
1

Abstract
This paper describes a new geometric algorithm to deter-

mine the largest feasible cutter size for 2-D milling operations
to be performed using a single cutter. First is given a general
definition of the problem as the task of covering a target
region without interfering with an obstruction region. This def-
inition encompasses the task of milling a general 2-D profile
that includes both open and closed edges. Discussed next
are three alternative definitions of what it means for a cutter
to be feasible, with explanations of which of these definitions
is most appropriate for the above problem. Then, a geometric
algorithm is presented for finding the maximal cutter for 2-D
milling operations, and the algorithm is shown to be correct.

Keywords: Computer-Aided Manufacturing, Process
Planning, Cutter Selection for Milling

1. Introduction
Numerical control (NC) machining is being used

to create increasingly complex shapes. These com-
plex shapes are used in a variety of defense, aero-
space, and automotive applications to (1) provide
performance improvements and (2) create high-per-
formance tooling (such as molds for injection mold-
ing). The importance of the machining process is
increasing due to the latest advances in high-speed
machining that allows machining to create even
more complex shapes. Complex machined parts
require several roughing and finishing passes.
Selection of the right sets of tools and the right type
of cutter trajectories is extremely important in ensur-
ing high production rates and meeting the required
quality level. It is difficult for human planners to
select the optimal or near-optimal machining strate-
gies due to complex interactions among tool size,
part shapes, and tool trajectories.

Although many researchers have studied cutter
selection problems for milling processes, there still
exist significant problems to be solved. Below are
two examples:

• Most existing algorithms only work on 2-D
closed pockets (that is, pockets that have no
open edges), despite the fact that open edges are
very important in 2-D milling operations.

• Because there are several different definitions of
what it means for a cutter to be feasible for a
region, different algorithms that purport to find
the largest cutter may in fact find cutters of dif-
ferent sizes.

This paper presents an algorithm for finding the
maximal cutter for general 2-D milling operations to
be performed using a single cutter.

• The general 2-D milling problem is formulated
in terms of a target region and an obstruction
region. This problem formulation encompasses
the general problem of how to mill a 2-D region
that has both open edges (edges that don’t touch
the obstruction region) and closed edges (edges
that touch the obstruction region) (see Section 3
for definitions). The formulation allows arbitrar-
ily complex starting stocks. Therefore, it can be
used to model machining of geometrically com-
plex castings such as engine blocks.

• Three different definitions are given of what it
means for a cutter to be feasible, and it is
explained why one of these definitions is more
appropriate than the others.

• A new “region covering” algorithm is described
that finds the largest cutter that can cover the tar-
get region without interfering with the obstruc-
tion region, and the correctness proof is given
for the algorithm.

In practice, quite often multiple cutters are used
to machine a complex milling feature. The region-
covering algorithm is also useful as one of the stages
in finding an optimal sequence of cutters for

Journal of Manufacturing Processes
Vol. 3/No. 1

2001

A Geometric Algorithm
for Finding the Largest Milling Cutter
Zhiyang Yao (yaodan@Glue.umd.edu) and Satyandra K. Gupta (skgupta@eng.umd.edu), Mechanical
Engineering Dept. and Institute for Systems Research, and Dana S. Nau (nau@cs.umd.edu), Computer Science
Dept. and Institute for Systems Research, University of Maryland, College Park, Maryland, USA

machining a complex feature (for subsequent work
on this subject, please see Yao, Gupta, and Nau1).

2. Related Work
Because of the wide range of the complexity of

products, requirements for machine accuracy, differ-
ent machining stages, selecting optimal cutter size is
an active research area. Below is a summary of pre-
vious research in the area of milling cutter selection.

Bala and Chang presented an algorithm to select
cutters for roughing and finishing milling opera-
tions.2 Their work encompasses almost all of the fea-
tures found on prismatic parts, such as slots and
steps. Their algorithm is based on geometric con-
straints. The basic idea is trying to fit the possible
large circle into contours to select possible large cut-
ters to save processing time. Bala and Chang take
both cutter change time and geometric constraints
into consideration. They state the problem as fol-
lows. If there exists a set of cutters and, after
machining with these cutters, only finish machining
is needed for fillet radii corners, the problem is to
determine the cutter with the largest radius in this
set. The main concern is to make sure that the mate-
rial left behind by the cutter at each of the convex
vertices can be removed by one pass along the
boundary of the finishing cutter. A convex vertex is
defined as a vertex at which the interior angle is less
than 180°. For each convex vertex, the radius of the
circle touching the edges forming the vertex as well
as the fillet circle is found. Then Bala and Chang
check to see if this circle intersects any of the edges
of the bounding polygon or any of the islands. If an
edge that violates the circle is found, the circle has
to be modified or the radius has to be reduced to
remove this violation. The aim is to make the circle
tangential to this edge. After that, the reflex vertices
have to be handled. Reflex vertices are those ver-
tices at which the interior angles are greater than
180°. To solve the problem caused by edges, per-
pendiculars are drawn from the reflex vertex to each
of the edges. First, Bala and Chang check to see if
the perpendicular hits the edge or not. If not, no
action is taken. Otherwise, they have to check to see
if that particular edge is causing a valid constraint or
not. To resolve the constraint caused by other reflex
vertices, the distances to all the valid reflex vertices
are determined. The smallest of all these distances
gives the smallest constriction within the pocket.

