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ABSTRACT 

For the manufacture of milled parts, it is well known that the size 
of the cutter significantly affects the machining time. However, 
for small-batch manufacturing, the time spent on loading tools 
into the tool magazine and establishing z-length compensation 
values is just as important. If we can select a set of milling tools 
that will produce good machining time on more than one type of 
parts, then several unnecessary machine-tool reconfiguration 
operations can be eliminated.  This paper describes a geometric 
algorithm for finding an optimal set of cutters for machining a set 
of 2½D parts. In selecting milling cutters we consider both the 
tool loading time and the machining time and generate solutions 
that allow us to minimize the total machining time. Our problem 
formulation addresses the general problem of how to cover a 
target region to be milled with a cylindrical cutter without 
intersecting with the obstruction region; this definition allows us 
to handle both open and closed edges in the target region. Our 
algorithm improves upon previous work in the tool selection area 
in following ways: (1) in selecting cutters, it accounts for the tool 
loading time, and (2) it can simultaneously consider multiple 
different parts and select the optimal set of cutters to minimize the 
total manufacturing time.  
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1. INTRODUCTION 
Increasingly, the manufacturing industry is moving towards high 
part mixes, which makes it important to reduce setup and tooling 
operations.  For example, if a machine-tool is not configured to 
accommodate more than one part within a part family, then large 
amounts of time will repeatedly be spent on reconfiguring the 
machine-tool (i.e., loading new tools and fixtures into the 
machine-tool) each time a request is received for manufacturing a 
different part. Such reconfigurations are the major source of 
inefficiency in small batch manufacturing. 

If a machine-tool was configured from the beginning to 
accommodate several different parts within the part family, much 
of the cost of reconfiguring the machine-tool could be avoided.  
This will require considering all of the parts that need to be 
produced during the given operational period, and selecting tools 
and machine-tool configurations that can work for multiple 
different parts.  

In the milling operation domain, it is well known that the size of 
the milling cutters significantly affects the machining time.  

Therefore, in order to perform milling operations efficiently, we 
need to select a set of milling cutters with optimal sizes. It is 
difficult for human process planners to select the optimal or near 
optimal set of milling cutters due to complex geometric 
interactions among tools size, part shapes, and tool trajectories. 
Furthermore, in small batch manufacturing, both tool loading time 
(i.e., the time spent on loading tools into the tool changer) and 
machining time (i.e., the time spent on performing milling 
operations) are equally important. 

Most existing cutter selection algorithms select milling cutters by 
minimizing the machining time and do not account for tool 
loading time [1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. In most cases, 
the existing algorithms will recommend using a different set of 
cutters for each new type of part. Since most machine-tools can 
only hold a limited number of tools at one time, this means that 
we will need to reconfigure the machine-tool (i.e., we will need to 
change the set of tools in the tool magazine) before machining 
each new type of part. When the batch size is small, reconfiguring 
the machine-tool before machining each type of part may 
significantly reduce the throughput. However, if we can select a 
set of tools that can be used for more than one type of part, then 
several unnecessary machine-tool reconfiguration operations can 
be eliminated, thereby increasing the throughput. 

This paper describes a geometric algorithm for finding an optimal 
set of milling cutters for machining a given set of parts. In 
selecting milling cutters we consider both the tool loading time as 
well as machining time and generate solutions that allow us to 
minimize the total manufacturing time. Our tool selection 
algorithm improves upon the previous work in this area, in the 
following manner: (1) in selecting cutters it accounts for tool 
loading time, and (2) it can simultaneously consider multiple 
different parts and select the optimal set of cutters to minimize the 
total manufacturing time.  

Currently our algorithm is restricted to 2½D milling operations. In 
particular, we consider the problem of selecting a sequence of 
cylindrical cutters to cut all of the points in a 2½D target region 
without cutting any of the points in a 2½D obstruction region 
[15].  This approach allows us to handle both open and closed 
edges. The steps of our approach are as follows: 

Given a set of available cutters, we first compute how much of the 
target region each cutter can cut. We do this by finding the set of 
all possible permissible locations for the tool, and then computing 
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t  he total area covered by the tool at these permissible locations.1 
Next, we represent the problem of finding an optimal sequence of 
cutters as a least-cost path problem, and use Dijkstra’s algorithm 
to solve it.  Our overall approach is shown in Figure 1. 

