CONCLUSION

Machine-tool chatter remains a significant factor influencing the surface finish and the increased
in cost for machining. If our goal as researchers is to provide manufacturers effective modelling
tools that create robust productivity and drive performance to new levels of customer demands,
the prediction and elimination of chatter require the examination of both the deterministic and
stochastic stability of the machining process. Efforts in the literature are so far mostly devoted
to deterministic analyses. In this paper sufficient conditions for stable machining subjected
to nonlinear deterministic and linear stochastic restoring force have been derived. Explicit
expressions for the onset of chatter at a Hopf bifurcation and the largest Lyapunov exponent
during orthogonal machining operation are obtained.
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ABSTRACT: In this paper, we present a geometric algorithm of finding the maximal cutter for 2-D
milling operations. Our algorithm works not only for the common closed pocket problem, but also
for the general 2-D milling problems with open edges. We define the general 2-D milling process in
terms of a “target region” to be machined and an “obstruction region” that should not intersect with
the cutter during machining. Our algorithm finds the largest cutter that can cover the target region
without interfering with the obstruction region. Finding the biggest cutter is expected to help in the
selection of the right sets of tools and the right type of cutter trajectories, and thereby ensure high
production rate and meet the required quality level.

INTRODUCTION

Selecting the right sets of tools and the right type of cutter trajectories is extremely important in
order to ensure high production rate and meet required quality levels. For this reason, how to select
an optimal cutter (or an optimized set of cutters) is an active topic of research in the process
planning area. [1-6] Finding the maximal cutter is one of the most significant steps in order to
optimize the cutters. Although many researchers have studied maximal-cutter-finding problems for
milling processes, there still exist significant problems to be solved. Below are two examples:

¢ Most existing algorithms only work on 2-D closed pockets (i.e., pockets that have no open
edges), despite the fact that open edges are very important in general 2-D milling.

e Since there are several different definitions of what it means for a cutter to be feasible for a
region, different algorithms that purport to find the largest cutter may in fact find cutters of
different sizes.

In this paper, we present an algorithm for finding the maximal cutter size for general 2-D milling
process. This algorithm overcomes the above-described problems.
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PROBLEM FORMULATION

Finding Maximal Cutter for General 2-D Milling Process

The most common milling problem is the problem of cutting a given 2-D region at some constant
depth using one or more milling tools. In addition to the region to be machined (which we call the
target region P), there is also an obstruction region O (regions which should not interfere with tool
during machining). An example is shown in Figure 1. Neither the targer region nor the obstruction
region needs to be completely connected; in general, they can consist of several unconnected sub-
regions. The boundary of each sub-region is composed by connected edges; and the edges we
consider in this paper are either line segments or segments of circles.
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Figure 1: Notation and Nomenclature

We classify the boundaries of the two regions into two different kinds of boundaries: a target
boundary Bp (the boundary of the target region), and an obstruction boundary B, (the boundary of
the obstruction region). Figure 1(c) shows an example of the target boundary and obstruction
boundary. The edges on the obstruction boundary are called obstruction edges. We call an edge of
the target boundary a closed edge if it is also an obstruction edge; otherwise we call it an open edge.
(Note that 2-D closed pockets do not have any open edges. [1, 3-4]) Each closed edge or obstruction
edge separates the material (i.e. part of the obstruction region) from part of the target region. The
side on which the material lies is called the material side and the other side is called the non-
material side. We will use the dashed line to represent the open edges, the shaded regions as the
obstruction regions.

Preliminary Definitions

1. Covered Region: Let T be a circular cutter of radius », and (x,y) be a point. Then the region
covered by T at the point (x,y) is the following set:

Rx,y) ={ all points (u,v) such that \/(u -x)+(v-p)P <r } ¢))
An example is shown in Figure 2.

