
Algorithms for selecting cutters in multi-part milling problems

Zhiyang Yaoa, Satyandra K. Guptaa,*, Dana S. Naub

aDepartment of Mechanical Engineering, Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
bDepartment of Computer Science, Institute for Systems Research, University of Maryland, College Park, MD 20742, USA

Received 11 December 2001; received in revised form 8 June 2002; accepted 10 June 2002

Abstract

This paper describes geometric algorithms for automatically selecting an optimal sequence of cutters for machining a set of 2.5-D parts. In

milling operations, cutter size affects the machining time significantly. Meanwhile, if the batch size is small, it is also important to shorten the

time spent on loading tools into the tool magazine and establishing z-length compensation values. Therefore, in small-batch manufacturing, if

we can select a set of milling tools that will produce good machining time on more than one type of parts, then several unnecessary

machine-tool reconfiguration operations can be eliminated. In selecting milling cutters we consider both the tool loading time and the

machining time and generate solutions that allow us to minimize the total machining time. In this paper we first present algorithms for finding

the area that can be cut by a given cutter. Then we describe a graph search formulation for the tool selection problem. Finally, the optimal

sequence of cutters is selected by using Dijkstra’s shortest path planning algorithm.

q 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Geometric Algorithms; 2.5-D Milling; Cutter Selection

1. Introduction

Increasing emphasis on more personalized products and

shrinking product lives is resulting in major changes in

manufacturing practices [1]. Increasingly, the manufactur-

ing industry is moving towards high part mixes, which

makes it important to reduce setup and tooling operations.

For example, if a machine-tool is not configured to

accommodate more than one part within a part family,

then large amount of time will repeatedly be spent on

reconfiguring the machine-tool (i.e. loading new tools and

fixtures into the machine-tool) each time a request is

received for manufacturing a different part. Such reconfi-

gurations are the major source of inefficiency in small batch

manufacturing.

If the machine-tool were configured from the beginning

to accommodate several different parts within the part

family, much of the cost of reconfiguring the machine-tool

could be avoided. This will require considering all of the

parts that need to be produced during the given operational

period, and selecting tools and machine-tool configurations

that can work for multiple different parts.

Human process planners and machine operators are

already trying to create multi-use setups and machine-tool

configurations and to exploit every opportunity for reusing

tools and fixtures that have already been loaded into

machine-tools. Here are two examples:

† In the sheet-metal industry, when given a new part,

machine operators often analyze the previous machine-

tool configurations to see how they can make use of

portions of the existing configuration for the new part. In

some cases, they even will intentionally plan configur-

ations that will be useful for multiple parts.

† For CNC machining operations, operators often try to

use the tools that are already loaded into the tool

magazine. When they need to produce several

different types of parts, they try to select a set of

tools that can be used to produce all parts, and load

all tools into the tool magazine before starting the

machining operation for the first part.

In the milling operation domain, it is well known that the

size of the milling cutters significantly affects the machining

time. Therefore, in order to perform milling operations

efficiently, we need to select a set of milling cutters with

optimal sizes. It is difficult for human process planners to

select the optimal or near optimal set of milling cutters due

0010-4485/03/$ - see front matter q 2003 Elsevier Science Ltd. All rights reserved.

PII: S0 01 0 -4 48 5 (0 2) 00 1 10 -0

Computer-Aided Design 35 (2003) 825–839

www.elsevier.com/locate/cad

* Corresponding author. Tel.: þ1-301-405-5306; fax: þ1-301-314-9477.

E-mail addresses: skgupta@eng.umd.edu (S.K. Gupta), yaodan@glue.

umd.edu (Z. Yao), nau@cs.umd.edu (D.S. Nau).

http://www.elsevier.com/locate/cad

to complex geometric interactions among tools size, part

shapes, and tool trajectories. Furthermore, in small batch

manufacturing, both tool loading time (i.e. the time spent on

loading tools into the tool magazine) and machining time

(i.e. the time spent on performing milling operations) are

equally important.

Most existing cutter selection algorithms select milling

cutters by minimizing the machining time and do not

account for tool loading time. In most cases, the existing

algorithms will recommend using a different set of cutters

for each new type of part. Since most machine-tools can

only hold a limited number of tools at one time, this means

that we will need to reconfigure the machine-tool (i.e. we

will need to change the set of tools in the tool magazine)

before machining each new type of part. When the batch

size is small, reconfiguring the machine-tool before

machining each type of part may significantly reduce the

throughput. However, if we can select a set of tools that can

be used for more than one type of part, then several

unnecessary machine-tool reconfiguration operations can be

eliminated, thereby increasing the throughput.

This paper describes geometric algorithms for finding an

optimal set of milling cutters for machining a given set of

parts. In selecting milling cutters we consider both the tool

loading time as well as machining time and generate

solutions that allow us to minimize the total manufacturing

time. Our tool selection algorithm improves upon the

previous work in this area, in the following manner: (1) in

selecting cutters it accounts for tool loading time, and (2) it

can simultaneously consider multiple different parts and

select the optimal set of cutters to minimize the total

manufacturing time.

Currently our algorithm is restricted to 2.5-D milling

operations. In particular, we consider the problem of

selecting a sequence of cylindrical cutters to cut all of the

points in a 2.5-D target region without cutting any of the

points in a 2.5-D obstruction region.

2. Related work

2.1. Multi-part process planning

Alva and Gupta [2] studied the problem of selecting

shared bending punches. In sheet-metal bending, bends are

formed using a combination of a punch and a die. These tools

need to be able to withstand the bending forces, and their

shapes should be such that there is no tool-part interference.

