

A Geometric Algorithm for Selecting Optimal Set of
Cutters for Multi-Part Milling

Zhiyang Yao
Mechanical Engineering Department
and Institute for Systems Research

University of Maryland
College Park,MD-20742

+1-301-405-6572

yaodan@Glue.umd.edu

Satyandra K. Gupta
Mechanical Engineering Department
 and Institute for Systems Research

University of Maryland
College Park,MD-20742

+1-301-405-5306

skgupta@eng.umd.edu

Dana S. Nau
Computer Science Department

and Institute for Systems Research
University of Maryland

College Park,MD-20742
+1-301-405-2684

nau@cs.umd.edu

ABSTRACT

For the manufacture of milled parts, it is well known that the size
of the cutter significantly affects the machining time. However,
for small-batch manufacturing, the time spent on loading tools
into the tool magazine and establishing z-length compensation
values is just as important. If we can select a set of milling tools
that will produce good machining time on more than one type of
parts, then several unnecessary machine-tool reconfiguration
operations can be eliminated. This paper describes a geometric
algorithm for finding an optimal set of cutters for machining a set
of 2½D parts. In selecting milling cutters we consider both the
tool loading time and the machining time and generate solutions
that allow us to minimize the total machining time. Our problem
formulation addresses the general problem of how to cover a
target region to be milled with a cylindrical cutter without
intersecting with the obstruction region; this definition allows us
to handle both open and closed edges in the target region. Our
algorithm improves upon previous work in the tool selection area
in following ways: (1) in selecting cutters, it accounts for the tool
loading time, and (2) it can simultaneously consider multiple
different parts and select the optimal set of cutters to minimize the
total manufacturing time.
Keywords

Geometric Algorithms, Computer-Aided Manufacturing.

1. INTRODUCTION
Increasingly, the manufacturing industry is moving towards high
part mixes, which makes it important to reduce setup and tooling
operations. For example, if a machine-tool is not configured to
accommodate more than one part within a part family, then large
amounts of time will repeatedly be spent on reconfiguring the
machine-tool (i.e., loading new tools and fixtures into the
machine-tool) each time a request is received for manufacturing a
different part. Such reconfigurations are the major source of
inefficiency in small batch manufacturing.

If a machine-tool was configured from the beginning to
accommodate several different parts within the part family, much
of the cost of reconfiguring the machine-tool could be avoided.
This will require considering all of the parts that need to be
produced during the given operational period, and selecting tools
and machine-tool configurations that can work for multiple
different parts.

In the milling operation domain, it is well known that the size of
the milling cutters significantly affects the machining time.

Therefore, in order to perform milling operations efficiently, we
need to select a set of milling cutters with optimal sizes. It is
difficult for human process planners to select the optimal or near
optimal set of milling cutters due to complex geometric
interactions among tools size, part shapes, and tool trajectories.
Furthermore, in small batch manufacturing, both tool loading time
(i.e., the time spent on loading tools into the tool changer) and
machining time (i.e., the time spent on performing milling
operations) are equally important.

Most existing cutter selection algorithms select milling cutters by
minimizing the machining time and do not account for tool
loading time [1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. In most cases,
the existing algorithms will recommend using a different set of
cutters for each new type of part. Since most machine-tools can
only hold a limited number of tools at one time, this means that
we will need to reconfigure the machine-tool (i.e., we will need to
change the set of tools in the tool magazine) before machining
each new type of part. When the batch size is small, reconfiguring
the machine-tool before machining each type of part may
significantly reduce the throughput. However, if we can select a
set of tools that can be used for more than one type of part, then
several unnecessary machine-tool reconfiguration operations can
be eliminated, thereby increasing the throughput.

This paper describes a geometric algorithm for finding an optimal
set of milling cutters for machining a given set of parts. In
selecting milling cutters we consider both the tool loading time as
well as machining time and generate solutions that allow us to
minimize the total manufacturing time. Our tool selection
algorithm improves upon the previous work in this area, in the
following manner: (1) in selecting cutters it accounts for tool
loading time, and (2) it can simultaneously consider multiple
different parts and select the optimal set of cutters to minimize the
total manufacturing time.

