edge. After that, the reflex vertices
have to be handled. Reflex vertices are those vertices at which
the interior angles are greater than 180°. To solve the problem
caused by edges, perpendiculars are drawn from the reflex
vertex to each of the edges. First of all, they check to see if the
perpendicular hits the edge or not. If not, no action is taken.
Otherwise they have to check to see if that particular edge is
causing a valid constraint or not. To resolve the constraint
caused by other reflex vertices, the distances to all the valid
reflex vertices is determined. The smallest of all these distances
gives the smallest constriction within the pocket.  After
determining the cutter size, feasible cutter motion region can be
identified and the cutter movement within the region can be
optimized.

Some researchers have also made their efforts to select a
set of cutters for pocket machining. Veeramani and Gau have

2 Copyright © 2000 by ASME _



Material Side
of e,

Non-material
Side of ¢

Obstruction Edges

7
%

Figure 2: Closed and Open Edges

developed a two-phases method to select a set of cutters [4]. In
the first phase, a concept called the Voronoi mountain is
employed in order to calculate the material volume that can be
removed by a specific cutting-tool size, the material volume
remained to be machined subsequently and the cutter-paths for
each cutting-tool. In the second phase, a dynamic programming
approach is applied for optimal selection of cutting-tool sizes
on the basis of the processing time. This algorithm considers
geometric constrains as well as total processing time. It is
possible to save processing and machining cost compared to
using a single cutter to machine the entire pocket. However,
such method can only apply to a CNC machining center with
high speed of automatic tool change mechanisms.

Yang and Han presented a systematic tool-path generation
methodology in which they incorporate interference detection
and optimal tool selection for machining free-form surfaces on
3-axis CNC machines using ball-end cutters [8]. To find the
optimal tools, a comparison of all possible combination of tools
are performed. The optimal tool selection can be one cutter of
no more than 3 cutters. This optimal tool selection method is
designed aimed for any type of parametric surfaces to be
machined. There are a few problems with this algorithm. First,

because the algorithms are grid-line based, if very fine
resolution of grid is imposed, high computational power is
demanded to implement the algorithm. Second, if the number of
available tools is large, the comparison of all possible
combination of tools could be time consuming.

Sarma et al. are developing an alternative feature-free
approach to automatic CAD/CAM integration for 3-axis
machining [7]. The algorithm is based on Voronoi diagram. The
objective is to select tools for global roughing and generate tool
paths directly from the shape of the workpiece. First, slices are
generated as sequences of closed contours. Then a Voronoi
diagram is employed to generate the path of the centerline of
the tool and calculate the accessibility region on each slice. The
criterion to select a cutter in this algorithm is to select the cutter
that can sweep much of the region of the slice instead of
selecting a largest possible cutter. Because large tools have less
reachable region than small tools so they incur the penalty of
tool changes, so the optimal tool sequence should be selected
based on the total time which depends on the region that each
tool can access in each slice. To calculate the accessible region,
the overall geometry of the tool assembly including the tool
holder and the spindle is considered in this algorithm.

From the above, we can see the progress of the research on
the cutter selection problem. Different machining stages, rough
cut, finish cut and semi-rough cut have all been studied to some
extent. In terms of the complexity of the products, research has
advanced from pocket machining, given feature-based surfaces
to feature-free sculptured surfaces. In the direction of finding
the optimal set of cutters for a complex feature, finding of the
maximal cutter is a very helpful step.

3. DEFINITIONS

3.1 Problem Formulation

The most common milling problem is the problem of
cutting a given 2-D region at some constant depth using one or
more milling tools. In addition to the region to be machined
(which we call the target region T), there is also an obstruction
region O, a region which the tool should not cut during
machining. An example is shown in Figure 1. The target region
and the obstruction region may each consist of a number of non-
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Figure 3: A covered region, and locations that are permissible and not permissible.

3 Copyright © 2000 by ASME



Too small ~ Maximal Cutter  Too big

Target

/ Region

// Obstruction
s

Region
Figure 4: Maximal Tool

adjacent sub-regions:

T=Tv..uTy;
O=0,u ... U O.

We assume that the boundary of each sub-region consists of
only of line segments and segments of circles.