The methodology for automatically synthesizing shapes of

bending punches involves the following three steps:

1. Extract constraints on punch parameters, by performing

intersection checks between geometric entities that

define the parametric punch shape and geometric entities

that define various intermediate workpiece shapes

resulting during the bending process. Parametric

geometric models of punches are used to describe the

family of possible punch shapes. The resulting con-

straints on punch parameters are quadratic in nature for

sash type (i.e. 2.5-D) parts.

2. Find a punch shape that does not intersect with any

intermediate workpiece shape and has the maximum

strength. For this, a combination of state-space search

and mixed integer programming is used to try to find a

punch shape that satisfies all intersection constraints

generated in the previous step and maximizes the punch

strength.

3. Verify that the designed punch can withstand stresses

resulting from the bending forces.

In batch production environments for sheet-metal bend-

ing operations, press-brake configuration changes constitute

a major portion of the production time. Gupta and Bourne

have developed an algorithm for generating shared press-

brake configurations [3]. The algorithm takes a family of

parts and tries to find a shared configuration that can work

for every part in the part family, using the following two

steps:

1. Identify the tooling location and segment length

constraints imposed by various bending operations in

the part family. These constraints describe spatial

constraints on lengths and locations of various tooling

stages in the configuration. The resulting constraints are

linear in nature.

2. Generate shared press-brake configurations that can

satisfy all constraints generated in the previous step.

For this, we use a combination of state-space search and

incremental constraints propagation techniques. Any

configuration that satisfies all tooling constraints is

capable of accommodating every part in the part family.

2.2. Cutter selection

Several papers have been written that describe algor-

ithms for solving cutter selection problem for 2.5-D milling

process. To best of our knowledge, previous papers describe

algorithms for solving single part problems. Moreover, most

papers only consider cutting and tool change time. In

practice, as product batch size shrinks, the tool loading time

plays an increasingly important role in the total manufactur-

ing time. Furthermore, with the development of high-speed

tool changing mechanisms and twin spindle machine tools,

the tool change time is increasingly playing less dominant

role in the total machining time.

Bala and Chang presented a method to find the cutter set

for prismatic parts [4]. In their approach, a finishing cutter

is selected as equal to the smallest pocket corner radius.

They select a rouging cutter as the largest cutter such that

after machining with the roughing cutter, the remaining

uncut area can be removed using a single pass of the

finishing cutter.

Z. Yao et al. / Computer-Aided Design 35 (2003) 825–839826

Lee et al. extended Bala and Chang’s work into cutter

selection for 3D part [5–7]. In their work, a series of hunt

planes are used. Each hunting plane intersects with the given

3D part and forms an intersection contour. Each contour is

polygonized to acceptable polygons based on a given

tolerance. For each hunting plane, a cutter that can be fitted

into the 2-D geometric constraints among the vertices of the

boundary polygons is selected. Following that, an optimal

cutter set can be selected for adjacent hunting planes by

merging the cutter selection to a single cutter to minimize

tool changes and tool cost.

Lee et al. [8] assume that an efficient machining

procedure is that use two tools in rough cutting, i.e. a

bigger one is used for the portion with a simple shape while

a small tool should be used for the complex portion. Octree

method is used to find the near-optimal cutters.

Veeramani and Gau used a combination of Voronoi

mountains and dynamic programming in cutter selection

problem [9]. In their approach, the smallest cutter is the one

that has the minimal radius of all the pocket corners. They

use two stages to do the work: first using Voronoi mountain

to get the relationship between the machinable area and the

cutter size for closed pockets, then they use dynamic

programming to find the optimal cutter set. Their dynamic

programming formulation takes Oðn3Þ running time in the

worst case, where n is the number of tools considered. They

use the Voronoi Mountain to estimate the area that can be

cut by a cutter. This is done by generating the approximate

cutter path length by using contour—parallel tool path.

However, with the presence of circular edges, it is difficult

to build the initial Voronoi Mountain. Moreover, if there are

open edges, it is not clear how to build Voronoi mountains.

Mount et al. presented an approximation algorithm for

finding the optimized multiple tools for milling process

[10]. They transform the milling problem to a weighted set-

cover problem using a greedy strategy to obtain a

logarithmic ratio. Because of using Voronoi diagram in

subdividing the milling domain, this approach has the same

problem with Veeramani and Gau’s approach when it

encounters with open edges or circular edges.

Sun et al. considered cutter selection problem in their

process planning problem [11]. One cutter is found

according to the minimum of curvature radii, channel

widths and corner radii. A second bigger cutter is found by

trying several tools and selecting the one that minimizes the

estimated machining time.

Yao et al. studied the problem of selecting one single

maximal cutter that can cut the ‘target region’ without

intersecting with the ‘obstruction region’ [12]. The

definitions of target region and obstruction region are

adopted in this paper because it can handle a general 2.5-D

milling problem with both open and closed edges.

Recently a series of papers have been written that use

traditional offset/inverse-offset approach to calculate the

region that can be covered by a given cutter size [13–16].

As indicated in our previous paper [17], the result of using

traditional offset/inverse-offset can introduce errors in the

estimated area covered by the tool.

In our previous paper, we discovered the errors in using

traditional offset/inverse-offset approach in finding the area

a cutter can cover [17]. Based on our definitions and

lemmas, we presented an algorithm for finding the

approximate coverable area. We also presented an algor-

ithm that can handle multi-part cutter selection problem in

which each part only contains one single feature. Our

current paper provides a new set of geometric algorithms

that can (1) extract profiles from a part with multiple

features, (2) exactly calculate the area a cutter can cover, (3)

solve multi-part cutter selection problems in which each

part may contain multiple features. We also provide detailed

correctness proofs in this paper.

3. Problem formulation

3.1. Background and basic definitions

The milling problem is the problem of taking one or more

pieces of stock and using a sequence of one or more milling

operations to remove portions of each piece of stock, in

order to produce some desired set of parts. Each milling

operation is performed using a milling cutter, and our

research focuses on the geometric aspects of selecting those

cutters. In previous work [12], we looked at the case where

only one milling operation was to be used, and developed an

algorithm for finding the optimal cutter for this operation.