2. Perrr.xissible Loc_ations: A point (x,) is a permissible location for T if the interior of R(x,y) does
not intersect with the obstruction region. An example is shown in Figure 2. This can be

mathematically expressed as: O N R(x,y) = ¢ 2)
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Figure 3:Three Maximal Cutters Found by Different Alternatives of Cutting Feasibility

3. Cutter Feasibility for a Target Region: Most existing algorithms for cutter-tool-size selection are
just used to find the "maximal cutter" without clearly stating why those cutters are biggest.
However, whether or not a cutter is feasible for a target region can be defined based on a number
of criteria; and based on those different criteria, different maximal cutters can be obtained. In
order to make our approach clearer, we describe the following three alternative concepts of cutter
feasibility.

o Alternative 1. Feasibility Definition Based on Tool's Ability to Cover the Target region: Tool
T is feasible for target region P if, for every point (4,v) in P, there is a permissible location
(x,y) for T such that (4,v) is in R(x,y). An example of the maximal cutter based on this
definition is shown in Figure 3(a).

o Alternative 2. Feasibility Definition Based on Existence of Continuous Tool Path between
Every Pair of Points within the Target Region: Tool T is feasible for target region P if, for
every pair of points (¥,v) and (¥ v/) in P, there is a continuous tool path L such that every
point (x,y) in L is a permissible location for T and the covered region of L contains (,v) and
(u'v'). An example of the maximal cutter based on this definition is shown in Figure 3(b).

o Alternative 3. Feasibility Definition Based on Passing Through All Bottleneck Segments:.
Tool T is feasible for target region P if T can pass through all possible bottleneck segments
formed by the Voronoi diagram of P.' An example of the maximal cutter based on this
definition is shown in Figure 3(c).

4, Maximal Tool: Tool T,, is maximal for target region P, if and only if T, is feasible for P, and any
tool T larger than T, is not feasible for P (refer to Figure 4 for a graphical illustration). The size
of T,, will depend on which alternative of the feasibility definition is used (more on this later).

Too small Maximal cutter Too big

/ Target Region

=== / p Obstruction Region

Figure 4;: Maximal Tool
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5. Sweeping operation: The sweeping operation is the operation in which we move a circle along a
closed edge or an obstruction edge on its non-material side tangentially. Figures 5(a) and 5(b)
show an example.
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6. Maximal Swept Circle for Closed Edges: The maximal swept circle for a closed edge is the
maximal tangent circle that can be moved in the non-material side of the edge without interfering
with any obstruction. An example of the maximal swept circle is shown in Figure 5(a).

7. Suppose we are given a cutter T, a target region P and an obstruction region O. Then:

e Swept region: The swept region S is part of the target region that will be covered by
sweeping a tool along all closed edges. For examples, see Figure 5(b, c).
e Unswept region: The unswept region G is the part of the target region that will not be
covered by sweeping the tool along the closed edges (see Figure 5(c)). G is given by
G=P-"§ 3)
e Unsafe region: The unsafe region Q is the part of the unswept region G such that the shortest
distance from every point in that region to the obstruction boundary is smaller than the radius
of the cutter used for the sweeping operation (see Figure 5(c)). If F is the offset region using
r along all obstruction edges, then the unsafe region is given by
Q=FnN'G 4)
e Safe region: The safe region W is part of the target region such that the distance from every
point in ¥ to the obstruction boundary is greater than » (see Figure 5(c)). W is given by

w=G-"Q &)

OVERVIEW OF OUR APPROACH
Basic Idea behind Our Approach

Most algorithms in the existing literature are based on alternative 3 of our cutter feasibility
definition. It is easy to think of taking the minimum of all possible “bottleneck segments” generated
by the Voronoi diagram of target region P (for example, see Figure 6(a)), and then using this
minimum distance as the diameter of the cutter. But in many milling operations we can get the
required geometric form without forcing the cutter to go through every bottleneck (Figure 6(b)). We
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Figure 6: Different Cutter Path with Different Maximal Cutter

can allow the cutter either to take a different path (Figure 6(c)), or to jump over the bottleneck by
lifting the cutter up and placing it across the bottleneck (Figure 6(d)).

The main goal of finding the maximal cutter is to save the manufacturing time and therefore reduce
manufacturing cost. Generally, the time spent in cutting by using a small cutter is much longer than
using a bigger cutter along with some lifting operations or an alternative path. Hence, we believe
that feasibility definition based on the alternative 1, is an attractive candidate for cutter selection and
cutter path generation. We use feasibility definition based on alternative 1 in our research work.