2. PROBLEM FORMULATION 
The milling problem is the problem of taking one or more pieces 
of stock and using a sequence of one or more milling operations 
to remove portions of each piece of stock, in order to produce 
some desired set of parts. Each milling operation is performed 
using a milling cutter, and our research focuses on the geometric 
aspects of selecting those cutters.  In previous work [15], we 
looked at the case where only one milling operation was to be 
used, and developed an algorithm for finding the optimal cutter 
for this operation.  However, in practical milling problems, it is 
more typical to use more than one milling operation, using a 
different cutter for each operation—and that problem is the 
subject of the current paper. 

Let P be one of the parts that needs to be produced, and let S be 
the piece of stock from which P is to be produced.  We will 
assume that S –* P (i.e., the portion of S that needs to be removed 
to produce P) is a 2½D solid (this assumption holds for most 
milling operations).  In this case, the cutter selection problem can 
be reduced to a 2D problem by considering any cross-section of 
the 2½D solid.  Within this 2D cross-section, we define the region 
to be machined as the target region T (a region is a set of 2D 

                                                                 
1 This problem is computationally similar to the problem of 

computing the offset for a 2D point set, and previous 
approaches for this problem have been based on the use of the 
offsetting operators traditionally available in most solid 
modeling systems.  However, in this paper we show that those 
approaches will not always produce correct results, and in 
Section 3.2.2 we show what modifications are needed to make 
those approaches correct. 

points).  In addition to the target region, there is an obstruction 
region O that is the region that the cutting tool should not cut 
during machining. An example is shown in Figure 2.  The target 
region and the obstruction region must both be regular sets, each 
of which may consist of a number of non-adjacent sub-regions:   

T = T1 ∪ … ∪ TM; 

O = O1 ∪ … ∪ ON. 

In this paper, we assume that the boundary of each sub-region 
consists only of line segments and segments of circles.  

Let C be a rotating cutter of radius r(C) located at some point 
p=(x,y).  If we hold C stationary while it is rotating, then C will 
cut a circular region R(C,p) = { all points (u,v) such that 

)()()( 22 Cryvxu ≤−+− } .  We will call R(C,p) the set of 

points covered by C at p. 

If we move C while it is rotating, then C will cut some region 
larger than R(C,p).  In this paper, one of the things we will want 
to find is the set of all points in T that can be cut by C.  There are 
several different non-equivalent ways to define what this set is. As 
we discussed in [15], the best one for our purposes is as follows.  
A point p is a permissible location for C if the interior of R(C,p) 
does not intersect with the obstruction region, or equivalently, if 

∅=∩ ),(* pCRO .   A set of points can be safely covered by C 

if for every point p in the set, there is a permissible location of C 
that covers p.  

In most cases, the length of the cutter path associated with a cutter 
will decrease as the cutter size increases, and therefore it will take 
less time to cut a given area.  However, due to geometric 
restrictions, a large cutter may not be able to safely cover the 
entire target region—and thus one or more smaller cutters will be 
needed to cut the remaining portion of the target region. 

In multi-cutter selection problems, multiple milling operations are 
used, each with a different milling cutter.  The bigger cutters are u  
sed first, in order to cut material as fast as possible. Then, smaller 

Collection of parts to be machined

For each cutter, find how much of area 
it can cover(Section 3.2).

Choose an optimal set of cutters by solving
 least-cost path problem(Section 4).

Cutter library

Figure 1: Overview of Our Approach

Best Cutter Combination

Tool Setup Time,
Cutting Parameters

Get 2D profile from 3D parts(Section 3.1).