However, in practical milling problems, it is more typical to

use more than one milling operation, using a different cutter

for each operation, and that problem is the subject of the

current paper.

Let P be one of the parts that needs to be produced, and

let S be the piece of stock from which P is to be produced.

We will assume that S 2p P (i.e. the portion of S that needs

to be removed to produce P) is a union of identically

oriented 2.5-D solids and each 2.5-D solid is a machining

feature that can be produced by one or more 2.5-D milling

operations. In this case, the cutter selection problem can be

reduced to a 2-D problem by considering cross-sections of

these 2.5-D solids. For defining the cutter selection problem

the following definitions are needed.

Definition 1. We define the region to be machined as the

target region T (a region is a regular set of 2-D points). The

target region need not be a connected set. For the part and

stock shown in Fig. 1(a) and (b), and Fig. 1(c) shows an

example of target region.

Definition 2. The obstruction region O is the region that the

cutting tool should not cut during machining. The obstruc-

tion region need not be a connected set. For the part and

stock shown in Fig. 1(a) and (b), and Fig. 1(c) shows an

example of obstruction region.

Z. Yao et al. / Computer-Aided Design 35 (2003) 825–839 827

In this paper, we assume that the boundary of each

sub-region consists only of line segments and segments of

circles.

Definition 3. Let C be a rotating cutter of radius r(C)

located at some point p ¼ ðx; yÞ: If we hold C stationary

while it is rotating, then C will cut a circular

region R(C,p) ¼ {all points (u,v) such thatffi
ðu 2 xÞ2 þ ðv 2 yÞ2

p
rðCÞ}. We will call RðC; pÞ the set

of points covered by C at p.

Definition 4. A point p is a permissible location for C if the

interior of RðC; pÞ does not intersect with the obstruction

region, or equivalently, if O >p RðC; pÞ ¼ B:

Definition 5. A set of points can be safely covered by C if for

every point p in the set, there is a permissible location of C

that covers p.

Definition 6. The sub-region of a target region that can be

safely covered by a given cutter is called coverable region

and the area of coverable region is called coverable area.

In multi-cutter selection problems, multiple milling

operations are used, each with a different milling cutter.

After one part is loaded, the 2.5-D features of the part are

machined one by one from top to bottom. For each 2.5-D

feature, bigger cutters are used first, in order to cut material

as fast as possible. Then, smaller cutters are used to create

the smaller features of the target region.

Definition 7. The total machining time TM for the sequence

of milling operations is the total time needed to machine

features on the given set of parts. TM can be expressed as

TM ¼ Tct þ Tcc þ Tcl; where Tct is the total real cutting time

(the time spent on moving cutters to cut the profile); Tcc is the

total cutter change time (the total time of changing tools

during machining all the parts); and Tcl is the total cutter

loading time (the total time spent on loading and calibrating

all selected cutters before machining given parts).

Since cutter change time is significantly smaller (of the

order of 5 sec) compared to cutting time and cutter loading

time (of the order of 5–10 min), in this paper we will ignore

cutter change time. Therefore, in this paper we will use

TM ¼ Tct þ Tcl:
To make this paper self-contained, we report the main

Lemma’s from our previous paper [17] (for proofs of these

lemmas please see Ref. [17]):

Lemma 1. Given a cutter C of radius r(C), the target region

T and obstruction region O, the set of non-permissible

locations A(O,C) for C is given by:

AðO;CÞ ¼ {p : ’q [O; distanceðp; qÞ , rðCÞ}:

Lemma 2. Let �AðO;CÞ be the complement of A(O,C). Every

point in the set �AðO;CÞ is a permissible location.

Fig. 1. Examples of the stock, final part, target region, and obstruction region.

Z. Yao et al. / Computer-Aided Design 35 (2003) 825–839828

Lemma3.LetEð �A;CÞ ¼ {p : ’q [AðO;CÞ; distanceðp; qÞ #

rðCÞ}: Then for every point p in Eð �A;CÞ; there is a

permissible location q such that p can be safely covered by C at q.

Lemma 4. Let �Eð �A;CÞ be the complement of Eð �A;CÞ: For

every p [�Eð �A;CÞ; there is no permissible location for C to

cover p.

3.2. Problem statement

We define the multi-part cutter selection problem as

follows. Suppose we are given one or more pieces of stock

ðS1;…; SLÞ from which we need to produce a corresponding set

of parts ðP1;…;PLÞ: In order to produce those parts, suppose

we have a sequence of cutting tools ðC1;C2;…;CnÞ; given in

decreasing order of cutter radius (i.e. rðC1Þ . · · · . rðCnÞ).

Furthermore, suppose that Cn is small enough that it can safely

produce all features of P1;…;PL; and that for m , n; no Cm is

small enough to safely produce all of P1;…;PL: The problem

is to find a subsequence ðCp
1 ;Cp

2 ;…;Cp
mÞ of ðC1;C2;…;CnÞ

such that if we use Cp
1;Cp

2;…;Cp
m in the order given, this will

minimize the total machining time TM. In this paper we present

an algorithm for solving this problem.

3.3. Overview of approach

There are basically there steps in our approach:

Step 1. Given a set of parts, we first extract the obstruction

and target regions for each 2.5-D feature on each part. This

step results in a set offeatures defined in terms of target regions

and obstruction region. Section 4 describes this step in detail.

Step 2. For each combination of the cutter (from the set of

available cutters) and the target region, we compute how much

of the target region the cutter can cut. We do this by finding the

set of all possible permissible locations for the tool, and then

computing the total area covered by the tool at these

permissible locations. This problem is computationally similar

to the problem of computing the offset for a 2-D point set, and

previous approaches for this problem have been based on the

use of the offsetting operators traditionally available in most

solid modeling systems. However, in our previous paper we

have shown that these approaches will not always produce

correct results [17]. Therefore, we propose the open set offset

definition and algorithm that can be used to calculate the

coverable area precisely. Section 5 describes this step in detail.