Currently our algorithm is restricted to 2½D milling operations. In
particular, we consider the problem of selecting a sequence of
cylindrical cutters to cut all of the points in a 2½D target region
without cutting any of the points in a 2½D obstruction region
[15]. This approach allows us to handle both open and closed
edges. The steps of our approach are as follows:

Given a set of available cutters, we first compute how much of the
target region each cutter can cut. We do this by finding the set of
all possible permissible locations for the tool, and then computing

Dana S. Nau
A modified version of this paper will appear in the ACM Solid Modeling Conference, June 2001

t he total area covered by the tool at these permissible locations.1
Next, we represent the problem of finding an optimal sequence of
cutters as a least-cost path problem, and use Dijkstra’s algorithm
to solve it. Our overall approach is shown in Figure 1.

2. PROBLEM FORMULATION
The milling problem is the problem of taking one or more pieces
of stock and using a sequence of one or more milling operations
to remove portions of each piece of stock, in order to produce
some desired set of parts. Each milling operation is performed
using a milling cutter, and our research focuses on the geometric
aspects of selecting those cutters. In previous work [15], we
looked at the case where only one milling operation was to be
used, and developed an algorithm for finding the optimal cutter
for this operation. However, in practical milling problems, it is
more typical to use more than one milling operation, using a
different cutter for each operation—and that problem is the
subject of the current paper.

Let P be one of the parts that needs to be produced, and let S be
the piece of stock from which P is to be produced. We will
assume that S –* P (i.e., the portion of S that needs to be removed
to produce P) is a 2½D solid (this assumption holds for most
milling operations). In this case, the cutter selection problem can
be reduced to a 2D problem by considering any cross-section of
the 2½D solid. Within this 2D cross-section, we define the region
to be machined as the target region T (a region is a set of 2D

1 This problem is computationally similar to the problem of

computing the offset for a 2D point set, and previous
approaches for this problem have been based on the use of the
offsetting operators traditionally available in most solid
modeling systems. However, in this paper we show that those
approaches will not always produce correct results, and in
Section 3.2.2 we show what modifications are needed to make
those approaches correct.

points). In addition to the target region, there is an obstruction
region O that is the region that the cutting tool should not cut
during machining. An example is shown in Figure 2. The target
region and the obstruction region must both be regular sets, each
of which may consist of a number of non-adjacent sub-regions:

T = T1 ∪ … ∪ TM;

O = O1 ∪ … ∪ ON.

In this paper, we assume that the boundary of each sub-region
consists only of line segments and segments of circles.

Let C be a rotating cutter of radius r(C) located at some point
p=(x,y). If we hold C stationary while it is rotating, then C will
cut a circular region R(C,p) = { all points (u,v) such that

)()()(22 Cryvxu ≤−+− } . We will call R(C,p) the set of

points covered by C at p.

If we move C while it is rotating, then C will cut some region
larger than R(C,p). In this paper, one of the things we will want
to find is the set of all points in T that can be cut by C. There are
several different non-equivalent ways to define what this set is. As
we discussed in [15], the best one for our purposes is as follows.
A point p is a permissible location for C if the interior of R(C,p)
does not intersect with the obstruction region, or equivalently, if

∅=∩),(* pCRO . A set of points can be safely covered by C

if for every point p in the set, there is a permissible location of C
that covers p.

In most cases, the length of the cutter path associated with a cutter
will decrease as the cutter size increases, and therefore it will take
less time to cut a given area. However, due to geometric
restrictions, a large cutter may not be able to safely cover the
entire target region—and thus one or more smaller cutters will be
needed to cut the remaining portion of the target region.

In multi-cutter selection problems, multiple milling operations are
used, each with a different milling cutter. The bigger cutters are u
sed first, in order to cut material as fast as possible. Then, smaller

Collection of parts to be machined

For each cutter, find how much of area
it can cover(Section 3.2).