As shown in Figure 1(c), the target boundary Br is the
boundary of the target region, and the obstruction boundary B,
is the boundary of the obstruction region. The edges on the
obstruction boundary are called obstruction edges. We call an
edge of the target boundary a closed edge if it is coexists with
an obstruction edge; otherwise we call it an open edge. (Note
that 2-D closed pockets do not have any open edges [1, 3-4].)
Figure 2 shows examples of open and closed edges. Each
closed edge or obstruction edge separates the material (i.e. the
obstruction region) from part of the target region. The side on
which the material lies is called the material side and the other
side is called the non-material side. We will use the dashed line
to represent the open edges, the shaded regions as the
obstruction region.

Let C be a circular cutter of radius 7, and (x, y) be a point. Then
the region covered by C at the point (x, y) is the following set:

R(x,y) ={ all points (1,v) such that
\/(u—)c)2 +(v-y<r }

An example is shown in Figure 3.

A point (x, y) is a permissible location for C if the interior
of R(x, y) does not intersect with the obstruction region, or
equivalently, if O n" R(x,y)=@. An example is shown in

Figure 3.

A set of points S is coverable using a cutting tool C if for
every point p in S, there is a permissible location of C that
covers p.

A cutting tool C,, is maximal for a target region T if C, is
the largest tool that is feasible for T (refer to Figure 4 for a
graphical illustration). The size of C, will depend on how we
define feasibility. There are several alternative definitions for
feasibility, as described below:

Most existing algorithms for cutter-tool-size selection are
just used to find the "maximal cutter" without clearly stating
what it means for this cutter to be the maximal feasible cutter.
However, whether or not a cutter is feasible for a target region
can be defined based on a number of criteria; and based on
those different criteria, different maximal cutters can be
obtained. In order to make our approach clearer, we describe
the following three alternative definitions of cutter feasibility.

o Alternative 1. Feasibility Definition Based on Tool’s Ability
to Cover the Target region: A cutting tool C is feasible for a
target region T if every point in T is coverable by C. In
Figure 5, C; is an example of the maximal cutter based on
this definition.

o Alternative 2. Feasibility Definition Based on Existence of
Continuous Tool Path betwee)/Etvery' Pair of Points within
the Target Region: A cutting Tool C is feasible for a target
region T if for every pair of points (i, v) and (u}, v’) in T,
there is a continuous tool path H such that every point (x, y)
in H is a permissible location for C and the covered region

7
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Figure 5: Maximal Cutters Found by Different Alternatives of Cutting Feasibility
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of H contains (#, v) and (¥, v). In Figure 5, C, is an
example of the maximal cutter based on this definition.

o Alternative 3. Feasibility Definition Based on Passing
Through All Bottleneck Segments: A cutting tool C is
feasible for a target region T if C can pass through all
possible bottleneck segments formed by the Voronoi
diagram of 7. [1] In Figure 5, C; is an example of the
maximal cutter based on this definition.

Most algorithms in the existing literature are based on
Alternative 3. It is easy to think of taking the minimum of all
possible “bottleneck segments” generated by the Voronoi
diagram of target region T (for example, see Figure 6(a)), and
then using this minimum distance as the diameter of the cutter
as shown in Figure 6(b) [1]. However, in many milling
operations we can get the required geometric form without
forcing the cutter to go through every bottleneck. We can allow
the cutter to take a different path (Figure 6(c)), leading to the
definition of feasibility in Alternative 2. In addition, we can
jump over the bottleneck by lifting the cutter up and placing it
across the bottleneck (Figure 6(d)), leading to the definition of
feasibility in Alternative 1. For simple cases (such as the
situation shown in Figure 4), all three alternatives would give
the same answer. However, in more complicated situations
(such as the situation shown in Figure 5), Alternative 1 will give
the largest cutter size and Alternative 3 will give the smallest
cutter size.

Convex Cor

Figure 7. An Example of Un-solvable Problem

The main goal of finding the maximal cutter is to save the
manufacturing time and therefore reduce manufacturing cost.
Generally, the time spent in cutting by using a small cutter is
much longer than using a bigger cutter along with some lifting
operations or an alternative path. Since Alternative 1 gives us
bigger cutters than the other alternatives, Alternative 1 is the
definition of cutter feasibility that we think is preferable in
actual practice—and thus it is the one that we use in this paper.