Step 3. Once we have computed the coverable area for

each combination of cutter and target region, we represent

the problem of finding an optimal sequence of cutters as

a least-cost path problem, and use Dijkstra’s algorithm to

solve it. Section 6 describes this step in detail.

4. Algorithm for extracting target region and

obstruction region

To select tools automatically, we will need to extract the

target and obstruction region from the CAD model. To see

how we extract the target region and obstruction region,

consider example shown in Fig. 2, in which we have a 3D

Fig. 2. Example of target and obstruction regions extraction (one feature).

Z. Yao et al. / Computer-Aided Design 35 (2003) 825–839 829

model of a rectangular part whose faces are parallel to the

xy, yz, and xz planes, and we also have its initial stock

which is allocated in the same manner. Therefore, by

subtracting the final part from its stock, we get its delta-

volume, which is a single feature as shown in Fig. 2. This

feature is a blind 2.5-D milling feature which is located in

the part’s top face. To find the target region and the

obstruction region, we slice the stock and the part at the

same z-value, which is at the bottom of the milling feature.

Therefore, we can obtain two cross-sections that are

parallel to the xy plane: a cross-section f1 obtained by

slicing the part, and a cross-section f2 by slicing the stock.

For this 2.5-D milling feature, the obstruction region is f1,

and the target region is f2 2
p f1:

Most parts consist of multiple features. Therefore, it is

important to automatically extract the profiles for all those

features. As introduced in Section 3, in this paper, we

assume that S 2p P is a union of identically oriented 2.5-D

solids and each 2.5-D solid is a machining feature that can

be produced by one or more 2.5-D milling operations.

Suppose we know the orientation of both the stock and the

final part model, we can extract the target region and

obstruction regions for each feature in the following

algorithm.

Given a part P and its initial stock S, and feature

orientation J the following algorithm is used to extract

the target region and obstruction region for each

feature:

Fig. 3 shows a part whose initial stock shape is its

rectangular bounding box. In this part, there are two features.

Therefore, we first slice planes along three z-values as shown

in Fig. 3(a). Then start from the lowest z-values, we first

Fig. 3. Example of profile extraction (two features).

Z. Yao et al. / Computer-Aided Design 35 (2003) 825–839830

extract the target and obstructions for the lowest feature as

shown in Fig. 3(b), and then extract the target and

obstructions for next feature as shown in Fig. 3(c).

5. Algorithms for finding coverable area for a given

cutter

In order to solve the multi-part cutter selection problem,

an important step is to find the coverable region and

calculate the coverable area for each of the cutters C1;…;Cn:
This section describes geometric algorithms for calculating

the coverable area for a given feature and tool combination.

5.1. Main algorithm

Let B be the coverable region for given O, T and C. If we

can get B and then we can easily compute the coverable area:

a ¼ area of B. Our algorithm for computing a is as follows:

Correctness of COVERABLE_AREA_FINDING Algor-

ithm. Theorem 1 establishes that the COVERABLE_AREA

_FINDING algorithm correctly computes the coverable area.

Theorem 1. B is the set of coverable points for C.

Proof. As proved in Theorem 2, the union of �A1ðO;CÞ and
�A2ðO;CÞ produces �A; therefore, E1 <

pE2 produces E.

In Step 5, Q ¼ T 2p E: Since Q is a subset of �E; from

Lemma 4, we conclude that for every p [Q; there is no

permissible location for C to cover p.

In Step 6,B ¼ T 2p Q: B is a subset of E. Therefore, from

Lemma 3, we conclude that for every p [B; there is a

permissible location for C to cover p.

Therefore, B is the set of coverable points for C. A

Fig. 4 shows an example in which A, �A; E, �E; B, and Q are

given.

5.2. Algorithm for calculating �A

In this section, we give an algorithm to compute Step

1 of COVERABLE_AREA_FINDING(C, O, T). In the

algorithm, we save �A by two items. The first item is a

regularized 2-D set �A and the second item is a lower

dimensional 1D and 0D elements set �A2: Steps 2 and 3

in COVERABLE_AREA _FINDING(C, O, T) is to find

the traditional offset of �A1 and �A2; which can be easily

obtained by using traditional ‘offset’ operator and will

result in two regular sets. Then we can use regular

operator to union those offset sets together to get the

correct result.

In order to do so, we also need the following

definitions.

Definition 8. Given a closed set S, we define its open

offset by distance r as EðS; rÞ ¼ {pl’q [S; such that

dðq; pÞ , r}.

Definition 9. Given a closed set S, we define its exact offset

boundary by distance r as LðS; rÞ ¼ {pldðp; SÞ ¼ r}; where

dðp; SÞ ¼ min{dðp; qÞ; for ;q [S}.

Fig. 5 shows the example of open offset and the

exact offset boundary when the set S contains a single

point.

From the above, it follows that LðS; rÞ ¼ FðS; rÞ2

EðS; rÞ; where FðS; rÞ is the traditional offset operator

which is defined by FðS; rÞ ¼ {pl’q [S; such that

dðq; pÞ # r}.

Given a cutter C, target region T, and obstruction region

O, our algorithm to compute �A1 and �A2 works in the

following manner:

All of the above steps are straight forward except for

Step 4, which computes the exact offset boundary of li: For

an arbitrary geometry, it is hard to find its exact offset

boundary. However, in this paper, only line or arc

Z. Yao et al. / Computer-Aided Design 35 (2003) 825–839 831

segments are considered. Therefore, we can derive

equations to calculate the exact offset boundaries for

those special cases.