After determining the cutter size, the feasible cutter
motion region can be identified and the cutter move-
ment within the region can be optimized. By using
the Bala and Chang algorithm, the maximal cutter
that can cover the target region will be the one that
is based on Alternative 1 of cutter feasible definition
(see Section 3.1 for details).

Veeramani and Gau have developed a two-phase
method to select a set of cutters.3 In the first phase,
a concept called the Voronoi mountain is employed
to calculate the material volume that can be removed
by a specific cutting tool size, the material volume
remaining to be machined subsequently, and the cut-
ter paths for each cutting tool. In the second phase,
a dynamic programming approach is applied for
optimal selection of cutting tool sizes on the basis of
the processing time. This algorithm considers geo-
metric constrains as well as total processing time. It
is possible to save processing and machining cost
compared to using a single cutter to machine the
entire pocket. However, the algorithm of using the
Voronoi mountain can only handle problems without
open edges.

Yang and Han presented a systematic tool path
generation methodology in which they incorporate
interference detection and optimal tool selection for
machining free-form surfaces on three-axis CNC
machines using ball-end cutters.4 To find the optimal
tools, a comparison of all possible combinations of
tools is performed. The maximum number of select-
ed cutters is restricted to three. This optimal tool
selection method is designed for any type of para-
metric surfaces to be machined. This algorithm has
the following limitations. First, because the algo-
rithms are grid-line based, if very fine resolution of
the grid is imposed, high computational power is
demanded to implement the algorithm. Second, if
the number of available tools is large, the compari-
son of all possible combination of tools could be
time consuming.

Mahadevan, Putta, and Sarma have developed a
feature-free approach to automatic CAD/CAM inte-
gration for three-axis machining.5 The algorithm is
based on the Voronoi diagram. The objective is to
select tools for global roughing and generate tool
paths directly from the shape of the workpiece. First,
slices are generated as sequences of closed contours.
Then a Voronoi diagram is employed to generate the
path of the centerline of the tool and calculate the
accessibility region on each slice. The criterion to

2

Journal of Manufacturing Processes
Vol. 3/No. 1
2001

select a cutter in this algorithm is to select the cutter
that can sweep much of the region of the slice
instead of selecting a largest possible cutter. Because
large tools have a less reachable region than small
tools, they incur the penalty of tool changes, and so
the optimal tool sequence should be selected based
on the total time, which depends on the region that
each tool can access in each slice. To calculate the
accessible region, the overall geometry of the tool
assembly including the tool holder and the spindle is
considered in this algorithm.

Other research in the area of cutter selection
includes work by Arya, Cheng, and Mount6 on mul-
tiple tool selection; Dong, Li, and Vicker7 and Li,
Dong, and Vicker8 on rough machining of sculp-
tured parts; Lee and Chang9,10 on 2.5-D and 3-D NC
surface machining and five-axis sculptured surface
machining; Lim, Corney, and Clark11 on tool sizing

for feature accessibility; Sun et al.12 on operation
decomposition for freeform surface features; and
You and Chu13 on NC rough cut machining. These
works are related to cutter selection but are signifi-
cantly different in scope from the problem being
addressed in this paper.

3. Definitions

3.1 Basics
The most common milling problem is the problem

of cutting a given 2-D region at some constant depth
using one or more milling tools. In addition to the
region to be machined (called the target region, T),
there is also an obstruction region, O, a region that the
tool should not cut during machining. An example is
shown in Figure 1. The target region and the obstruc-

3

Journal of Manufacturing Processes
Vol. 3/No. 1

2001

Figure 1
Examples of Stock, Final Part, Target Region, and Obstruction Region

(a) Stock (b) Final part

Milling cutter

(c) Target and obstruction regions

Target boundary

Target region, T

Obstruction boundary

Obstruction region, O

tion region must both be regular sets but may each
consist of a number of non-adjacent subregions:

T = T1 ∪ ... ∪ Tj

O = O1 ∪ ... ∪ Ok

It is assumed that the boundary of each subregion con-
sists only of line segments and segments of circles.

As shown in Figure 1c, the target boundary, BT,
is the boundary of the target region, and the
obstruction boundary, BO, is the boundary of the
obstruction region. The edges of the obstruction
boundary are called obstruction edges. An edge of
the target boundary is called a closed edge if it
coexists with an obstruction edge; otherwise, it is
called an open edge. (Note that 2-D closed pockets
do not have any open edges.) Dashed lines repre-
sent open edges, solid lines represent closed
edges, and diagonal stripes represent the obstruc-
tion region.

Figure 2 shows examples of open and closed
edges. Each closed edge, e, separates the material
(that is, the obstruction region) from part of the tar-
get region. The side of e on which the material lies
is called e’s material side, and the other side is called
e’s non-material side.

Let p = (x,y) be a point, and r ≥ 0. Then p’s r-offset
region is the set of all points within distance r of p:

If S is a set of points, then its r-offset region is the
union of the r-offset regions of the individual points:

Intuitively, a point p is r-safe if a cutting tool of
radius r can be placed at p without intersecting the
obstruction (an example is shown in Figure 3).
Mathematically, this is equivalent to any of the fol-
lowing two statements:

• p is r-safe if the distance between p and every
point in the obstruction region is at least r;

• p is r-safe if offset(p,r) ∩* O = Ø.

where ∩* is regularized intersection. Similarly, –*
denotes regularized difference and ∪ * denotes regu-
larized union.