 

cutters are used to create the smaller features of the target region.  
The total machining time TM for the sequence of milling 
operations is the total time needed from the time that the stock is 
loaded into the milling machine, until the time that the finished 
part is produced.  TM can be expressed as 

TM = Tct+Tcc+Tcl , 

where Tct is the total real cutting time (the time spend on moving 
cutters to cut the profile); Tcc  is the total cutter change time (the 
total time of changing tools during machining all the parts); and 
Tcl is the total cutter loading time (the total time spent on loading 
and calibrating all selected cutters before machining given parts).  
Since cutter change time is significantly smaller (of the order of 5 
seconds) compared to cutting time and cutter loading time (of the 
order of 5 to 10 minutes), in this paper we will ignore cutter 
change time. Therefore, in this paper we will use 

TM = Tct+ Tcl . 

Intuitively, the cutter selection problem can be described as a 
region covering problem: we need to find an optimal sequence of 
cutters that can cover the target region without intersecting the 
obstruction region. Mathematically, we define the multi-part 
cutter selection problem as follows.  Suppose we are given one or 
more pieces of stock (S1, …, SL) from which we need to produce a 
corresponding set of parts (P1, …, PL). In order to produce those 
parts, suppose we have a sequence of cutting tools  (C1,C2,…,Cn), 
given in decreasing order of cutter radius (i.e., r(C1) > … >  

       (a) Stock (b) Final Part

Figure 2: Examples of the stock, final par t, target region, and obstruction region.

(c) Target and Obstruction Regions
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r(Cn)).  Furthermore, suppose that Cn is small enough that it can 
safely produce all of P1, …, PL, and that for m < n, no Cm is small 
enough to safely produce all of P1, …, PL.  The problem is to find 
a subsequence (C*

1,C
*
2,…,C*

m) of (C1,C2,…,Cn) such that if we 
use C*

1,C
*
2,…,C*

m in the order given, this will minimize the total 
machining time TM.  In this paper we present an algorithm for 
solving this problem. 

3. FINDING COVERABLE AREA FOR A 
GIVEN CUTTER 
In order to solve the multi-part cutter selection problem, an 
important step is to estimate the area of the region that can be 
safely covered (in following sections, we call this region as 
coverable region and the area of coverable region as coverable 
area) by each of the cutters C1, …, Cn.  This section describes 

geometric algorithms for calculating the coverable area for a given 
part and tool combination. 

3.1 An Algor ithm for  Extracting 2D Profile  
To estimate the coverable area automatically, we will need to 
extract the target and obstruction region from the CAD model.  To 
see how we extract the target region and obstruction region, 
consider example shown in Figure 3, in which we have a 3D 
model of a rectangular part whose faces are parallel to the xy, yz, 
and xz planes.  As shown in the figure, this part has a single 
feature, which is a blind 2½D milling feature which is located in 
the part’s top face. To find the target region and the obstruction 
region, we extract two cross-sections that are parallel to the xy 
plane: a cross-section f1 at the top of the part, and a cross-section 
f2 at the bottom of the feature. The obstruction region is f1, and the 
target region is f2 −* f1. 

Figure 4: I llustration of Definitions 
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3.2 An Algor ithm for  Finding Coverable Area  
3.2.1 Definitions 
Lemma 1: Given a cutter C of radius r(C), the target region T and 
obstruction region O, the set of non-permissible locations A(O,C) 
for C is given by: 

A(O,C) = { p: ∃ q ∈ O, distance(p,q) < r(C) } . 

Proof: For every point p in A(O,C), ∃ q ∈ O such that 
distance(p,q) < r(C). Therefore, q will be in the interior of R(C,p). 
Thus, R(C,p) ∩* O � ∅. Hence every p in A(O,r)  is not a 
permissible location of C.  

Lemma 2: Let  be the complement of A(O,C). Every point in 
the set  is a permissible location.  

Proof: . Let p be a point in . Let q be the closest point in O to p. 
Since A(O,C) contains all points whose minimum distance to O is 
less than r(C), it follows that distance(p,q) � r(C).  Therefore, q is 
either outside of R(C,p)  or on the boundary of R(C,p).  Thus, 
R(C,p) ∩* O = ∅. Hence every p in  is a permissible location of 
C.  

Lemma 3: Let E( ,C) = { p: ∃ q ∈ , distance(p,q) ≤ r(C) } . 
Then for every point p in E( ,C), there is a permissible location q 
such that p can be safely covered by C at q. 