As shown in Fig. 6(a), the exact offset boundary for a line

segment l is given by: Lðl; rÞ ¼ Fðl; rÞ2 Eðl; rÞ ¼

bðFðl; rÞÞ: Here b refers to the boundary.

For an arc segment a, there are three cases:

1. If the offset distance is less than or greater than the radius

of a, then its exact offset boundary is: Lða; rÞ ¼

Fða; rÞ 2 Eða; rÞ ¼ bðFða; rÞÞ: Fig. 6(b) and (c)

show examples of open offset in these cases.

Fig. 5. Examples of open offset, closed offset and exact offset boundary of a given point.

Fig. 4. Illustration of definitions.

Z. Yao et al. / Computer-Aided Design 35 (2003) 825–839832

2. If the offset distance is equal to the radius of a and a is

not a full circle, then its exact offset boundary is

Lða; rÞ ¼ Fða; rÞ 2 Eða; rÞ ¼ bðFða; rÞÞ: Fig. 6(d)

shows an example of this case.

3. If the offset distance is equal to the radius of a and a is a

full circle, and suppose its center point is o, then its

exact offset boundary is Lða; rÞ ¼ Fða; rÞ 2

Eða; rÞ ¼ bðFða; rÞÞ < o: Fig. 6(e) shows an example

for this case.

Correctness of Algorithm COMPUTE_ �A: In the

following paragraphs, we will show that the union of
�A1 and �A2 by our algorithm corresponds to mathematical

definition of �A:

Lemma 5. The shortest distance from any point in �A2 to O is

exactly r.

Proof. For any point p, p [�A2; suppose q is the point in O

such that dðp; qÞ is the shortest distance from p to O, thus q

is on the boundary of O. If dðp; qÞ . r; then there is no li
such that p [Lðli; rÞ; that leads to contradiction. If

dðp; qÞ , r; then there must be a li such that p [Eðli; rÞ;

then p � �A2; that also lead to contradiction. Therefore,

dðp; qÞ ¼ r: A

Lemma 6. Any point that is in �A will be in �A1 or in �A2:

Proof. As definition, we know that �A ¼ {p : ;q [
O; dðp; qÞ $ rðCÞ}: For any point p, p [�A; we can find a

point q, q [O, and dðp; qÞ is minimal for all points in O. It

is straight forward that q must be on the boundary of O. If

dðp; qÞ . rðCÞ; as FðO; rÞ is defined as FðO; rÞ ¼ {pl’q [
O; such that dðq; pÞ # r}; therefore, p [�A1: If dðp; qÞ ¼

rðCÞ; as shown in Lemma 5, p [�A2: A

Lemma 7. Every point in �A1 will belong to �A:

Proof. For any point p, p [�A1; we know that for any point

q, q [O, dðp; qÞ $ r; therefore, p [�A: A

Lemma 8. Every point in �A2 will belong to �A:

Proof. From Lemma 5, it is straight forward that Lemma 8

is correct. A

Theorem 2. The union of �A1 and �A2 produces �A:

Proof. Lemmas 6–8 together prove that �A is the union of �A1

and �A2: A

Theorem 2 proves that algorithm COMPUTE_ �A is

correct.

Fig. 7 shows the example of calculating �A1 and �A2:

6. Algorithm for finding optimal sequence of cutters for

multi-part

In cutter selection problems, we are given a set of parts

associated with corresponding stocks, and a set of available

cutters. We need to select a subset of the initial set of

cutters such that by using the subset to perform machining

operations, the given set of parts can be produced from the

corresponding stocks in the shortest possible total machin-

ing time.

Recall from Section 3 that we are given a sequence of

cutting tools ðC1;C2;…;CnÞ; listed in decreasing order of

cutter radii; we are given one or more pieces of stock

ðS1;…; SLÞ from which we need to produce a corresponding

set of parts ðP1;…;PLÞ; and the problem is to find a

subsequence ðCp
1 ;Cp

2 ;…;Cp
mÞ of ðC1;C2;…;CnÞ such that if

we use Cp
1 ;Cp

2 ;…;Cp
m in the order given, we can minimize

the total machining time TM.

Definition 10. We define the workpiece state Gik as follows.

For k ¼ 1;…; L; let G0k ¼ Sk; and for i ¼ 1;…; n; let Gik be

the state of the workpiece that results after using the cutter

Ci; under the assumption that we use Ci to cut as much of Tk

as it can safely cut.

Fig. 6. Different cases of open offset for line and arc segments.

Z. Yao et al. / Computer-Aided Design 35 (2003) 825–839 833

From this definition, it follows that for every i . 0, Gik is

equal to the set of points in Tk that cannot be safely covered

by Ci: The reason for this is that any cutters that we used

prior to Ci are larger than Ci; and thus the portion of Tk that

they can safely cut is a subset of the portion of Tk that Ci can

safely cut.

Definition 11. For the given set of parts ðP1;…;PLÞ; we

define the composite state Gi to be ðGi0;Gi1;…;GiLÞ: Thus

there are n þ 1 composite states G0;…;Gn: Since Cn can

completely cover all of the target regions, Gn represents the

set of all of the final part shapes.

Let Bik ¼ Tk 2
p Gik; and let Aik be the area of Bik:

(As a special case, note that B0k ¼ Tk 2
p G0k ¼ Tk 2

p

Sk ¼ B; and thus a0k ¼ 0:) Then the safely coverable

area for the composite state Gi using cutter Ci is

given by

ai ¼
XL

k¼1

aik

With those definitions in mind, we give the follow-

ing algorithm in finding the optimal sequence of

cutters.

Fig. 7. Example of computing �A1 and �A2:

Z. Yao et al. / Computer-Aided Design 35 (2003) 825–839834

Lemma 9. Cutter sequence associated with any path in G is

a valid sequence of cutters.