Choose an optimal set of cutters by solving
 least-cost path problem(Section 4).

Cutter library

Figure 1: Overview of Our Approach

Best Cutter Combination

Tool Setup Time,
Cutting Parameters

Get 2D profile from 3D parts(Section 3.1).

cutters are used to create the smaller features of the target region.
The total machining time TM for the sequence of milling
operations is the total time needed from the time that the stock is
loaded into the milling machine, until the time that the finished
part is produced. TM can be expressed as

TM = Tct+Tcc+Tcl ,

where Tct is the total real cutting time (the time spend on moving
cutters to cut the profile); Tcc is the total cutter change time (the
total time of changing tools during machining all the parts); and
Tcl is the total cutter loading time (the total time spent on loading
and calibrating all selected cutters before machining given parts).
Since cutter change time is significantly smaller (of the order of 5
seconds) compared to cutting time and cutter loading time (of the
order of 5 to 10 minutes), in this paper we will ignore cutter
change time. Therefore, in this paper we will use

TM = Tct+ Tcl .

Intuitively, the cutter selection problem can be described as a
region covering problem: we need to find an optimal sequence of
cutters that can cover the target region without intersecting the
obstruction region. Mathematically, we define the multi-part
cutter selection problem as follows. Suppose we are given one or
more pieces of stock (S1, …, SL) from which we need to produce a
corresponding set of parts (P1, …, PL). In order to produce those
parts, suppose we have a sequence of cutting tools (C1,C2,…,Cn),
given in decreasing order of cutter radius (i.e., r(C1) > … >

 (a) Stock (b) Final Part

Figure 2: Examples of the stock, final par t, target region, and obstruction region.

(c) Target and Obstruction Regions

Obstruction Region, O

Target Region, T

Milling Cutter

Figure 3: Example of profile extraction

3-D Model

Bottom Surface
Profile f2

Upper Surface
Profile f1

Profile Shows Target
and Obstruction
Region

Figure 3: Example of profile extraction

3-D Model

Bottom Surface
Profile f2

Upper Surface
Profile f1

Profile Shows Target
and Obstruction
Region

Figure 3: Example of profile extractionFigure 3: Example of profile extraction

3-D Model

Bottom Surface
Profile f2

Upper Surface
Profile f1

Profile Shows Target
and Obstruction
Region

r(Cn)). Furthermore, suppose that Cn is small enough that it can
safely produce all of P1, …, PL, and that for m < n, no Cm is small
enough to safely produce all of P1, …, PL. The problem is to find
a subsequence (C*

1,C
*
2,…,C*

m) of (C1,C2,…,Cn) such that if we
use C*

1,C
*
2,…,C*

m in the order given, this will minimize the total
machining time TM. In this paper we present an algorithm for
solving this problem.

3. FINDING COVERABLE AREA FOR A
GIVEN CUTTER
In order to solve the multi-part cutter selection problem, an
important step is to estimate the area of the region that can be
safely covered (in following sections, we call this region as
coverable region and the area of coverable region as coverable
area) by each of the cutters C1, …, Cn. This section describes

geometric algorithms for calculating the coverable area for a given
part and tool combination.

3.1 An Algor ithm for Extracting 2D Profile
To estimate the coverable area automatically, we will need to
extract the target and obstruction region from the CAD model. To
see how we extract the target region and obstruction region,
consider example shown in Figure 3, in which we have a 3D
model of a rectangular part whose faces are parallel to the xy, yz,
and xz planes. As shown in the figure, this part has a single
feature, which is a blind 2½D milling feature which is located in
the part’s top face. To find the target region and the obstruction
region, we extract two cross-sections that are parallel to the xy
plane: a cross-section f1 at the top of the part, and a cross-section
f2 at the bottom of the feature. The obstruction region is f1, and the
target region is f2 −* f1.

Figure 4: I llustration of Definitions

r

(a) Target region T, obstruction
region O and given cutter C.