A set of points S is r-safe if all of the individual
points are r-safe or, equivalently, if O ∩* offset(S,r)
= Ø. Safe(S,r) is defined as the r-safe subset of a set
S. Therefore,

safe(S,r) = S –* offset(O,r)

Figure 4 shows an example of safe(T,r).
A point p is r-cuttable if there is an r-safe point q

such that p ∈ offset(q,r). Intuitively, this means p is
r-cuttable if a cutting tool of radius r can be posi-
tioned to cover p without intersecting the obstruc-
tion region. A set of points S is r-cuttable if every
point of S is r-cuttable.

Lemma 1 (Cuttability of all safe points). Any r-safe
point is also r-cuttable.

4

Journal of Manufacturing Processes
Vol. 3/No. 1
2001

() () () (){ }2 2
offset , , :p r u v u x v y r= − + − ≤

() () () (){ }
()

2 2

,

offset , , :
x y S

S r u v u x v y r
∈

= − + − ≤∪

Figure 2
Examples of Open, Closed, and Obstruction Edges

Non-material side of e
Material side of eA closed edge, e

Obstruction
edges

An open edge

Figure 3
An r-offset Region, and Locations that are r-safe and Not r-safe

(x2,y2) is r-safe

offset(x,y),r)

Target
region

Obstruction
region

(x1,y1) is
not r-safe

(x1,y1) (x2,y2)

(x,y)
r

Proof. Let p be any r-safe point. Then p ∈
offset(p,r), so p is in the r-offset region of an r-safe
point. □□

Lemma 2 (Non-cuttability of obstruction points).
No point in the interior of O is r-cuttable.

Proof. Suppose p is in the interior of O. Let q be any
point such that p ∈ offset(q,r). It suffices to show
that q cannot be r-safe. To show this, it is first noted
that the distance between p and q is ≤ r. Since p is in
the interior of O, it is easy to construct another point
p′ in the interior of O such that the distance between
p and q is < r. Thus q is not r-safe. □□

If it is obvious what r is, then “offset” is used for “r-
offset,” “cuttable” is used for “r-cuttable,” and so forth.

3.2 Cutter Feasibility
Most existing algorithms for cutter tool size

selection just find the “largest feasible cutter” with-
out clearly stating what it means for a cutter to be
feasible. There are at least three different possible
definitions, based on three different criteria for what
kind of cutter path is acceptable.

Alternative 1: cutter feasibility based on
Voronoi diagrams. It is easy to think of defining
the largest feasible cutter to be the largest cutter
that can go through all “bottlenecks” in the target
region, as shown in Figure 5a. This is equivalent to
saying that a cutting tool C of radius r is feasible
if T’s Voronoi diagram6 is r-safe. In Figure 5a, C1

is an example of the largest feasible cutter based
on this definition.

Alternative 2: cutter feasibility based on a con-
tinuous tool path. Rather than forcing the cutter to
go through every bottleneck, the cutter can be
allowed to go around some of them instead (Figure
5b). Thus, one might want to say that a cutting tool
of radius r is feasible if there is a continuous tool
path H that is r-safe and whose r-offset region con-
tains T. Intuitively, this means that C can machine
all of T in one continuous pass. In Figure 5b, C2 is
an example of the largest feasible cutter based on
this definition.

Alternative 3: cutter feasibility based on cuttabil-
ity. If the machining process can be interrupted
briefly, each bottleneck can be jumped over by lifting
the cutter up and putting it down again on the other
side of the bottleneck (Figure 5c). Thus, it might be
said that a cutting tool C of radius r is feasible if there
is an r-safe set of points S whose r-offset region con-
tains T (or equivalently, if T is r-cuttable). Intuitively,
this means that C can machine T using one or more
passes. In Figure 5c, C3 is an example of the maxi-
mal cutter based on this definition.

For simple cases such as the situation shown in
Figure 6, all three alternatives will give the same
answer. However, in more complicated situations,
such as the situation shown in Figure 5, Alternative
3 will give the largest cutter size and Alternative 1
will give the smallest cutter size.

5

Journal of Manufacturing Processes
Vol. 3/No. 1

2001

Figure 4
Example of safe(T,r)

(a) Target and obstruction regions (b) Cutter and corresponding safe(T,r)

safe(T,r)

offset(O,r)

r

Cutter

T

O

The main goal of finding the maximal cutter is to
reduce the manufacturing time and thereby reduce
the manufacturing cost. Generally, using a small cut-
ter requires much more time than would be needed
by a larger cutter, even if the larger cutter needs to
be lifted up and set down again. Thus, since
Alternative 3 gives the largest cutter, it is the defin-
ition of cutter feasibility that is preferable in many
machining problems. Thus, the definition is what is
used in this paper.

Problem Formulation: With the above definition
in mind, the cutter selection problem is defined as fol-
lows: given a target region T and an obstruction region
O, find r* = max {r : a cutter of radius r is feasible}
where feasibility is as defined in Alternative 3.

Note that if any two closed edges meet at a con-
vex corner (see Figure 7 for an example), then the
corner point is not r-cuttable for any r > 0. In this
case, it is said that the cutter selection problem is
unsolvable. In all other cases, it is solvable.