Proof: Let p ∈ E( ,C). Then there is a point q in  such that 
distance(p,q) ≤ r(C). Therefore, p∈ R(C,q).  Since q is in , it 
follows from Lemma 2 that q is a permissible location. Therefore, 
p can be safely covered by q.  

Lemma 4: Let  be the complement of E( ,C).  For every p ∈ �
there is no permissible location for C to cover p. 

Proof:  Let p be any point in , and suppose we can find a 
permissible location q such that R(q,C) covers p.  Then from 
Lemma 1, it follows that q is not in A(O,C) and hence is in .  

Since R(q,C) covers p, this means that distance(q, p) � r(C). Thus 
p is in E( ,C), which is a contradiction since p is in .  

Theorem 1: Let D = T −* E( ,C). Then for every p ∈ D, there is 
no permissible location for C to cover p. 

Proof: Since D is a subset of , this theorem directly follows 
from Lemma 4.  

Theorem 2: Let B = T −* D.  Then for every p ∈ B, there is a 
permissible location for C to cover p. (Thus we will call B the 
coverable region of C). 

Proof: B is a subset of E. Therefore, this theorem directly follows 
from Lemma 3.  

Figure 4 shows an example in which A(O,C), , E( ,C), , D 
and B are given. 

3.2.2 Algorithm 
 

Let A be the area of the coverable region B.  A is the coverable 
area of using C. From the definition and lemmas introduced in 
Section 3.2.1, we know that if we can find D, then we can get B 
and then we can compute A.  Our algorithm for doing this is as 
follows: 

COVERABLE_AREA_FINDING(C, O, T) 

1. From O and r(C), get the 2D point set A(O,C) (see the 
discussion of this below) 

2. =cA(O,C) (c is the complementation operator, and we 
assume that the universal set is a large rectangular area that 
contains A) 

3. From  and C, get E( ,C) 

4. =cE 

5. D = T −* E( ,C) 

D

B

(a) (b)

(c) (d)

Target
Region T

Obstruction
Region O Cutter C A’= κ A(O,C)

Figure 5: A case where using the offset operator  to compute A’  results in a cor rect value for  B.
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6. B = T −* D 

7. Return A = the area of B 

 Except for Step 1, all of the above steps are standard geometric 
operations, and descriptions of them can be found in geometric  
modeling books such as [4].  However, Step 1 is more 
problematic.  It involves computing A(O,C), whose definition is 
similar to the “offset”  operation found in popular geometric 
kernels, but with an important difference. A(O,C) is set of points 

that are less than distance r from the obstruction region. Most 
offset operators compute the set of points that are less than or 
equal to distance r from the given region. Therefore the set 
A(O,C) is an open set, whereas the offset operation produces the 
closed set A’ = κA(O,C) (where κ is the closure operator). 

In many cases,  = κcA’. In such cases, Steps 1 and 2 of the 
COVERABLE_AREA_FINDING algorithm can be replaced with the 
two steps shown below (for an example, see Figure 5): 




Figure 6: A case where using the offset operator  to compute A’ results in an incor rect value for  B.
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1’ .      compute A’ using the offsetting operation 

2’ .       = κcA’ 

In fact, Steps 1’  and 2’  seem so obvious that they are standardly 
used in algorithms for computing the area of B [9,10].  However, 
there are a few cases in which Steps 1’  and 2’  will lead to 
incorrect results.  For example, suppose that the part is the same 
as in Figure 5 but the cutter's radius is as shown in Figure 6.  In 
this case,  is not equal to κcA’, because κcA’ does not include 
the additional edge shown in Figure 7(b) and 7(c).  As a result, if 
we use Steps 1’  and 2’  instead of 1 and 2, Step 3 will compute an 
incorrect value for E in that leaves out the “omitted region”  
shown in Figure 6(d).  Thus, if we use Steps 1’  and 2’  instead of 1 
and 2 in the COVERABLE_AREA_FINDING algorithm, we will get 
an incorrect value for B. 