With the above definition in mind, we define the cutfter
selection problem as following: given a target region T and an
obstruction region O, find the largest cutter C that can cover T.

Note that if any two closed edges meet at a convex corner
(see Figure 7 for an example), then there is no cutter that can
cover T. In this case, we say that the cutter selection problem is
unsolvable. In all other cases, it is solvable.

3.2 Additional Definitions

Intuitively, the edge region E(C) for a closed edge e, is the
region formed by sweeping the cutter C along the no-material
side of this edge. Mathematically speaking, a point p is in E{C)
if p is contained in some circle C of radius r that is tangent to ¢,
on the non-material side of e;. For an obstruction region, O}, the
edge region E; for this obstruction region is the regular union of
all Es of the closed edges on the boundary of this obstruction
region. We use E(C) to denote the regular union of all edge
regions for a given problem. Figure 8(c) shows an example of
an edge region.
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The maximal swept cutter for a closed edge e; is the largest largest cutting tool C such that for every i, E(C) does not

cutting tool C; such that E(C) does not intersect the interior of intersect the interior of O. An example of a maximal swept
0. The maximal swept cutter for all of the closed edges is the cutter is shown in Figure 8(b).
Target Obstruction Swec?ping Operation and Too big
Maximal Swept
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Figure 8: Examples of E, F, D, L, etc,
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Intuitively, the offset region Fy(C) is the region formed by
offsetting the obstruction subregion O; using the radius 7 of the
cutter C. Mathematically speaking, a point p is in Fy(C), if pe
O; and the minimal distance from p to any point in O is less or
equal to 7. The regular union of all F;(C)s is called the offset
region F(C) for all obstruction regions. Figure 8(d) shows an
example of an offset region.

Intuitively, the distant region consists of all points in the
target region that are “far away” from the obstruction region.
Mathematically, the distant region is the following set of points:

D(C)=T-" (E(C)V F(C))-
Figure 8(e) shows an example of a distant region.

The following proposition follows immediately from the
above definitions:

Lemma 1 (Property of Distant Region). D(C) is coverable by
the maximal swept cutter C.

Proof. Let p be any point in D(C). Since the distance from p to
any obstruction region is greater or equal to the radius of C, p is
a permissible location for C. (m]

F o

i

%\&k Obstruction Region

Offset Region

Target Region

Leftover Subregion
Part of Edge Region

The Leftover Subregion
Can be Covered by this
Cutter

Figure 10: Some Leftover Subregion Can be Covered
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The leftover region is the set of all points L(C) such that
L(C)=Tn" (F(C)-" E(C))-
This region may consist of a number of non-adjacent sub-
regions:

L(O) =Li(O)v ... u L(O).

Below we give several examples of what these leftover
subregions can look like:

e  One kind of leftover subregion can occur when two closed
edges meet, as shown in Figure 9. However, this kind of
region will not occur if the angle between the two closed
edges is greater than 60 degrees.

¢ Another kind of leftover subregion can occur when an edge
of an obstruction region occurs slightly outside the target
region, as shown in Figure 9. However, this kind of region
will not occur if the distance between the edge and the
target region is greater than the radius of the cutting tool.

3.3 Some Properties of the Leftover Region
The following theorem is the basic property on which our
algorithm is based:

Theorem 1: Let C be any cutter whose radius 7 is small enough
that E(C)n’ O =@ . Then for every point pe T -" I(C), p is
coverable by C.

Proof. Let p be any point in T —* [L(C). Note that
T-"L(C)-"D(C)-"E(C)

=T -"L(C)~(T =" (E(C)J F(C))-" E(C)

=—(T "' (F(C)~" E(C)+(T " (F(C)-E(C))

={.

Thus, p must be in D(C) or E(C). If pe D(C), then from
Lemma 1, p is coverable by C. If pe E(C), then it follows from
the definition of E(C) that p can be covered by C. o

If p is a point in the leftover region L(C), then p may or
may not be coverable by C. Below are some examples:

If L(C) is a sub-region of L(C), then it is a subset of the
offset region F;(C). If Ly(C) does not intersect with any other
offset region, then in most cases L(C) can be covered by the
cutter C (the only exception is when the offset region Fy(C) is
self-intersecting). See Figure 10 for an example.