6

Journal of Manufacturing Processes
Vol. 3/No. 1
2001

Figure 5
Different Largest Feasible Cutters Resulting from Different Definitions of Cutter Feasibility

(a) Largest feasible cutter based on Alternative 1

(b) Largest feasible cutter based on Alternative 2

(c) Largest feasible cutter based on Alternative 3

C1 has to go through all
bottleneck segments

A bottleneck
segment

C1

C2 can cut this
bottleneck segment
by an alternative path

C2 C2 has to go through
this bottleneck to get
a continuous path

C3
C3 can jump over
this bottleneck,
and thus can cover
the bottleneck
shape by cutting in
from both sides

3.3 Critical and Non-Critical Points
Intuitively, the edge region of radius r for a

closed edge e is the region E(e,r) formed by
sweeping a cutter of radius r along the non-mater-
ial side of e. Mathematically speaking, a point p is
in E(e,r) if p lies within a circle of radius r that is
tangent to ei on the non-material side of e. Figure
8c shows an example of an edge region. The cumu-
lative edge region E(r) is the union of the edge
regions of all closed edges. For an example, see
Figure 8c. From this definition, the following
lemma follows immediately:

Lemma 3.

max {r : E(r) ∩* O = Ø} = mine max{r : E(e,r)
∩* O = Ø},

where the minimum is taken over all closed edges e.
A point in T is r-critical if it is neither r-safe nor

in an edge region of radius r. The r-critical region is
the set K(r) of all r-critical points of T. Note that

K(r) = T –* safe(T,r) –* E(r) = (T –* E(r)) ∩* off-
set(O,r).

The r-critical region may consist of several non-
adjacent subregions:

K(r) = K1(r) ∪ ... ∪ Kk(r)

Below are several examples of what these subre-
gions can look like:

• One kind of critical subregion can occur when
two closed edges meet, as shown in Figure 9.
However, this kind of critical region will not
occur if the angle between the two closed edges
is greater than 60°.

• Another kind of critical subregion can occur
when an edge of an obstruction region occurs
slightly outside the target region, as shown in
Figure 9. However, this will not happen if the
distance between the edge and the target region
is greater than the cutting tool radius r.

The following theorem says that a cutting tool
can cut every non-critical point if and only if the
cutting tool’s radius is small enough that none of
the edge regions intersect the obstruction region.
Because the above examples suggest that most
designs are unlikely to contain critical points, this
means that in most cases it is easy to compute the
maximal cutting tool radius: just find the largest
radius for which no edge region intersects the
obstruction region.

Theorem 1: E(r) ∩* O = Ø if and only if every point
in T –* K(r) is r-cuttable.

Proof. It will first be proved that if E(r) ∩* O =
Ø then every point in T –* K(r) is r-cuttable. Let
p be any non-critical target point, that is, any
point in T –* K(r). From the definition of K(r),
there are two cases.

Case 1: p is r-safe. Then from Lemma 1, p is r-cuttable.

Case 2: p is in some edge region E(e,r). Then p is
contained in a circular region R of radius r that is
tangent to e on e’s non-material side. Let q be the
center of R. Then R = offset(q,r). Every point of off-
set(q,r) is in E(r), so offset(q,r) ∩* O = Ø, whence
q is r-safe. Thus p is in the r-offset region of an r-
safe point, so p is r-cuttable.

Now, it will be proved that if E(r) ∩* O ≠ Ø then some
point in T –* K(r) is not r-cuttable. Suppose E(r) ∩*

7

Journal of Manufacturing Processes
Vol. 3/No. 1

2001

Figure 6
Simple Example of Maximal Cutting Tool

This cutter
can cover the
whole target
region, but it
is too small

This is the largest
feasible cutter

This cutter is too
large because it will
intersect with the
obstruction region

Target region

Obstruction
region

Figure 7
Example of Unsolvable Cutter Selection Problem

No non-zero
cutter can
cover this
convex corner

Target region

Obstruction
region

O ≠ Ø. Then for some closed edge e, E(e,r) ∩* O ≠ Ø,
so there is a point p ∈ E(e,r) such that p ∈ O. From
this it is easy to construct a point p′ ∈ E(e,r) such that
p′ is in the interior of O. Let q be the point of e that is
closest to p′. The only location where the cutter can cut
q is the point c for which offset(c,r) is tangent to e at
q. It is easy to show that offset(c,r) also contains p′.
Thus c is not r-safe, so q is not r-cuttable. An example
is shown in Figure 10. □□

The above theorem says nothing about whether
p is r-cuttable if p is in the critical region K(r). In
such cases, p may or may not be r-cuttable. If p ∈
K(r), then p ∈ offset(Oj,r) for some subregion Oj

of O. If Oj is convex and if p ∉ offset(Ok,r) for all
k ≠ j, then p is r-cuttable (see Figure 11 for an
example). However, if Oj is not convex or if p ∈
offset(Ok,r) for some k ≠ j, then sometimes p is r-
cuttable and sometimes it is not.