In our current implementation of COVERABLE_AREA_FINDING, 
we use the following approach to compute a close approximation 
of B.  We use Steps 1’  and 2’ , but instead of offsetting O by the 
radius r, we offset O by a distance r', where r' = r − ε (with ε > 0 
and ε << r). This can overcome the problem with the “omitted 
region”  illustrated in Figure 6, but only if the value of ε is chosen 
carefully so that another “omitted region”  does not occur 
elsewhere. 

We are currently extending our implementation to compute set 
A(O,C) exactly.  This requires computing open sets and 
performing Boolean operations on open sets. 

4. FINDING OPTIMAL SEQUENCE OF 
CUTTERS FOR MULTI-PART  
In cutter selection problems, we are given a set of parts associated 
with corresponding stocks, and a set of available cutters.  We need 
to select a subset of the initial set of cutters such that by using the 
subset to perform machining operations, the given set of parts can 
be produced from the corresponding stocks in the shortest 
possible total machining time. 

Recall from Section 2 that we are given a sequence of cutting 
tools  (C1,C2,…,Cn), listed in decreasing order of cutter radius; we 
are given one or more pieces of stock (S1, …, SL) from which we 
need to produce a corresponding set of parts (P1, …, PL); and the 
problem is to find a subsequence (C*

1,C
*
2,…,C*

m) of 
(C1,C2,…,Cn) such that if we use C*

1,C
*
2,…,C*

m in the order 
given, we can minimize the total machining time TM.. 

We now define the workpiece state Γij as follows.  For j=1,…,L, 
let  Γ0j = Sj, and for i=1,…,n, let Γij be the state of the workpiece 
that results after using the cutter Ci, under the assumption that we 
use Ci to cut as much of Tj as it can safely cut.  From this 
definition, it follows that for every i>0, Γij is equal to the set of 
points in Tj that cannot be safely covered by Ci. The reason for 

this is that any cutters that we used prior to Ci are larger than Ci, 
and thus the portion of Tj that they can safely cut is a subset of the 
portion of Tj that Ci can safely cut. 

For the given set of parts (P1, …, PL), we define the composite 
state Γi to be (Γi0, Γi1,…, ΓiL).  Thus there are n+1 composite 
states Γ0,…,Γn. Since Cn can completely cover all of the target 
regions, Γn represents the set of all of the final part shapes. 

Let Bij. = Tj –* Γij, and let Aij be the area of Bij. (As a special case, 
note that B0j. = Tj –* Γ0j = Tj –* Sj = ∅, and thus A0j = 0.)  Then 
the safely coverable area for the composite state Γi using cutter Cj 
is given by 

∑
=

=
L

j
iji AA

1

.   

Let G be the directed graph whose node set is (Γ0,…,Γn), and 
whose edge set is { (Γi,Γj) : i < j} . 

Each edge (Γi,Γj) corresponds to the operation of using the cutter 
Cj to produce Γj directly from Γi.  For each edge (Γi,Γj), we want 
to assign a cost w(Γi,Γj) that estimates the cost of performing that 
operation.  We will define w(Γi,Γj) as follows. 

As discussed in Section 2, the cost of performing the operation is  
Tcl + Tct, where Tcl is the cutter loading time and Tct is the cutting 
time.  An average value for Tcl is usually determined 
experimentally, and we can estimate Tct as follows. Since the 
cutter Ci has already been used to cut a coverable area Ai of Γi, the 
cutter Cj will only need to cut the area Aj - Ai in order to produce 
Γj.  The time needed to cut Aj - Ai can be estimated as k × (Aj - 
Ai)/rj, where k is a factor determined by machining parameters.  
Thus, we define w(Γi,Γj) = Tcl + k × (Aj - Ai)/rj. 

Since Γ0 represents the initial stocks (S1, …, SL) and Γn represents 
the final parts (P1, …, PL), any path in G starting from  Γ0 to Γn 
represents a cutting sequence in which the final parts can be 
produced form the initial stocks. Because the cost of every edge in 
G represents the estimated machining time needed to go from one 
state to another, any valid path in G has an associated total 
estimated machining time, which is the sum of the path’s edge 
costs. If we can find the least-cost path from Γ0 to Γn, this will 
give us the sequence of cutting operations that minimizes the total 
estimated machining time.  Using Dijkstra’s algorithm, this least-
cost path can be found in time O(n2) [3]. 