If L(C) is a sub-region of L(C), then it is a subset of the
offset region F(C). If L(C) intersects some other offset region,
then sometimes L(C) can be covered by the cuiter C and
sometimes it cannot. Figure 13 shows an example of the
leftover region that cannot be covered.

4. ALGORITHM FOR FINDING THE MAXIMAL CUTTER

As described below, our main algorithm for the maximal
cutter selection problem is called
Find_Maximal_Cutting_Tool (FMCT for short). For every
closed edge g, this algorithm calls the algorithm
Maximal_Swept_Cutter_For_Closed_FEdge to find the
maximal swept cutter C. Then we use the smallest of those
maximal swept circles (denoted by Cg) to sweep along all
closed edges in order to split the whole region into edge region,
distant region and the leftover region. For the leftover region,
the algorithm Maximal_Cutter For_Leftover_Region is called
to find the maximal cutter C; that can cover it. The final result
for the target region is the smaller one of Csand Cy,

Procedure Find_Maximal_Cutting_Tool(T, O)
/T is the target region, and O is the obstruction region.

1. Initialize dg=co, dj=cc;

2. Por each closed edge a and obstruction edge b:
= d -

Maximal_Swept_Cutter_For_Closed_Edge(a,b)
(see Section 5 for details);
* dy=min{d, ds};
//ds is the diameter of the maximal swept circle Cg for
all closed edges.

1. Let E be the edge region produced by using the cutter
with diameter of ds performing a sweeping operation
along all closed edges.

2. Let F be the offset region of all obstruction regions by

using rg=dy/2;

Let D be the distant region, D=T-'F g

Let L be the leftover region,

5. If [#@:
dr=Maximal_Cutter_For_Leftover_Region(T,0,1,

dy) (see Section 6 for details);

//d; is the diameter of the maximal circle C that can

cover the leftover region.

6. Return d=min{ d;, d; };

FEm

5. FINDING THE MAXIMAL SWEPT CUTTER FOR A
CLOSED EDGE

In the algorithm Find_Maximal_Cutting_Tool described
in Section 4, the purpose of the subroutine
Maximal_Swept_Cutter_For_Closed_Edge is to solve the
following problem: given a closed edge a and an obstruction
edge b, find the largest circle Y with diameter d that can be
swept along a without intersecting b.

There are several possible cases, as shown in Figures 11
and 12. In these figures, the closed edge a, with end points p;
and p,, is the edge along which the circle ¥ (of diameter d)
should be swept tangentially. The obstruction edge b’, with end
points ¢; and ¢, is the edge that ¥ cannot intersect during the
sweeping operation. As defined in Section 3, each

8 Copyright © 2000 by ASME
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Figure 11: Finding the maximal cutter when the closed edge 4 is a line segment.

closed/obstruction edge has a material side and a non-material
side. We define the positive normal direction N of a to be the
direction vector that is perpendicular to a and points toward the
non-material side of a. We say an obstruction edge b is on the
material side of a closed edge a if and only if every point on b
is in the material side of a. As shown in Figure 11, if 4 is a line
segment, we draw two infinite rays, /i and I, that are
perpendicular to a along N, pointing to the non-material side of
a and starting from each end point of a. As shown in Figure 12,
if a is an arc segment, we draw two infinite rays, /4 and J,, from
each end point radially, pointing to the non- material side of 4.
In both cases, {; and [, will divide the whole non-material side
of a into three sub-regions. We call those regions I, II, III, as
shown in Figures 11 and 12.

Procedure Maximal_Swept_Cutter_For_Closed_Edge (a, b)
1. Split b into segments such that each segment is completely

contained in regions I, I, III, or the material side of a;
2. d= LN
3. For every segment b’ of b, do the following:
= If b’is on the material side of a then we don’t need to
consider b’, therefore d’= oo,
= Else:
» Ifais aline segment, d’ =
Maximal_Swept_Circle_For_Line(a, b,
» Ifais an arc segment, d’=
Maximal_Swept_Circle_For_Arc(a, b);
*  d=min{d, d’};
Procedure Maximal_Swept_Circle_For_Line(a, b’
1. Ifb’isin region I, return d = distance between a and b’
/Because in this region, when the circle sweeps along a,
the distance between a and b’ will be the maximal diameter of
the circle. An example is shown in Figure 11(b).
2. Ifbisinregion Il or III.

b' 1

Figure 12: Finding the maximal cutter when the closed edge a is an arc segment.
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= Try to find a circle Y that is tangent to both b’ and ¢ at
one of the end points of @ and the center of Y is located
on [y(for region II) or L(for region III), then return d
={the diameter of Y},
//An example is shown in Figure 11(c).
= If such a circle does not exist, then construct two
circles passing through two end points of b’ such that
centers of circles are located on /; or 4, and circles are
tangent to a at the one of its end points. Return the
diameter of the smaller circle.
//An example is shown in Figure 11(d).