Proof. Since G0 represents the initial stocks ðS1;…; SLÞ

and Gn represents the final parts ðP1;…;PLÞ: In the

graph, any valid path starting from G0 to Gn represents a

cutting sequence in which the final parts can be produced

form the initial stocks. Therefore, any cutter sequence

associated with a path in G is a valid sequence. A

Lemma 10. Minimum TM of using cutter sequence

associated with a path in graph G is equal to the cost of

the path in G.

Proof. G is a directed graph whose node set is

ðG0;…;GnÞ; and whose edge set is {ðGi;GjÞ : i , j}:
Each edge ðGi;GjÞ corresponds to the operation of

using the cutter Cj to produce Gj directly from Gi:
Each edge ðGi;GjÞ in G is assigned a cost wðGi;GjÞ ¼

Tcl þ h £ ðaj 2 aiÞ=rj; where Tcl is the cutter loading

time (usually determined experimentally) and h£ ðaj 2

aiÞ=rj ¼ Tct; where h is a factor determined by machining

parameters.1 Since the size of cutter Cj is smaller than

the size of cutter Ci; if any portion of the coverable area

of Ci is left to be cut by cutter Cj; the cutting time will

increase according to the cutting time estimation equation

used in this paper. Therefore, h£ ðaj 2aiÞ=rj represents

the least cutting time of using cutter Cj right after cutter

Ci is used. Thus, the cost of any path in G corresponds

to the minimum TM of using cutter sequence associated

with the path. A

Theorem 3. The least-cost path in G gives the sequence of

cutters that minimizes TM.

Proof. Lemmas 9 and 10 together prove that the least-cost

path in G gives the sequence of cutters that minimizes

TM. A

1 Since we know the region we can also estimate cutter path length by

actually computing the trajectory based on zigzag or contouring strategies.

Many commercial systems such as Pro/Engineerw can generate cutting tool

path for general pockets.

Z. Yao et al. / Computer-Aided Design 35 (2003) 825–839 835

Using Dijkstra’s algorithm, this least-cost path can be

found in time O(n 2) [18]. n is the total number of given cutters.

7. Implementation and examples

We have implemented our algorithm, using Cþþ and

the ACISw kernel. Following are two examples.

7.1. Example 1: parts each has one single feature

Fig. 11 shows parts P1, P2, P3 and P4, each part having

only one single feature. In this example, we are given 12

cutters ðC1;…;C12Þ and their radii are 5, 7.5, 10, 12.5, 15,

17.5, 20, 22.5, 25, 27.5, 30 and 32.5 mm.

Table 1 shows the cutter size and cuttable area

relationship for parts shown in Fig. 8. Table 2 shows the

selected optimal sequence of cutters and corresponding

total machining time under different cutting conditions. If

the cutter loading time is 10 min, the optimal sequence of

cutters by consider multi-parts together will be 5, 10, 17.5,

22.5 and 27.5 mm. The total machining time is 82 min.

Compared to the total machining 89 min by consider cutter

selection for individual part, the total time saving is 8%. If

the cutter loading time changes to 20 min, then the selected

optimal sequence of cutters is 5, 12.5, 20 and 27.5 mm.

The total machining time will be 120, and the total saving

will be 9%.

7.2. Example 2: parts each has two features

Figs. 9–11 show parts P5, P6, and P7, each part having

two features. In this example, we are given 10 cutters

ðC1;…;C10Þ and their radii are 1, 2.5, 5, 10, 15, 20, 25, 30,

40 and 50 mm.

Table 3 shows the cutter size and cuttable area

relationship for these three parts. Table 4 shows the

selected optimal sequence cutters and corresponding total

machining time under different cutting conditions. If

the cutter loading time is 10 min, the optimal sequence

of cutters by considering multi-parts together will be 2.5, 5,

25, and 40 mm. The total machining time is 74 min.

Compared to the total machining 81 min by consider cutter

selection for individual part, the total time saving is 8%. If

the cutter loading time changes to 20 min, then the selected

optimal sequence of cutters is 2.5, 10, and 30 mm. The

total machining time will be 101, and the total saving will

be 10%.

Table 1

Coverable area/cutter size table of example 1

Cutter size Cuttable area

P1 P2 P3 P4 All parts

5 15012.4 12145.1 10510.0 22040.0 59707.5

7.5 15012.4 12145.1 9139.3 19285.7 55582.5

10 13020.0 1092.6 7210.8 16204.4 37527.8

12.5 11920.5 1092.6 6753.1 15087.0 34853.2

15 6120.0 9510.4 6102.5 10936.0 32668.9

17.5 5115.2 9146.6 5749.0 9704.5 29715.3

20 455.1 8760.7 5392.2 9252.0 23860.0

22.5 390.6 8475.5 0 6984.6 15850.7

25 285.8 8324.0 0 4254.4 12864.2

27.5 214.0 7862.0 0 2895.0 10971.0

30 103.0 0 0 1375.3 1478.3

32.5 81.5 0 0 842.2 923.7

Fig. 8. Example 1: Parts each has only one feature.

Table 2

Experimental results of example 1

Cutting condition Optimal sequence of cutters

(mm)

Total machining time

(consider multi-parts)

Anticipated total machining time

saving compare to selecting

cutters individually (%)

Cutter loading time is 10 min 5, 10, 17.5, 22.5, 27.5 82 8

Cutter loading time is 20 min 5, 12.5, 2, 27.5 120 9

Z. Yao et al. / Computer-Aided Design 35 (2003) 825–839836

7.3. Observations

From these two examples, we can obtain the following

observations:

1. In Section 1, we pointed out that the best combination of

cutters is likely to be different than what we would get by

selecting optimal cutter sets for each part individually.

The experimental results indicate that this statement is

correct.