(b) A(O,C) is the set of
non-permissible locations

(d) E(,C) = { p: ∃ q ∈ , distance(p,q) ≤ r(C) } (e) Examples of coverable region B
and uncoverable region D.

Obstruction
Region, O

Target Region,
T

Given Cutter,
C

A(O,C)

Uncoverable
Region, D

�

E(,C)

r(C)
r

(c) is the complement of A(O,C).

�

Coverable Region,
B

r(C)

r(C)

Figure 4: I llustration of Definitions

r

(a) Target region T, obstruction
region O and given cutter C.

(b) A(O,C) is the set of
non-permissible locations

(d) E(,C) = { p: ∃ q ∈ , distance(p,q) ≤ r(C) } (e) Examples of coverable region B
and uncoverable region D.

Obstruction
Region, O

Target Region,
T

Given Cutter,
C

A(O,C)

Uncoverable
Region, D

�

E(,C)

r(C)
r

(c) is the complement of A(O,C).

�

Coverable Region,
B

r(C)

r(C)

3.2 An Algor ithm for Finding Coverable Area
3.2.1 Definitions
Lemma 1: Given a cutter C of radius r(C), the target region T and
obstruction region O, the set of non-permissible locations A(O,C)
for C is given by:

A(O,C) = { p: ∃ q ∈ O, distance(p,q) < r(C) } .

Proof: For every point p in A(O,C), ∃ q ∈ O such that
distance(p,q) < r(C). Therefore, q will be in the interior of R(C,p).
Thus, R(C,p) ∩* O � ∅. Hence every p in A(O,r) is not a
permissible location of C.

Lemma 2: Let be the complement of A(O,C). Every point in
the set is a permissible location.

Proof: . Let p be a point in . Let q be the closest point in O to p.
Since A(O,C) contains all points whose minimum distance to O is
less than r(C), it follows that distance(p,q) � r(C). Therefore, q is
either outside of R(C,p) or on the boundary of R(C,p). Thus,
R(C,p) ∩* O = ∅. Hence every p in is a permissible location of
C.

Lemma 3: Let E(,C) = { p: ∃ q ∈ , distance(p,q) ≤ r(C) } .
Then for every point p in E(,C), there is a permissible location q
such that p can be safely covered by C at q.

Proof: Let p ∈ E(,C). Then there is a point q in such that
distance(p,q) ≤ r(C). Therefore, p∈ R(C,q). Since q is in , it
follows from Lemma 2 that q is a permissible location. Therefore,
p can be safely covered by q.

Lemma 4: Let be the complement of E(,C). For every p ∈ �
there is no permissible location for C to cover p.

Proof: Let p be any point in , and suppose we can find a
permissible location q such that R(q,C) covers p. Then from
Lemma 1, it follows that q is not in A(O,C) and hence is in .

Since R(q,C) covers p, this means that distance(q, p) � r(C). Thus
p is in E(,C), which is a contradiction since p is in .

Theorem 1: Let D = T −* E(,C). Then for every p ∈ D, there is
no permissible location for C to cover p.

Proof: Since D is a subset of , this theorem directly follows
from Lemma 4.

Theorem 2: Let B = T −* D. Then for every p ∈ B, there is a
permissible location for C to cover p. (Thus we will call B the
coverable region of C).

Proof: B is a subset of E. Therefore, this theorem directly follows
from Lemma 3.

Figure 4 shows an example in which A(O,C), , E(,C), , D
and B are given.

3.2.2 Algorithm

Let A be the area of the coverable region B. A is the coverable
area of using C. From the definition and lemmas introduced in
Section 3.2.1, we know that if we can find D, then we can get B
and then we can compute A. Our algorithm for doing this is as
follows:

COVERABLE_AREA_FINDING(C, O, T)

1. From O and r(C), get the 2D point set A(O,C) (see the
discussion of this below)

2. =cA(O,C) (c is the complementation operator, and we
assume that the universal set is a large rectangular area that
contains A)

3. From and C, get E(,C)

4. =cE

5. D = T −* E(,C)

D

B

(a) (b)

(c) (d)