Algorithm for Finding Maximal Cutter

We define the cutter selection problems as following: given a target region P and an obstruction
region O, find the largest cutter T that can cover P. As described below, the main algorithm is called
Find_Maximal_Cutting_Tool. For every closed edge 4, it calls the algorithm
Maximal_Swept_Circle_For_Edge to find the maximal swept circle 7. Then we use the smallest of
those maximal swept circles (denoted by T) to sweep along all closed edges in order to split the
whole region into a swept region and an unswept region. We can divide the unswept region into safe
and unsafe regions using the equations in Section 2.2. For the unsafe region, we call the algorithm
Maximal_Cover_Circle_For_Point to find the maximal cutter 7, that can cover it. The final result
is the smaller one of T;and T,.

Procedure Find_Maximal_Cutting_Tool(P, O)
//P is the target region, and O is the obstruction region.
1. Initialize d;/=c0;
2. For each closed edge 4 and obstruction edge C:
v d'= Maximal_Swept_Circle_For_Edge(A,C) (see Section 4 for details);
* d;=min{d’ di};
//d; is the diameter of the maximal swept circle for all closed edges.
3. Let S be the swept region produced by using the cutter with diameter of d; performing a

sweeping operation along all closed edges. More specifically, let S = la]:; {T.}, where E.is the

set of all closed edges, and T, is the swept region generated by sweeping T along a closed
edge e;

4. Let G =P - S be the unswept region;

5. Let F be the offset region of all obstruction edges by using the radius of T. More specifically,
let F=U '{Fe} , where E, is the set of all obstruction edges, and F, is the offset region of an

eck,

obstruction edge e;
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6. Divide G into safe region W and unsafe region Q. We can get Q by taking the regular
intersection of the offset region F and the unswept region G, as shown in Equations 2.4 and
2.5;

7. While Q is not empty, do:

"  Arbitrarily choose a point p, p € g;

*  d" = Maximal_Cover_Circle_For_Point(p, P, O) (see Section S for details);
//find the maximal circle d" that can include p and does not interfere with O.

» d;=min{d"d>},;

s O=0-0,, where Q, = the region covered by d;

" repeat;

//find the maximal circle d;that can cover the complete unsafe region.

8. Return d =min{ d;,d: };

FINDING THE MAXIMAL CUTTER FOR A CLOSED EDGE

In the algorithm Find_Maximal_Cutting Tool, the purpose of the subroutine
Maximal_Swept_Circle_For_Edge is to solve the following problem: given a closed edge 4 and an
obstruction edge C, find the largest circle ¥ that can be swept along 4 without intersecting C.

There are several possible cases, as shown in Figures 7 and 8. In these figures, the closed edge 4,
with end points p; and p;, is the edge along which the circle Y (of diameter d) should be swept
tangentially. The obstruction edge C’, with end points ¢; and ¢, is the edge that ¥ cannot intersect
during the sweeping operation. As defined in Section 2, each closed/obstruction edge has a material
side and a non-material side. We define the positive normal direction N of 4 to be the direction
vector that is perpendicular to 4 and points toward the non-material side of 4. We say an
obstruction edge C is on the material side of a closed edge 4 if and only if every point on C is in the
material side of 4. As shown in Figure 7, if 4 is a line segment, we draw two infinite rays, /; and /;,
that are perpendicular to 4 along ¥, pointing to the non-material side of 4 and starting from each end
point of 4. As shown in Figure 8, if 4 is an arc segment, we draw two infinite rays, /; and [, from
each end point radially, pointing to the non-material side of 4. In both cases, /; and [, will divide the
whole non-material side of 4 into three sub-regions. We call those regions I, I, III, as shown in
Figures 7 and 8.
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Figure 7: Finding the maximal cutter when the closed edge 4 is a line segment.
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Procedure Maximal_Swept_Circle_For_Edge (4, C)
1. Split C into segments such that each segment is completely contained in regions [, I, III, or the
material side of 4;
2. d= m;
3. For every segment C’ of C, do the following:
s IfC'is on the material side of 4 then we don’t need to consider C’, therefore d'= o ;
= Else:
» IfA is a line segment, d' = Maximal_Swept_Circle_For_Line(4,C’);
» If A is an arc segment, d' = Maximal_Swept_Circle_For_Arc(4,C));
= d=min{dd'};

Procedure Maximal_Swept_Circle_For_Line(4,C))

1. IfC'is in region [, return d = distance between 4 and C*;
//Because in this region, when the circle sweeps along 4, the distance between 4 and C’ will be
//the maximal diameter of the circle. An example is shown in Figure 7(b).