8

Journal of Manufacturing Processes
Vol. 3/No. 1
2001

Figure 8
Examples of Edge Region, Safe Region, and Critical Region

(f) After obtaining the safe region,
the critical region can be found

Critical region, K(r)

(e) Safe(T,r) can be found after the offset region
and cumulative edge region are found

r-safe subset of T,
safe(T,r) E(r)

offset(O,r)

(d) Given a radius r, the offset of the
obstruction region can be found

(c) For closed edges, the edge region for each edge
can be found, thus finding the cumulative edge region

offset(O,r)Edge region, E(e,r) Cumulative edge
region, E(r)

(b) For closed edges, the maximal edge
region radius can be found

(a) Obstruction and target regions

Closed edge, e

Target region, T
Obstruction

subregion, Oj

Maximal edge region
radius, rmax(e) Radius of this cutter

is too big

Radius of this cutter
is too small

4. Algorithm for Finding
the Maximal Cutter

The main algorithm for the maximal cutter selec-
tion problem is called Find_Maximal_Cutter_Ra-
dius (FMCR for short). For every closed edge a, this
algorithm calls the subroutine Maximal_Edge_Re-
gion_Radius to find the maximal edge-region radius
for a. Then it uses the smallest of those radii (denot-
ed by rE) to compute the cumulative edge region
E(rE), the safe region S(T,rE), and the critical region
K(rE). The algorithm then calls the subroutine
Maximal_Critical_Region_Radius to find the largest
r (denoted by rK) such that K(rE) is r-cuttable. The
final result is the minimum of that radius rE and rK.

Procedure Find_Maximal_Cutter_Radius(T,O)
//T is the target region, and O is the obstruction region.

1. rE = ∞, rK = ∞;
2. For each closed edge a and obstruction edge b, do

• r = Maximal_Edge_Region_Radius(a,b)
//this subroutine is described in Section 5

• rE = min{r,rE}; //rE is now the largest radius
for which no edge region intersects the
obstruction

3. E = E(rE); //the cumulative edge region
4. F = offset(O,rE); //the offset of the obstruc-

tion region
5. S = T –* F; //the “safe” region
6. K = T –* S –* E //the critical region
7. If K is nonempty then

• rK =Maximal_Critical_Region_Radius(T,O,K,rE)
//this subroutine is described in Section 6
//rK is now the largest r such that K is r-cut
table

• Return r = min{ rE, rK }

8. Else return r = rE;

5. Finding the Maximal Swept Cutter
for a Closed Edge

In the algorithm Find_Maximal_Cutter_Radius
described in Section 4, the purpose of the subroutine
Maximal_Edge_Region_Radius is to solve the fol-
lowing problem: given a closed edge a and an
obstruction edge b, find the largest r such that the
region E(a,r) does not intersect the edge b.

If the closed edge is an arc segment and its angle
is greater than 180°, then this arc is split into two arc
segments such that each arc segment’s angle is less
than or equal to 180°. For each closed edge a, the
following is done:

9

Journal of Manufacturing Processes
Vol. 3/No. 1

2001

Figure 9
Some Examples of Critical Regions

Obstruction
region

Critical subregions
that occur when an
edge of an obstruction
region occurs slightly
outside the target
region

Target region

Figure 10
In this example, if E(r) ∩∩* O ≠ Ø,

then some points in T –* K(r) are not r-cuttable

q

Offset
region Critical subregions

that occur when
two closed edges
meet

Edge region

p´

Figure 11
Example of a Critical Subregion

That Can Be Covered Without Reducing the Tool Radius

Obstruction region, O

Target region, T

Offset(O,r)

The critical
subregion is
r-cuttable

Critical
subregion
One end of
an edge
region of
radius r

a. Extend closed edge a in each direction at its end
points to infinity using rays that are tangent to
end points and going away from the edge.

b. The extended edge divides the space into two
half-spaces, Hm and Hn. Hm is the half-space that
contains the material side of a. Hn is half-space
that contains the non-material side of a.

c. Use perpendicular lines at end points to split
Hm into the following three regions: one mid-
dle region of a and two end-regions of a.
Figure 12a shows examples of these regions
when a is a line segment, and Figure 13a
shows examples of these regions when a is an
arc segment.

10

Journal of Manufacturing Processes
Vol. 3/No. 1
2001

Figure 12
Finding Maximal Cutter Radius for a Linear Closed Edge in Presence of Different Types of Obstruction Edges

End region

b

(d) Another example where the obstruction
edges are located in the end regions

(c) An example where the obstruction
edges are located in the end regions

Yr

a

Y
r

b

b Y

r
a

Y r

b

(b) A case where the obstruction edges
are located in the middle region

(a) Closed edge a is a line segment

b

Yr

a

b

Hm

p1

l1 l2Hn

p2

Middle region End region

Closed edge a

Figure 13
Finding Maximal Cutter Radius for Circular Closed Edge in Presence of Different Types of Obstruction Edges

End region

b

(d) Another example where the obstruction
edges are located in the end regions

(c) An example where the obstruction
edges are located in the end regions

Y

r

a
Y

r

b
b′

Y

r

a Y

r

b

(b) A case where the obstruction
edges are located in the middle region

(a) Closed edge a is an arc segment

b

Y
r

a

b

Hm

Hn

Middle region

End region

b

a

b′

a

a

b
b

a

a

Procedure Maximal_Edge_Region_Radius (a, b)
1. Split b into at most two segments such that each

segment is completely contained in Hm or Hn.
2. r = ∞;
3. for every segment b′ of b that is in Hn, do the fol-

lowing:
r′ =

Max_edge_region_radius_for_closed_edges
(a, b′);
r = min{r, r′};

4. return r.