Target
Region T

Obstruction
Region O Cutter C A’= κ A(O,C)

Figure 5: A case where using the offset operator to compute A’ results in a cor rect value for B.

r(C)

r(C)

r(C)

�

= κ c A’

E(,C)

(c)

	

6. B = T −* D

7. Return A = the area of B

 Except for Step 1, all of the above steps are standard geometric
operations, and descriptions of them can be found in geometric
modeling books such as [4]. However, Step 1 is more
problematic. It involves computing A(O,C), whose definition is
similar to the “offset” operation found in popular geometric
kernels, but with an important difference. A(O,C) is set of points

that are less than distance r from the obstruction region. Most
offset operators compute the set of points that are less than or
equal to distance r from the given region. Therefore the set
A(O,C) is an open set, whereas the offset operation produces the
closed set A’ = κA(O,C) (where κ is the closure operator).

In many cases, = κcA’. In such cases, Steps 1 and 2 of the
COVERABLE_AREA_FINDING algorithm can be replaced with the
two steps shown below (for an example, see Figure 5):

Figure 6: A case where using the offset operator to compute A’ results in an incor rect value for B.

A’= κ A(O,C)

(a) (b)

(d) (e)

Target
Region T

Obstruction
Region OCutter C

r(C)

r(C)

r(C)

Incorrect
value for E

Incorrect value
for D

Incorrect value
for B

�

κ c A’ (notice that this is ≠)

(c)

Incorrect
value for

Region that
incorrectly
omitted from
E

r(C)

A(Open Set)

Figure 7: A cor rect way to compute B for part shown in Figure 6

(a) (b)

(d)

 includes the line
segment.

�

E In this example, D =
∅ and thus B = T.

(e)

The open edge that was
missing in Figure 6.

Target
Region T

Obstruction
Region OCutter C

r(C)

(c)

1’ . compute A’ using the offsetting operation

2’ . = κcA’

In fact, Steps 1’ and 2’ seem so obvious that they are standardly
used in algorithms for computing the area of B [9,10]. However,
there are a few cases in which Steps 1’ and 2’ will lead to
incorrect results. For example, suppose that the part is the same
as in Figure 5 but the cutter's radius is as shown in Figure 6. In
this case, is not equal to κcA’, because κcA’ does not include
the additional edge shown in Figure 7(b) and 7(c). As a result, if
we use Steps 1’ and 2’ instead of 1 and 2, Step 3 will compute an
incorrect value for E in that leaves out the “omitted region”
shown in Figure 6(d). Thus, if we use Steps 1’ and 2’ instead of 1
and 2 in the COVERABLE_AREA_FINDING algorithm, we will get
an incorrect value for B.

In our current implementation of COVERABLE_AREA_FINDING,
we use the following approach to compute a close approximation
of B. We use Steps 1’ and 2’ , but instead of offsetting O by the
radius r, we offset O by a distance r', where r' = r − ε (with ε > 0
and ε << r). This can overcome the problem with the “omitted
region” illustrated in Figure 6, but only if the value of ε is chosen
carefully so that another “omitted region” does not occur
elsewhere.

We are currently extending our implementation to compute set
A(O,C) exactly. This requires computing open sets and
performing Boolean operations on open sets.

4. FINDING OPTIMAL SEQUENCE OF
CUTTERS FOR MULTI-PART
In cutter selection problems, we are given a set of parts associated
with corresponding stocks, and a set of available cutters. We need
to select a subset of the initial set of cutters such that by using the
subset to perform machining operations, the given set of parts can
be produced from the corresponding stocks in the shortest
possible total machining time.

Recall from Section 2 that we are given a sequence of cutting
tools (C1,C2,…,Cn), listed in decreasing order of cutter radius; we
are given one or more pieces of stock (S1, …, SL) from which we
need to produce a corresponding set of parts (P1, …, PL); and the
problem is to find a subsequence (C*

1,C
*
2,…,C*

m) of
(C1,C2,…,Cn) such that if we use C*

1,C
*
2,…,C*

m in the order
given, we can minimize the total machining time TM..