5. IMPLEMENTATION AND EXAMPLES 
We have implemented our algorithm, using C++ and the ACIS® 
kernel. As an example, Figure 9 shows parts P1, P2, P3 and P4.  In 
this example, we are given 10 cutters (C1,…,C10) and their radii 
are 2.5mm, 5 mm, 7.5 mm, 10 mm, 12.5 mm, 15 mm, 17.5 mm, 
20 mm, 22.5 mm and 25mm.  We first get the 2D profile for each 

Figure 8: Problem Representation
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part as described in Section 3.1.  After that, we use the algorithm 
described in Section 3.2.2 to get the coverable area for each cutter 
and part combination.  Based on these results, Figure 10 gives a 
chart showing the relationship between the sizes of the cutters 
C1,…,C10 and the total area that each cutter can safely cover. After 
we get all the coverable area values, we use the approach 
described in Section 4 to find the best combination of cutters. 
Figure 12 shows the resulting answer. 

In Section 1, we pointed out that the best combination of cutters is 
likely to be different than what we would get by selecting optimal 
cutter sets for each part individually. As an illustration of this,  
Figure 11 shows what cutters we would have chosen if we had 
selected optimal cutter sets for each part individually. If optimal 
cutter sets are generated for each part individually, then the total 
number of cutters selected will be 7 (their radii are 2.5 mm, 5 mm, 
7.5 mm, 10 mm, 12.5 mm, 17.5 mm and 20 mm). As shown in 
Figure 13, the total machining time used by these cutter sets will 
be 290 minutes.  In contrast, by considering all parts together, the 
total number of cutters needed is only 4, as shown in Figure 12 
(their radii are 2.5 mm, 7.5 mm, 12.5 mm and 20 mm).  As shown 
in Figure 13, the total machining time by using cutters selected by 
considering multi-part simultaneously will be 205 minutes.  Thus, 
the total time saved by using multi-part cutter selection approach 

is (290-205)/290 = 29.3%.  

Another interesting observation is that if the tool loading time 
changes, the optimal cutters may change.  In particular, the lower 
the cutter loading time, the higher the total number of cutters in 
the optimal sequence may be. For example, as shown in Figure  
14, if we take the previous example and change the cutter loading 
time to 10 minutes, then the number of cutters in optimal cutter 
set will be 5 rather than 4.  Similarly, the higher the cutter loading 
time, the lower the total number of cutters in the optimal 
sequence.  Meanwhile, the time saving will also be higher when 
considering multiple parts together compared to consider parts 
individually because the shared cutter loading time. 

6. DISCUSSION AND CONCLUSION  
In order to stay competitive in today's market, companies need to 
eliminate as many sources of manufacturing inefficiency as 
possible. One such source of inefficiency comes from unnecessary 
machine-tool reconfiguration operations. 

In this paper, we describe a way to select an optimal set of 
cutting-tool sizes such that the cutting tools can be used for 
multiple different parts, thereby eliminating unnecessary machine 
tool reconfigurations.  In particular, this paper describes the 
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following new results: 

1. We describe mathematical conditions for determining the 
region that can be covered by a given cutter, and discuss a 
problem with previous formulations of those conditions.  
Based on our conditions, we give an algorithm (not yet 
implemented) that can compute the coverable area exactly, 
and another algorithm (implemented) that can compute a 
close approximation. 

2. We show how to represent the multi-part cutter selection 

problem as the problem of finding the least-cost path in a 
directed graph.  

3. We describe a prototype implementation of our approach, 
and demonstrate it on an example. The example illustrates 
how significant savings can be achieved in the total 
machining time.  

We plan to extend our work in the following areas to overcome 
current limitations: 

1. We plan to implement the algorithm mentioned in Item 1 

Figure 11: Optimal Cutter  Sets for  Individual Par ts (cutter  loading time is 20 minutes)
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above. 

2. Our current estimate of cutting time assumes that it is 
proportional to the ratio of the covered area and the cutter 
size.  In practice, the cutting time will also depend on the 
cutter path.  We plan to develop a better algorithm for 
estimating cutting time, by incorporating tool-path 
considerations.  