Procedure Max_edge_region_radius_for_closed_edges
(a, b)

1. Split b into at most three segments such that
each segment is in the middle region of a or in
one of the two end regions of a.

2. If b is in the middle region of a, then
Return 1/2 of the distance between a and b.
//This is the same as the maximum diameter of

any circle that touches b and is tangent to a.
Examples are shown in Figures 12b and 13b.

3. If b is in the end region of a, then
• Let e be whichever end point of a is closest

to b;
• Let p be the point in b that is closest to e;
• Let Y be the circle that is tangent to a at e

and contains p;
• Return the radius of Y.
//In practice, if a circle can be found that is tan-
gent to both a and b at p, then Y is that circle.
Otherwise, Y is found by finding the minimal
circle that is tangent to a at p and passes through
one end point of b. Examples are shown in
Figures 12c and 12d and Figures 13c and 13d.

6. Finding the Maximal Cutter for
Critical Region

In Section 4, if the critical region in Step 6 of
Find_Maximal_Cutter_Radius is not empty, then
a cutter of radius rE may be too large to cover all of
the critical region. In this case, the subroutine
Maximal_Critical_Region_Radius, described be-
low, will find a maximal cutter radius that can
cover the critical region. In this subroutine, the
number ri is a constant set by the user. It should
correspond to the increment in tool sizes that is
available on a shop floor.

Procedure Maximal_Critical_Region_Radius(T,O,K,rE)
//T is the target region, O is the obstruction region,
K is the critical region, and rE is the maximal edge-
region radius.

Let rK = rE.
1. Let U be a finite region that encloses the

obstruction and target regions.
//In practice U is computed by computing the
bounding box of T ∪ * O.

2. loop
• P = U —* offset(O,rE).

//P is = {safe locations for a cutter of radius
rE}

• S = offset(U,rE)
//S = {points cuttable by a cutter of radius rE}

• if K ⊆ S, then return rK.
• else rK = rK – ri

//the constant ri is described in the text.
3. repeat

//Figure 14 shows an example of how this procedure
works. In Figures 14c and 14d, rK = rE, and K ⊄ S.
After one or more iterations, rK = rE – crI, where c is a
constant, then K ⊆ S as shown in Figures 14e and 14f.

7. Discussion of Correctness of
Algorithm

For a solvable problem, the algorithm exhibits the
following two properties:

Property 1. If the critical region in Step 6 of FMCR
is empty, then FMCR returns r* = max {r : a cutter
of radius r is feasible}.

Proof. Suppose there is no critical region, and let r
be the number returned by FMCR. Here r = rE. Then
rE is the minimum, over all closed edges e, of max
{r : E(e,r) ∩* O = Ø}. Thus from Lemma 3, rE is the
largest number such that E(rE) ∩* O = Ø. Therefore,
from Theorem 1, a cutter of radius rE will be able to
cut all of T. For any r > rE, E(r) ∩* O ≠ Ø. Thus from
Theorem 1, T would not be r-cuttable. □□

Property 2. If the leftover region in Step 6 of FMCR
is not empty, then FMCR returns a number r such that
a cutter of radius r is feasible, and r* – r < ri (where
r* is the maximum feasible cutter radius).

11

Journal of Manufacturing Processes
Vol. 3/No. 1

2001

Proof. Let r be the number returned by FMCR. Here r
= min{ rE, rK }. Then E(r) ∩* O = Ø, so from Theorem
1 it is known that T – K(r) is r-cuttable. Procedure
Maximal_Critical_Region_Radius only allows cutters
that can cover K. Therefore r can cover the target region
and is feasible. If rK is equal to rE, then r is the exact solu-
tion and there is no difference between the theoretical
answer and the result found by FMCR. If rK < rE, then r
+ ri cannot be a feasible solution. Otherwise, FMCR

would have returned this solution. Therefore, in this case,
theoretically maximal radius r* < r + ri. Therefore the
difference between the theoretically maximal diameter
and result returned by FMCR is smaller than ri.

8. Implementation and Examples
The example shown in the Figure 15 is used to

illustrate the operation of the algorithm. The target

12

Journal of Manufacturing Processes
Vol. 3/No. 1
2001

Figure 14
Using Approximation Algorithm to Find Near Maximal Cutter for Critical Region

(f) After offset P(r2) by using radius r2, the whole target region
is safe; therefore, r2 is the approximate maximal cutter

Part of K is not in S(r1)

(e) Reduce the radius from r1 to r2 and offset
obstruction region by using radius r2

offset(O,r), r2 = r1 - r´, r´ = crI

(d) After offset P(r1) by using radius r1,
there exists some region that is not safe

(c) Offset obstruction region using radius r1

P(r1)

Edge region, E(e,r)
offset(O,r)

(b) Critical regions(a) Obstruction and target regions

O

T

K

S(r1)

P(r2)

S(r2)

region and obstruction regions are shown in Figure
15a. The details are as follows: The main algorithm for
the maximal cutter selection problem is called
Find_Maximal_Cutter_Radius (FMCR for short).
For every closed edge a, this algorithm calls the sub-
routine Maximal_Edge_Region_Radius to find the
maximal edge-region radius for a. Then it uses the
smallest of those radii (denoted by rE) to compute the
cumulative edge region E(rE), the safe region S(T, rE),
and the critical region K(rE). The algorithm then calls
the subroutine Maximal_Critical_Region_Radius to
find the largest r (denoted by rK) such that K(rE) is r-
cuttable. The final result is the minimum of that radius
rE and rK.