We now define the workpiece state Γij as follows. For j=1,…,L,
let Γ0j = Sj, and for i=1,…,n, let Γij be the state of the workpiece
that results after using the cutter Ci, under the assumption that we
use Ci to cut as much of Tj as it can safely cut. From this
definition, it follows that for every i>0, Γij is equal to the set of
points in Tj that cannot be safely covered by Ci. The reason for

this is that any cutters that we used prior to Ci are larger than Ci,
and thus the portion of Tj that they can safely cut is a subset of the
portion of Tj that Ci can safely cut.

For the given set of parts (P1, …, PL), we define the composite
state Γi to be (Γi0, Γi1,…, ΓiL). Thus there are n+1 composite
states Γ0,…,Γn. Since Cn can completely cover all of the target
regions, Γn represents the set of all of the final part shapes.

Let Bij. = Tj –* Γij, and let Aij be the area of Bij. (As a special case,
note that B0j. = Tj –* Γ0j = Tj –* Sj = ∅, and thus A0j = 0.) Then
the safely coverable area for the composite state Γi using cutter Cj
is given by

∑
=

=
L

j
iji AA

1

.

Let G be the directed graph whose node set is (Γ0,…,Γn), and
whose edge set is { (Γi,Γj) : i < j} .

Each edge (Γi,Γj) corresponds to the operation of using the cutter
Cj to produce Γj directly from Γi. For each edge (Γi,Γj), we want
to assign a cost w(Γi,Γj) that estimates the cost of performing that
operation. We will define w(Γi,Γj) as follows.

As discussed in Section 2, the cost of performing the operation is
Tcl + Tct, where Tcl is the cutter loading time and Tct is the cutting
time. An average value for Tcl is usually determined
experimentally, and we can estimate Tct as follows. Since the
cutter Ci has already been used to cut a coverable area Ai of Γi, the
cutter Cj will only need to cut the area Aj - Ai in order to produce
Γj. The time needed to cut Aj - Ai can be estimated as k × (Aj -
Ai)/rj, where k is a factor determined by machining parameters.
Thus, we define w(Γi,Γj) = Tcl + k × (Aj - Ai)/rj.

Since Γ0 represents the initial stocks (S1, …, SL) and Γn represents
the final parts (P1, …, PL), any path in G starting from Γ0 to Γn
represents a cutting sequence in which the final parts can be
produced form the initial stocks. Because the cost of every edge in
G represents the estimated machining time needed to go from one
state to another, any valid path in G has an associated total
estimated machining time, which is the sum of the path’s edge
costs. If we can find the least-cost path from Γ0 to Γn, this will
give us the sequence of cutting operations that minimizes the total
estimated machining time. Using Dijkstra’s algorithm, this least-
cost path can be found in time O(n2) [3].

5. IMPLEMENTATION AND EXAMPLES
We have implemented our algorithm, using C++ and the ACIS®
kernel. As an example, Figure 9 shows parts P1, P2, P3 and P4. In
this example, we are given 10 cutters (C1,…,C10) and their radii
are 2.5mm, 5 mm, 7.5 mm, 10 mm, 12.5 mm, 15 mm, 17.5 mm,
20 mm, 22.5 mm and 25mm. We first get the 2D profile for each

Figure 8: Problem Representation

… …
Initial
State

Γ0

State
Γ1

State
Γi

Final
State

Γn

State
Γj

…

(Γi Γj)

part as described in Section 3.1. After that, we use the algorithm
described in Section 3.2.2 to get the coverable area for each cutter
and part combination. Based on these results, Figure 10 gives a
chart showing the relationship between the sizes of the cutters
C1,…,C10 and the total area that each cutter can safely cover. After
we get all the coverable area values, we use the approach
described in Section 4 to find the best combination of cutters.
Figure 12 shows the resulting answer.