2. If C'is inregion [T or III:

* Try to find a circle Y that is tangent to both C’ and 4 at one of the end points of 4 and the
center of Y is located on I,(for region II) or /;(for region III), then return d={the diameter of
¢ H
//An example is shown in Figure 7(c).

s [f such a circle does not exist, then construct two circles passing through two end points of C’
such that centers of circles are located on /; or I3, and circles are tangent to 4 at the one of its
end points. Return the diameter of the smailer circle.

//An example is shown in Figure 7(d).

Procedure Maximal_Swept_Circle_For_Arc(4,C")
1. IfC'is in region , return d= the distance of 4 and C'};
//Because in the region, when the circle sweeps along 4, the distance between 4 and C’ will be
//the maximal diameter of the circle. An example is shown in Figure 8(b).
2. If C'is in the region II or III, from each end point of A4 draw two rays tangent to 4 and pointing
to the non-material side of 4, called B, B":
* Try to find a circle Y that is tangent to both C'and B (or B’) at the start point of B (or B°) and
the center of Y is located on /, (for region II) or I, (for region III), then return d={the diameter
of I};
//An example is shown in Figure 8(c).
= If such a circle does not exist, then construct two circles passing through two end points of C"
such that circle centers are on /; or [, and they are tangent to B (or B’) at the start point of B
(or B’). Return the diameter of the smaller circle.
//An example is shown in Figure 8(d).
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Figure 8: Finding the maximal cutter when the closed edge is an arc segment.
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FINDING THE MAXIMAL CUTTER FOR UNSAFE REGION
In the algorithm Find_Maximal_Cutting Tool, the purpose of the subroutine
Maximal_Cover_Circle_For_Point is to solve the following problem: given a point (x,,,) and a set

of obstruction edges, find the maximal circle T such that (x,y,) is contained in 7, and T does not
intersect with any obstruction edges. Figure 9 gives an example.

>\ = Maximal circle
Obstruction el -t
Edges - %

Point A

e | Unsafe region

(x,,y,l) f:thyl)

- (xzry 2)
Figure 9: Maximal Cover Circle

We formulate this problem as a non-linear optimization problem.” T is the circle with center (xo,y0)
and radius . The variables for the optimization problem are xy, yo and ». The objective is to
maximize r, subject to the following constraints:

1. The circle T should include the point 4, i.e., (x, = x,)* +(y, = ¥,)* <7%;

2. The circle T should not intersect any linear obstruction edge: Suppose !/ is a linear obstruction
edge with end points (x;, y;) and (x; y;); let I’ be the line containing e; let v be the line
perpendicular to /’ that contains (x,,y0); let (x;y;) be the intersection point of /” and v; and let d be
distance from (xy,y9) to I'. If (x,y,) is in / (i.e., d = r), then we need the following constraints to
eliminate the intersection between the circle and the obstruction edge:

(x, _x°)2 +(n _yo)z >r?; (x, _xo)2 +(y, _)’0)2 2r

3. The circle T should not intersect any arc obstruction segment: Suppose a is an arc obstruction
edge with end points (x;, y;), (x2 y3), radius r., and center point (x.y.); let a’ be the circle
containing a; let / be the line containing (x.,y.) and (xo,y4); let (x;y;) be the intersection point of a’
and /; and let 4 be distance from (xgy9) to a’. If (x,y) is in a (i.e., d 2 r), then we need the
following constraints to the eliminate intersection between the circle and the obstruction edge:

(x, _-"70)2 +(» —yo)z 2r?; (x, _xo)2 +(y, —yo)z >r.

4. The circle’s radius should be non-negative: » > 0.

IMPLEMENTATION AND EXAMPLES

We use the example shown in the Figure 10 to illustrate the operation of our algorithm. The target

region and obstruction regions are shown in Figure 10(a). The details are as follows:

e First we need to find the maximal circle T that can be swept along all closed edges (shown in
Figure 10(b)). Then we use T, to perform sweeping along all closed edges to divide the whole
region into two regions: the swept region, and the unswept region, as shown in Figure 10(c).
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Figure 10: An example of the operation of our algorithm.

o In the unswept region, there are two types of sub-regions, i.e., the safe region and the unsafe
region. For the unsafe region, we should find the maximal circle T; that cover it and does not
interfere with any other edges on the obstruction boundary, as shown in Figure 10(d).

e The maximal circle that covers the target boundary without interfering with the obstruction
boundary will be the minimal one of T; and T5.