• First, for every closed edge a is found the maximal
edge-region radius for a (shown in Figure 15b).

• The smallest of those radii, rE, is used to com-
pute the cumulative edge-region E(rE) and safe
region S (shown in Figure 15c).

• Then the critical region K is obtained. For the crit-
ical region is found the maximal cutter with radius
rK that covers it and does not interfere with the
obstruction region, as shown in Figure 15d.

• The maximal cutter that covers the target region
without interfering with the obstruction region
will be the minimal one of rE and rK.

The algorithm has been implemented to find the
maximal cutter for 2-D milling operations. The core
programming work is done by using C++ on a UNIX
system. Meanwhile, the core code has been linked
with the ACIS Toolkit® and JAVA 3D® such that by
inputting a solid model of a milling problem, the
profile of target and obstruction regions can be
extracted and then the core code can be executed to
get the maximal cutter. Finally, the result can be
shown in a 3-D version.

Figures 16-19 show the results of the maximal
cutters selected by the algorithm. The algorithm

13

Journal of Manufacturing Processes
Vol. 3/No. 1

2001

Figure 15
Example of Operation of Algorithm

Obstruction region

(a) Problem illustration (b) Maximal edge region radius

(c) Edge region, safe region, and critical region (d) Maximal cutter that can cover critical region

Target region

Closed edge

Maximal edge
region radius, rE

Edge region

Safe region

Critical region

Maximal circle
with radius rK
that can cover
critical region

solved every one of those examples in less than one
second on an Ultra 10 computer.

9. Conclusion and Discussion
This paper presented a geometric algorithm for

finding the maximal cutter size for a 2-D milling
process. The algorithm has the following properties:

1. It finds the largest cutter that can cover the
region to be machined without interfering with
the obstruction region.

2. In addition to solving traditional pocket-milling
problems, the algorithm can solve a wide variety
of milling problems that involve open edges.
Consideration of open edges is extremely impor-
tant when near net shape castings are used as
starting stocks.

3. The algorithm uses a cutter feasibility definition
based on the cutter’s ability to cover the target
region. Therefore, it can find larger cutters than
the ones found by algorithms that are based on

alternative definitions of feasibility (for example,
either based on covering every bottleneck in the
target region or existence of a continuous path
between every pair of points in the target region).

The maximal cutter found is based on the geo-
metric constraints. In actual machining, it is neces-
sary to consider several other cutting constraints.
Here are some examples:

• There are several cutting parameters that may influ-
ence the selection of cutter size. Cutters that conflict
with the machining constraints cannot be used. For
example, it is known that the material removal rate
is proportional to the diameter of the cutter in
milling operations. As a result, if a bigger cutter is
used, there can be a higher material removal rate,
thus saving cutting time. On the other hand, the
maximum power of a machine is constant. The
required cutting power is proportional to the metal
removal rate. Therefore, the maximal diameter is
actually limited by the maximum machine power.

14

Journal of Manufacturing Processes
Vol. 3/No. 1
2001

Figure 16
Example 1

(a) Starting stock (c) Profile of final part along with
maximal cutter found by algorithm

(b) Final part

Figure 17
Example 2

(a) Starting stock (c) Profile of final part along with
maximal cutter found by algorithm

(b) Final part

• Sometimes the cutter selected by the region-cov-
ering idea may not be the best one for manufac-
turing. For example, Figure 20 shows an exam-
ple in which, if the maximal cutter selected by
the algorithm is used, it will have to be lifted up
and put down several times. In this particular
case, the maximal cutter selected may not save
total cutting time and may result in a bad manu-
facturing surface. Besides the geometric con-
straints, manufacturing knowledge is also need-
ed to help decide which is the best cutter size.

• In addition to geometric considerations
described in this paper, several other machining
considerations, such as available fixturing
options, surface finish requirements, available
cutting tool geometries, and the resulting cutting
forces, play a role in cutter selection and should
be considered in selecting milling cutters.

15

Journal of Manufacturing Processes
Vol. 3/No. 1

2001

Figure 18
Example 3

(a) Starting stock (c) Profile of final part along with
maximal cutter found by algorithm

(b) Final part

Figure 19
Example 4

(a) Starting stock (c) Profile of final part along with
maximal cutter found by algorithm

(b) Final part

Figure 20
Manufacturing Consideration in Choosing Maximal Cutter

The algorithm is currently being extended to per-
form cutter selection optimization by considering
multiple cutters. Preliminary results are described in
Yao, Gupta, and Nau.1

Acknowledgment
This research has been supported by NSF grants

DMI9896255, DMI9713718, and EIA-9729827.
Opinions expressed in this paper are those of the
authors and do not necessarily reflect the opinion of
the National Science Foundation.

References
1. Z. Yao, S.K. Gupta, and D.S. Nau, “Selecting Flat End Mills for 2-

1/2D Milling Operations,” ISR Technical Report, TR 2000-41 (College
Park, MD: Univ. of Maryland, 2000).

2. M. Bala and T.C. Chang, “Automatic Cutter Selection and Optimal
Cutter-path Generation for Prismatic Parts,” Int’l Journal of Production
Research (v29, n11, 1991), pp2163-2176.