In Section 1, we pointed out that the best combination of cutters is
likely to be different than what we would get by selecting optimal
cutter sets for each part individually. As an illustration of this,
Figure 11 shows what cutters we would have chosen if we had
selected optimal cutter sets for each part individually. If optimal
cutter sets are generated for each part individually, then the total
number of cutters selected will be 7 (their radii are 2.5 mm, 5 mm,
7.5 mm, 10 mm, 12.5 mm, 17.5 mm and 20 mm). As shown in
Figure 13, the total machining time used by these cutter sets will
be 290 minutes. In contrast, by considering all parts together, the
total number of cutters needed is only 4, as shown in Figure 12
(their radii are 2.5 mm, 7.5 mm, 12.5 mm and 20 mm). As shown
in Figure 13, the total machining time by using cutters selected by
considering multi-part simultaneously will be 205 minutes. Thus,
the total time saved by using multi-part cutter selection approach

is (290-205)/290 = 29.3%.

Another interesting observation is that if the tool loading time
changes, the optimal cutters may change. In particular, the lower
the cutter loading time, the higher the total number of cutters in
the optimal sequence may be. For example, as shown in Figure
14, if we take the previous example and change the cutter loading
time to 10 minutes, then the number of cutters in optimal cutter
set will be 5 rather than 4. Similarly, the higher the cutter loading
time, the lower the total number of cutters in the optimal
sequence. Meanwhile, the time saving will also be higher when
considering multiple parts together compared to consider parts
individually because the shared cutter loading time.

6. DISCUSSION AND CONCLUSION
In order to stay competitive in today's market, companies need to
eliminate as many sources of manufacturing inefficiency as
possible. One such source of inefficiency comes from unnecessary
machine-tool reconfiguration operations.

In this paper, we describe a way to select an optimal set of
cutting-tool sizes such that the cutting tools can be used for
multiple different parts, thereby eliminating unnecessary machine
tool reconfigurations. In particular, this paper describes the

Part P1
Part P2 Part P3

Part P4

Figure 9 : Example Par ts

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

16000.00

2.5 5 7.5 10 12.5 15 17.5 20 22.5 25

Coverable Area of P1

Coverable Area of P2

Coverable Area of P3

Coverable Area of P4

Coverable Area of All
Parts

Cutter Size

Coverable Area Coverable Area/Cutter Size chart

Figure 10 : Cutter Size/ Coverable Area Chart

following new results:

1. We describe mathematical conditions for determining the
region that can be covered by a given cutter, and discuss a
problem with previous formulations of those conditions.
Based on our conditions, we give an algorithm (not yet
implemented) that can compute the coverable area exactly,
and another algorithm (implemented) that can compute a
close approximation.

2. We show how to represent the multi-part cutter selection

problem as the problem of finding the least-cost path in a
directed graph.

3. We describe a prototype implementation of our approach,
and demonstrate it on an example. The example illustrates
how significant savings can be achieved in the total
machining time.

We plan to extend our work in the following areas to overcome
current limitations:

1. We plan to implement the algorithm mentioned in Item 1

Figure 11: Optimal Cutter Sets for Individual Par ts (cutter loading time is 20 minutes)

Least-Cost Path
for P1:

: 25 22.5 20 17.5 15 12.5 10 7.5 5 2.5

Least-Cost Path
for P2:

Least-Cost Path
for P3:

Least-Cost Path
for P4:

Cutter’s Radius

: 25 22.5 20 17.5 15 12.5 10 7.5 5 2.5Cutter’s Radius

Least-Cost Path:

Figure 12: The Optimal Cutter Set Generated by consider ing all par ts simultaneously
(cutter loading time is 20 minutes)

Considering Individual Part Considering Multi-Part

Manufacturing Time Comparison

Tcc of P1

Tcc of P2

Tcc of P3

Tcc of P4

Tcl of Selected
Cutters

TM

Figure 13: Compar ison of Total Machining Time by Consider ing Four Par ts Individually
 and Consider ing Four Par ts Simultaneously

0

80

160

240

320

Minutes

above.

2. Our current estimate of cutting time assumes that it is
proportional to the ratio of the covered area and the cutter
size. In practice, the cutting time will also depend on the
cutter path. We plan to develop a better algorithm for
estimating cutting time, by incorporating tool-path
considerations.