Procedure Maximal_Swept_Circle_For_Arc(a, b)
1. Ifb’isinregion [, return d= the distance of @ and b’};
//Because in the region, when the circle sweeps along a, the
distance between a and b’ will be the maximal diameter of the
circle. An example is shown in Figure 12(b).
2. Ifb’is in the region II or II], from each end point of a draw
two rays tangent to a and pointing to the non-material side
of a, called B, B’
=  Try to find a circle Y that is tangent to both b’ and B
(or B’) at the start point of B (or B’) and the center of ¥
is located on ; (for region II) or I, (for region III), then
return d ={the diameter of ¥};

//An example is shown in Figure 12(c).

» If such a circle does not exist, then construct two
circles passing through two end points of b’ such that
circle centers are on Iy or 1, and they are tangent to B
(or B’) at the start point of B (or B’). Return the
diameter of the smaller circle.

//An example is shown in Figure 12(d).

6. FINDING THE MAXIMAL CUTTER FOR LEFTOVER
REGION

If the leftover region in the Step 6 of
Find_Maximal_Cutting_Tool described in Section 4 is not
empty, then the maximal swept cutter Cy found by our algorithm
may not be able to cover the leftover region. Therefore, we
need to reduce the cutter diameter to make sure that the smaller
cutter is found that can cover the leftover region. The purpose
of the subroutine Maximal_Cutter_For_Leftover_Region is to
find a maximal cutter that can cover the leftover region.

Procedure Maximal_Cutter_For_Leftover_Region(T, O, L,
ds)

/IT is the target region, O is the obstruction region, L is the
leftover region and ds is the diameter of the maximal swept

Obstruction
— Region
| Target
Region
| Closed
Edge
Maximal swept
cutter Cg =

7

%

(a) Problem Illustration

Edge Region

— Distance Region

¥4 —Leftover Region

Maximal circle C;,

leftover region

(c) Sweeping Operation

Figure 13: An example of the operation of our algorithm.
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(b) Maximal Swept Cutter for All Closed Edges
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(d) Maximal Cutter for Leftover Region
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cutter.

1. Let dL = ds.

2. Let U be a finite region that encloses obstruction and target
regions.
//Tn practice we compute U by computing bonding box of T
J'o.

3. Compute offset region F for the obstruction region O.

/MTn practice we compute F by offsetting edges that define
the boundary of O by a distance of dj/2.

4. K=OU'F.

//K is a set of locations that are not permissible for cutter
with diameter d;.

5. P=U-"K.

//P is set of permissible locations for cutter with diameter
dr.

6. Compute the covered region S by placing cutter with
diameter dy, in every point pin P. S = {p’ | p in P and Ip’-pl
<dy2}

//Tn practice this step is computed by offsetting edges that
define the boundary of S by a distance of dp/2.

7. If the left over region L is included in S, then return dy.

8. Otherwise, set dy, = di — d; and goto Step 3.

/I d; is a constant set by the user. It should correspond to the
increment in tool sizes that are available in a shop floor.

7. DISSCUSSION OF CORRECTNESS OF OUR
ALGORITHM

For a solvable problem, our algorithm exhibits the
following two properties:

e Property I: If the leftover region in Step 6 of FMCT is
empty, then the diameter found by FMCT is exactly the
theoretically maximal diameter.