2. Compared to selecting cutters for part individually, this

multi-part cutter selection approach produces better

cutter sequence, and thus leads to shorter total machining

time because of the shared cutter loading time.

3. If the tool loading time changes, the optimal cutters may

change. In particular, the lower the cutter loading time,

Fig. 10. Example Part P6.

Fig. 11. Example Part P7.

Table 3

Coverable area/cutter size table of example 2

Cutter size Cuttable area

Part 5 Part 6 Part 7 All parts

1 18403.2 15708.0 15964.2 50075.4

2.5 18403.2 15708.0 15964.2 50075.4

5 18403.2 15708.0 15157.8 47348.0

10 16637.4 13334.8 13379.4 43351.6

15 15364.8 12920.0 12897.0 41181.8

20 14812.2 12141.4 12285.0 39238.6

25 13957.2 11407.0 11167.2 36531.4

30 10836.0 10650.5 10589.4 32075.9

40 997.2 8415.0 10101.6 28423.8

Fig. 9. Example Part P5.

Table 4

Experimental results of example 2

Cutting

condition

Optimal

sequence

of cutters

(mm)

Total machining

time (consider

multi-parts)

Anticipated total

machining time

saving compare to

selecting cutters

individually (%)

Cutter loading

time is 10 min

2.5, 5, 25, 40 74 8

Cutter loading

time is 20 min

2.5, 10, 30 101 10

Z. Yao et al. / Computer-Aided Design 35 (2003) 825–839 837

the higher the total number of cutters in the optimal

sequence may be. Similarly, the higher the cutter

loading time, the lower the total number of cutters in

the optimal sequence.

8. Discussion and conclusions

8.1. Summary

In order to stay competitive in today’s market, companies

need to eliminate as many sources of manufacturing

inefficiency as possible. One such source of inefficiency

comes from unnecessary machine-tool reconfiguration

operations.

In this paper, we describe a way to select an optimal set

of cutting-tool sizes such that the cutting tools can be used

for multiple different parts, thereby eliminating unnecessary

machine-tool reconfigurations. In particular, this paper

describes the following new results:

1. We give the definition and an algorithm for computing

open offset. This helps in computing coverable area

exactly as opposed to the approximation approach

proposed in our previous paper [17]. This is accom-

plished by using very simple operators. Based on our

conditions, we give an algorithm that can compute the

coverable area exactly.

2. We show how to represent the multi-part cutter selection

problem as the problem of finding the least-cost path in a

directed graph.

3. We describe a prototype implementation of our

approach, and demonstrate it on an example. The

example illustrates how significant savings can be

achieved in the total machining time.

8.2. Anticipated impact

The proposed approach presents a significant improve-

ment over the current single-part tool-selection approaches.

Machine-tool reconfigurations constitute a major portion of

the production time in the batch production environment.

Multi-part tool selection can be used to significantly cut

down the total number of reconfigurations and increase the

overall throughput. In particular, we believe that the

proposed research will serve as the enabling technology

for the following:

† The ability to handle the larger part varieties that

result from mass customization. The advent of mass

customization is resulting in a larger variety of parts

on the shop floors. By sharing tools and machine-tool

configurations, it will be possible to handle a larger

variety of parts on the shop-floor without significantly

lowering the overall throughput.

† More flexible scheduling to reduce in-process inven-

tory. Currently, machine-tools are set up to perform

operations on single parts. This requires that all parts

of a particular type be completed before moving on to

the next type of part. Unfortunately, the assembly

process cannot start until all different types of parts

that are needed for assembly are completed. This leads

to large in-process inventory. The ability to have

shared configurations, then would give factories much

more flexibility in scheduling, and thereby reduce the

in-process inventory.

8.3. Future work

Our work can be extended in the following areas to

overcome current limitations:

1. Our current estimate of cutting time assumes that it is

proportional to the ratio of the covered area and the cutter

size. In practice, the cutting time will also depend on the

cutter path. We plan to develop a better algorithm for

estimating cutting time, by incorporating tool-path

considerations.

2. Tool life plays an important role in tool selection. We

plan to incorporate tool-life information in order to

develop a more realistic estimate of total machining time.

3. So far, we have only considered geometric constraints in

the cutter selection problem. We plan to extend our

method to incorporate milling process constraints as

well.

Acknowledgments

This research has been supported by NSF grant

DMI9896255, DMI0093142, NSF Equipment Grant

EIA9986012, and ONR grant N000140010416. Opinions

expressed in this paper are those of authors and do not

necessarily reflect opinion of the sponsors.

References

[1] Pine BJ. Mass customization: the new frontier in business compe-

tition. Harvard: Harvard Business School Press; 1993.

[2] Alva U, Gupta SK. Automated design of sheet metal punches for

bending multiple parts in a single setup. Robotics Comput Integrated

Manufact 2001;17(1/2):33–47.

[3] Gupta SK, Bourne DA. Sheet metal bending: generating shared

setups. ASME J Manufact Sci Engng 1999;121:689–94.

[4] Bala M, Chang TC. Automatic cutter selection and optimal cutter-path

generation for prismatic parts. Int J Production Res 1991;29(11):

2163–76.

[5] Lee YS, Choi BK, Chang TC. Cut distribution and cutter selection

for sculptured surface cavity machining. Int J Production Res 1993;

30(6):1447–70.

Z. Yao et al. / Computer-Aided Design 35 (2003) 825–839838

[6] Lee YS, Chang TC. Application of computational geometry in

optimization 2.5D and 3D NC surface machining. Comput Ind 1995;

26(1):41–59.

[7] Lee YS, Chang TC. Automatic cutter selection for 5-axis sculptured

surface machining. Int J Production Res 1996;34(4):977–98.

[8] Lee K, Kim TJ, Hong SE. Generation of toolpath with selection of

proper tools for rough cutting process. Comput-Aided Des 1994;

26(11):822–31.