3. Tool life plays an important role in tool selection. We plan to
incorporate tool-life information in order to develop a more
realistic estimate of total machining time.

4. So far, we have only considered geometric constraints in the
cutter selection problem. We plan to extend our method to
incorporate milling process constraints as well.

7. ACKNOWLEDGMENTS
This research has been supported in part by NSF grants
DMI9896255 and DMI9713718, by AFRL grant F306029910013,
and by a semester research award from the University of Maryland
General Research Board. Opinions expressed in this paper are
those of authors and do not necessarily reflect opinion of the
funders.

8. REFERENCES
[1] S. Arya, S. W. Cheng and D. M. Mount. Approximation

algorithm for multiple-tool milling. Proc. Of the 14th Annual
ACM Symposium on Computational Geometry, pp. 297-306,
1998.

[2] M.Bala and T.C.Chang. Automatic cutter selection and
optimal cutter-path generation for prismatic parts.
International Journal of Production Research, 29(11), 2163-
2176, 1991.

[3] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction
to Algorithms, The MIT Press/McGraw Hill, 1990.

[4] C. M. Hoffmann. Geometric and Solid Modeling: An
Introduction, Morgan Kaufman Publishers, 1989.

[5] Y. S. Lee, B. K. Choi and T. C. Chang. Cut distribution and
cutter selection for sculptured surface cavity machining.

International Journal of Production Research, 30(6), 1447-
1470, 1993.

[6] K. Lee, T. J. Kim and S. E. Hong. Generation of toolpath
with selection of proper tools for rough cutting process.
Computer-Aided Design, vol(26) 822-831, Nov. 1994.

[7] Y. S. Lee and T. C. Chang. Application of computational
geometry in optimization 2.5D and 3D NC surface
machining. Computers in Industry, 26(1), 41-59, 1995.

[8] Y. S. Lee and T. C. Chang. Automatic cutter selection for 5-
axis sculptured surface machining. International Journal of
Production Research, 34(4), 977-998, 1996.

[9] T.Lim, J.Corney, J.M.Ritchie and D.E.R.Clark, Optimising
automatic tool selection for 21/2D components. In Proc.
DETC 2000: 2000 ASME Design Engineering Technical
Conference, Baltimore, MD, September 10-13, 2000.

[10] T.Lim, J.Corney and D.E.R.Clark. Exact tool sizing for
feature accessibility. International Journal of Advanced
Manufacturing Technology, Vol.16, pp.791-802, 2000

[11] B. Mahadevan, L. Putta and S. Sarma. A feature free
approach to tool selection and path planning in 3-axis rough
cutting. Proceedings of First International Conference on
Responsive Manufacturing, Nottingham, pp.47-60,
September 1997.

[12] Ganping Sun, Fu-Chung Wang, Paul Wright and Carlo
Sequin. Operation decomposition for freeform surface
features in process planning. In Proc. DETC 1999: 1999
ASME Design Engineering Technical Conference, Las
Vegas, Nevada, September 12-15, 1999.

[13] D. Veeramani, and, Y. S. Gau. Selection of an optimal set of
cutting-tool sizes for 2.5D pocket machining. Computer-
Aided Design, 29(12), 869-877, 1997.

[14] D.C.H. Yang and Z. Han. Interference detection and optimal
tool selection in 3-axis NC machining of free-form surface.
Computer-Aided Design, Vol.31, pp.303-315, 1999.

[15] Zhiyang Yao, S. K. Gupta and Dana Nau. A Geometric
Algorithm for Finding the Largest Milling Cutter. ISR
Technical Report, TR 2000-40, University of Maryland,
College Park, 2000.

Cutter’s Radius : 25 22.5 20 17.5 15 12.5 10 7.5 5 2.5

Least-Cost Path:

Figure 14: The Optimal Cutter Set Generated by consider ing all par ts simultaneously
(cutter loading time is 10 minutes)