If there is no leftover region, then the result found by
FMCT will be the maximal swept cutter for all closed
edges. Therefore, as a direct consequence of Theorem 1,
the result found by FMCT will be able to cover the target
region. Therefore, the result found by FMCT is feasible.
This result was found by taking the minimum of all the
maximal swept cutters for various closed edges. Therefore,
a bigger cutter would intersect with O during the sweep
along some closed edge. Therefore no bigger cutter will be
feasible. Since the result returned by FMCT is always
feasible and maximal, FMCT is sound for every solvable
problem. By the nature of FMCT algorithm, it always
returns a result for a solvable problem, therefore FMCT is
complete. These two characteristics make FMCT a correct
algorithm that returns exactly the theoretically maximal
diameter if the leftover region in Step 6 of FMCT is empty.

e Property 2: If the leftover region in Step 6 of FMCT is not
empty, then (1) result returned by FMCT is feasible, and

(2) the difference between the theoretically maximal
diameter and result returned by FMCT is smaller than d;.

Let d be the results produced by FMCT. From the nature of
FMCT we know that d < dg (where dy is the diameter of the
maximal swept cutter). Therefore, as a direct consequence
of Theorem 1, d can cover the region 7-"L.

Procedure Maximal_Cutter _For_Leftover_Region only
allows cutters that can cover L. Therefore d can cover the
target region and is feasible.

If d is equal to dj, then d is the exXact solution and there is
no difference between theoretical answer and the result found
by FMCT. If d < dj, then d + d; cannot be a feasible solution.
Otherwise, FMCT would have returned this solution. Therefore,
in this case, theoretically maximal diameter d'< d + d,
Therefore the difference between the theoretically maximal
diameter and result returned by FMCT is smaller than d;.

8. IMPLEMENTATION AND EXAMPLES

We use the example shown in the Figure 13 to illustrate the
operation of our algorithm. The target region and obstruction
regions are shown in Figure 13(a). The details are as follows:

¢  First we need to find the maximal swept cutter Cy that can
be swept along all closed edges (shown in Figure 13(b)).

e Then we use Cs to perform sweeping operation along all
closed edges to divide the whole region into the edge
region and the distant region (shown in Figure 13(c)).

e  We then get the leftover region. For the leftover region, we
will find the maximal circle C; that covers it and does not
interfere with obstruction region, as shown in Figure 13(d).

e The maximal cutter that covers the target region without
interfering with the obstruction region will be the minimal
one of Cy and Cy.

We have finished implementation of finding the maximal
swept cutter. The core program work is done by using C++ on
UNIX system. Meanwhile, we are creating the user’s interface
by JAVA applet. The user can input line and arc segments on
the web page and thus generate the profile of a given 2-D
milling problem. Then by executing the core program, the right
size of the maximal cutter can be found automatically. We are
also working on linking our core code with the ACIS toolkit
such that we can show the 3-D version of the maximal cutter
selection problem.

Some testing examples of our program are shown in Figure

14-17. In those figures, the maximal cutters found by using our
algorithm are shown.
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9. CONCLUSION AND DISCUSSION

In this paper, we have presented a geometric algorithm for
finding the maximal cutter size for a 2-D milling process. Our
algorithm has the following properties:

o It finds the largest cutter that can cover the region to be
machined without interfering with the obstruction region.

¢ In addition to solving traditional pocket-milling problems,
our algorithm can solve a wide variety of milling problems
that involve open edges. Consideration of open edges is
extremely important when near-net shape castings are used
as starting stocks.

e Our algorithm uses a cutter feasibility definition based on
cutter's ability to cover the target region. Therefore, it can
find larger cutters than the ones found by algorithms that
are based on alternative definitions of feasibility (e.g.,
either based on covering every bottleneck in the target
region or existence of continuous path between every pair
of points in the target region).

The maximal cutter that we have found is based on the
geometric constrains. In actual machining, we will need to
consider several other cutting constrains. Here are some
examples:

e In facing operations, there is no benefit of using a bigger
cutter than the three time of the width of the target region.

e There are several cutting parameters that may influence the
selection of cutter size. We cannot use cutters that will
conflict with the machining constraints. For example, we
know that the material removal rate is proportional to the
diameter of the cuter in milling operations. As a result, if
we use a bigger cutter, then we can have higher material
removal rate, thus we can save the cutting time. On the
other hand, the maximum power of a machine is constant.
The required cutting power is proportional to the metal
removal rate. Therefore the maximal diameter is actually
limited by the maximum machine power.

We are currently extending our algorithm to perform cutter
selection optimization by considering multiple cutters.
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