Some other examples are shown in Figure 11. In Figure 11(a), after performing the sweeping

operation, we still need to find the maximal circle that covers the unsafe region before we can obtain

the final result. But in Figure 11(b), there is no unsafe region left after the sweeping operation, we
can obtain the final result directly.

Maximal
Cutter for
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Figure 11: Other Examples
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CONCLUSION AND DISCUSSION

In this paper, we have presented a geometric algorithm for finding the maximal cutter size for a 2-D

milling process. Our algorithm has the following properties:

e It finds the largest cutter that can cover the region to be machined without interfering with the
obstruction regions.

e In addition to solving traditional pocket-milling problems, our algorithm can solve a wide variety
of milling problems that involve open edges. Consideration of open edges is extremely important
when near-net shape castings are used as starting stocks.

o Our algorithm uses a cutter feasibility definition based on cutter's ability to cover the target
region. Therefore, it can find larger cutters than the ones found by algorithms that are based on
alternative definitions of feasibility (e.g., either based on covering every bottleneck in the target
region or existence of continuous path between every pair of points in the target region).

e We believe that the algorithm presented in this paper is admissible for most real life engineering
problems; i.e., if a feasible cutter exists, then the algorithm will return the diameter of the largest
possible feasible cutter. We are currently working on the classification of 2-D milling problems
for which this algorithm is admissible.

We are currently developing an implementation of our algorithm. Our current implementation only
works with target and obstruction regions with linear edges (for example, the target region shown in
Figure 6), but we are extending our implementation to handle circular edges. In our future work, we
plan to (1) use Voronoi diagrams for computing the maximal cover circle as an alternative to using
non linear programming, and (2) perform cutter selection optimization for multiple cutters.
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MECHANICAL MACHINING OF AEROSPACE TITANIUM ALLOYS WITH ULTRA-
HARD CUTTING TOOLS
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University of Teesside, School of Science & Technology,
Middlesbrough, TS1 3BA, UK

ABSTRACT: The performance of PCBN (AMBORITE*) and PCD (SYNDITE) ha.s b.een
compared with that of coated tungsten carbide tool currently being used to machl‘ne titanium
aerospace alloy. Tests confirm that SYNDITE gives a better surface ﬁni§h, longer t_ool life and more
manageable swarf than other tools. In addition, the ‘quick stop’ technlquc? establishes that_, for a:ll
three cutting tools, a layer is formed between the rake face and the underside of the emerging chip
which has a fundamental effect on cutting and wear mechanisms.

INTRODUCTION

Titanium is an attractive material to aerospace designers due to its unique combination of strength
and lightness. However, it poses considerable problems in manufacturing -because of its poor
machinability. Traditionally high speed steel and monolithic carbide cuttmg.to?ls have been
employed and a relatively short lifetime or the need for frequent cutter regrmd'mg has been
accepted. More recently there has been a move towards the adoption of insert toolmg.based upon
coated carbide systems. With the evolution of a number of new cutting tool materials there is
evidence to suggest that the use of some of the ultra hard materials, such as.t%lose bz%sed. on
polycrystalline diamond or cubic boron nitride, may be advantageous in the machining of titanium
alloys.

An experimental programme has been conducted to explore the potential of such mateljials by means
of machining trials and by the use of a ‘quick-stop’ device. The cutting tool materials exa.msr}ed
were coated carbide specification typical of those used by aerospace manufacturers to mach!ne
titanium alloys, a high cubic boron nitride content tool material (AMBORITE) and polycrystalline
diamond (SYNDITE).

EXPERIMENTAL DETAILS AND OBSERVATIONS

Material specifications

The workpiece material used throughout all these tests was an as-rolled and annealeq TA48 titanium
alloy with a nominal composition (in wit%) given as Al: 5; Mo: 4; Sn: 2-2,5;8i: 6 —7: Fe: 2.0
max; H: 0.015; O: 0.25; N: 0.05; Ti: remainder. It had a Knoop hardness (1.0 kg load) of 425
kg/mm’ (4.17 Gpa) and a microstructure which consisted of elongated alpha phase in a fine dark-

etching beta matrix.
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