[9] Veeramani D, Gau YS. Selection of an optimal set of cutting-tool

sizes for 2.5D pocket machining. Comput-Aided Des 1997;29(12):

869–77.

[10] Arya S, Cheng SW, Mount DM. Approximation algorithm for

multiple-tool milling. Proceedings of the 14th Annual ACM

Symposium on Computational Geometry, 1998. p. 297–306.

[11] Sun G, Wang F-C, Wright P, Sequin C. Operation decomposition for

freeform surface features in process planning. Proceedings of the

DETC 1999: 1999 ASME Design Engineering Technical Conference.

Las Vegas, Nevada, 1999. p. 12–5.

[12] Yao Z, Gupta SK, Dana N. A geometric algorithm for finding the

largest milling cutter. J Manufact Process 2001;3(1):1–16.

[13] Mahadevan B, Putta L, Sarma S. A feature free approach to tool

selection and path planning in 3-axis rough cutting. Proceedings of

First International Conference on Responsive Manufacturing, Not-

tingham, 1997. p. 47–60.

[14] Lim T, Corney J, Ritchie JM, Clark DER. Optimising automatic tool

selection for 21/2D components. Proceedings of DETC: 2000 ASME

Design Engineering Technical Conference, Baltimore; September

10–13 2000.

[15] Lim T, Corney J, Clark DER. Exact tool sizing for feature

accessibility. Int J Adv Manufact Technol 2000;16:791–802.

[16] D’Souza R, Wright P, Séquin C. Automated microplanning for 2.5-D

pocket machining. J Manufact Syst 2001;20(4):288–96.

[17] Yao Z, Gupta SK, Nau D. A geometric algorithm for selecting optimal

set of cutters for multi-part milling. ACM Solid Modeling 2001.

[18] Cormen TH, Leiserson CE, Rivest RL. Introduction to algorithms.

Cambridge/New York: The MIT Press/McGraw Hill; 1990.

Satyandra K. Gupta is an Associate Professor

in Mechanical Engineering Department and

the Institute for Systems Research. He

received a PhD in Mechanical Engineering

from the University of Maryland at College

Park in 1994. Prior to joining the University of

Maryland, he was a Research Scientist in the

Robotics Institute and an Adjunct Assistant

Professor of Manufacturing in the Graduate

School of Industrial Administration at Carne-

gie Mellon University. The objective of Dr

Gupta’s research is to develop new algorithms for creating next-generation

computer-aided design and manufacturing (CAD/CAM) systems that can

reduce time-to-market, enable cost effective small batch manufacturing,

and facilitate manufacturing of geometrically complex heterogeneous

objects. Dr. Gupta is a member of American Society of Mechanical

Engineers (ASME) and Society of Manufacturing Engineers (SME). He has

authored or co-authored more than eighty articles in journals, conference

proceedings, and book chapters. He has organized several conference

sessions in the area of computer-aided design and manufacturing. He has

served as Program Co-Chair in 1998 ASME’s Design for Manufacturing

Conference, Papers Chair in 1999 ASME’s Design for Manufacturing

Conference, and Exhibit Chair in 2000 ASME’s Design Engineering

Technical Conferences. Dr Gupta has won many honors and awards for his

research contribution to computer-aided design and manufacturing area. In

particular, he has been awarded a Graduate School Fellowship and an

Institute for Systems Research Graduate Fellowship during his PhD study at

University of Maryland. Other awards received by Dr Gupta include Best

Paper Award in ASME’s International Conference on Computers in

Engineering in 1994, Best Paper Award in ASME’s Design for

Manufacturing Conference in 1999, ONR’s Young Investigator Award in

2000, SME’s Robert W. Galvin Outstanding Young Manufacturing

Engineer Award in, NSF’s CAREER Award in 2001.

Zhiyang Yao is a PhD student in Mechanical

Engineering Department in University of

Maryland, College Park. He received a BS in

1995 and an MS in 1998 in Mechanical

Engineering from Tsinghua University, Peo-

ple’s Republic of China. His research interests

are Computer-Aided Design and Manufactur-

ing, Concurrent Engineering, Geometric

Reasoning. Particularly, he is working on

constructing innovative process plan that can

significantly reduce time-to-market and enable

cost effective small batch manufacturing. He has authored or co-authored

14 articles in journals, conference proceedings, and technical reports. He is

a student member of ASME.

Dana S. Nau is a professor at the University of

Maryland, with a joint appointment in the

Department of Computer Science and the

Institute for Systems Research, and affiliate

appointments in the Institute for Advanced

Computer Studies and the Department of

Mechanical Engineering. His research interests

include AI planning and searching, and com-

puter-integrated design and manufacturing. He

received his PhD from Duke University in

1979, where he was an NSF graduate fellow. He

has more than 250 technical publications. He has received an NSF

Presidential Young Investigator award, the ISR Outstanding Faculty

award, and several ‘best paper’ awards. He is a Fellow of the American

Association for Artificial Intelligence (AAAI).

Z. Yao et al. / Computer-Aided Design 35 (2003) 825–839 839

	Algorithms for selecting cutters in multi-part milling problems
	Introduction
	Related work
	Multi-part process planning
	Cutter selection

	Problem formulation
	Background and basic definitions
	Problem statement
	Overview of approach

	Algorithm for extracting target region and obstruction region
	Algorithms for finding coverable area for a given cutter
	Main algorithm
	Algorithm for calculating &f;&m.a;&m.ac;A&/m.ac;&m.ac;¯&/m.ac;&/m.a;&/f;

	Algorithm for finding optimal sequence of cutters for multi-part
	Implementation and examples
	Example 1: parts each has one single feature
	Example 2: parts each has two features
	Observations

	Discussion and conclusions
	Summary
	Anticipated impact
	Future work

	Acknowledgments
	References