3. D. Veeramani and Y.S. Gau, “Selection of an Optimal Set of Cutting-
tool Sizes for 2.5D Pocket Machining,” Computer Aided Design (v29, n12,
1997), pp869-877.

4. D.C.H. Yang and Z. Han, “Interference Detection and Optimal Tool
Selection in 3-axis NC Machining of Free-form Surface,” Computer Aided
Design (v31, n5, 1999), pp303-315.

5. B. Mahadevan, L. Putta, and S. Sarma, “A Feature Free Approach to
Tool Selection and Path Planning in 3-axis Rough Cutting,” Proc. of 1st
Int’l Conf. on Responsive Mfg., Nottingham, UK, Sept. 1997, pp47-60.

6. S. Arya, S.W. Cheng, and D.M. Mount, “Approximation Algorithm
for Multiple-tool Milling,” Proc. of 14th Annual ACM Symp. on
Computational Geometry, 1998, pp297-306.

7. Z. Dong, H. Li, and G.W. Vicker, “Optimal Rough Machining of
Sculptured Parts on a CNC Milling Machine,” Trans. of ASME, Journal of
Engg. for Industry (v115, n64, 1993), pp424-431.

8. H. Li, Z. Dong, and G.W. Vicker, “Optimal Toolpath Pattern Identification
for Single Island, Sculptured Part Rough Machining Using Fuzzy Pattern
Analysis,” Computer Aided Design (v26, n11, 1994), pp787-795.

9. Y.S. Lee and T.C. Chang, “Application of Computational Geometry in
Optimization 2.5D and 3D NC Surface Machining,” Computers in Industry
(v26, n1, 1995), pp41-59.
10. Y.S. Lee and T.C. Chang, “Automatic Cutter Selection for 5-axis
Sculptured Surface Machining,” Int’l Journal of Production Research (v34,
n4, 1996), pp977-998.
11. T. Lim, J. Corney, and D.E.R. Clark, “Exact Tool Sizing for Feature
Accessibility,” Int’l Journal of Advanced Mfg. Technology (v16, 2000),
pp791-802.
12. G. Sun, F. Wang, P. Wright, and C. Sequin, “Operation Decomposition
for Freeform Surface Features in Process Planning,” Proc. of DETC 1999:
1999 ASME Design Engg. Technical Conf., Las Vegas, NV, Sept. 12-15,
1999.

13. C.F. You and C.H. Chu, “An Automatic Path Generation Method of
NC Rough Cut Machining from Solid Models,” Computers in Industry
(v26, n1, 1995), pp161-173.

Authors’ Biographies
Zhiyang Yao is a PhD student in the mechanical engineering depart-

ment at the University of Maryland, College Park. He received a BS in
1995 and an MS in 1998 in mechanical engineering from Tsinghua
University, P.R. China. His research interests are computer-aided
design and manufacturing, concurrent engineering, and geometric rea-
soning. Currently, he is working on constructing innovative process
plans that can significantly reduce time to market and enable cost-
effective small-batch manufacturing. He has authored or coauthored 11
articles in journals, conference proceedings, and technical reports. He
is a student member of ASME.

Satyandra K. Gupta is an assistant professor at the University of
Maryland in the mechanical engineering department and the Institute for
Systems Research (ISR). He received a PhD in mechanical engineering
from the University of Maryland at College Park in 1994. Prior to joining
the University of Maryland, he was a research scientist in the Robotics
Institute and an adjunct assistant professor of manufacturing in the
Graduate School of Industrial Administration at Carnegie Mellon
University. The objective of Dr. Gupta’s research is to provide innovative
product realization methodologies that can significantly reduce time to
market and enable cost-effective small-batch manufacturing. Over the last
10 years, Dr. Gupta has participated in a number of design and manufac-
turing automation research projects. Representative projects include gen-
erative process planning for machining, automated manufacturability
analysis, automated redesign, generative process planning for sheet metal
bending, assembly planning and simulation, extraction of lumped para-
meter simulation models for microelectromechanical systems, distributed
design and manufacturing for solid freeform fabrication, and automated
mold design and fabrication. He has authored or coauthored more than 70
articles in journals, conference proceedings, and book chapters. He has
organized several conference sessions on computer-aided design and
manufacturing areas. Dr. Gupta has won many honors and awards for his
academic excellence and his research contribution to design and manu-
facturing automation area.

Dana S. Nau is a professor at the University of Maryland in the
Department of Computer Science and the Institute for Systems Research
(ISR). He also has affiliate appointments with the Institute for Advanced
Computer Studies and the Department of Mechanical Engineering. Dr. Nau
received a BS in applied mathematics from the University of Missouri at
Rolla in 1974. He received an AM (in 1976) and PhD (in 1979) in comput-
er science from Duke University, where he was an NSF graduate fellow and
a James B. Duke graduate fellow. He has had summer and/or sabbatical
appointments at IBM Research, NIST, the University of Rochester, and
General Motors Research Laboratories. Dr. Nau’s research interests include
AI planning and searching techniques and computer-integrated design and
manufacturing. He has co-edited two books and has published more than
200 refereed technical papers. Copies of recent papers and summaries of
current research projects are available at http://www.cs.umd.edu/users/nau.

16

Journal of Manufacturing Processes
Vol. 3/No. 1
2001