3. Tool life plays an important role in tool selection. We plan to 
incorporate tool-life information in order to develop a more 
realistic estimate of total machining time.  

4. So far, we have only considered geometric constraints in the 
cutter selection problem. We plan to extend our method to 
incorporate milling process constraints as well.  

7. ACKNOWLEDGMENTS 
This research has been supported in part by NSF grants 
DMI9896255 and DMI9713718, by AFRL grant F306029910013, 
and by a semester research award from the University of Maryland 
General Research Board.  Opinions expressed in this paper are 
those of authors and do not necessarily reflect opinion of the 
funders.  

8. REFERENCES 
[1] S. Arya, S. W. Cheng and D. M. Mount. Approximation 

algorithm for multiple-tool milling. Proc. Of the 14th Annual 
ACM Symposium on Computational Geometry, pp. 297-306, 
1998.  

[2] M.Bala and T.C.Chang. Automatic cutter selection and 
optimal cutter-path generation for prismatic parts. 
International Journal of Production Research, 29(11), 2163-
2176, 1991.  

[3] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction 
to Algorithms, The MIT Press/McGraw Hill, 1990. 

[4] C. M. Hoffmann. Geometric and Solid Modeling: An 
Introduction, Morgan Kaufman Publishers, 1989. 

[5] Y. S. Lee, B. K. Choi and T. C. Chang. Cut distribution and 
cutter selection for sculptured surface cavity machining. 

International Journal of Production Research, 30(6), 1447-
1470, 1993.  

[6] K. Lee, T. J. Kim and S. E. Hong. Generation of toolpath 
with selection of proper tools for rough cutting process. 
Computer-Aided Design, vol(26) 822-831, Nov. 1994. 

[7] Y. S. Lee and T. C. Chang. Application of computational 
geometry in optimization 2.5D and 3D NC surface 
machining. Computers in Industry, 26(1), 41-59, 1995. 

[8] Y. S. Lee and T. C. Chang. Automatic cutter selection for 5-
axis sculptured surface machining. International Journal of 
Production Research, 34(4), 977-998, 1996. 

[9] T.Lim, J.Corney, J.M.Ritchie and D.E.R.Clark, Optimising 
automatic tool selection for 21/2D components. In Proc. 
DETC 2000: 2000 ASME Design Engineering Technical 
Conference, Baltimore, MD, September 10-13, 2000. 

[10] T.Lim, J.Corney and D.E.R.Clark. Exact tool sizing for 
feature accessibility. International Journal of Advanced 
Manufacturing Technology, Vol.16, pp.791-802, 2000 

[11] B. Mahadevan, L. Putta and S. Sarma. A feature free 
approach to tool selection and path planning in 3-axis rough 
cutting.  Proceedings of First International Conference on 
Responsive Manufacturing, Nottingham, pp.47-60, 
September 1997. 

[12] Ganping Sun, Fu-Chung Wang, Paul Wright and Carlo 
Sequin.  Operation decomposition for freeform surface 
features in process planning. In Proc. DETC 1999: 1999 
ASME Design Engineering Technical Conference, Las 
Vegas, Nevada, September 12-15, 1999. 

[13] D. Veeramani, and, Y. S. Gau.  Selection of an optimal set of 
cutting-tool sizes for 2.5D pocket machining. Computer-
Aided Design, 29(12), 869-877, 1997. 

[14] D.C.H. Yang and Z. Han. Interference detection and optimal 
tool selection in 3-axis NC machining of free-form surface. 
Computer-Aided Design, Vol.31, pp.303-315, 1999. 

[15] Zhiyang Yao, S. K. Gupta and Dana Nau.  A Geometric 
Algorithm for Finding the Largest Milling Cutter. ISR 
Technical Report, TR 2000-40, University of Maryland, 
College Park, 2000. 

 

Cutter’s Radius :   25      22.5       20        17.5          15        12.5          10        7.5         5           2.5

Least-Cost Path:

Figure 14: The Optimal Cutter  Set Generated by consider ing all par ts simultaneously
(cutter  loading time is 10 minutes)




