
Implicit Dependency Detection for HTN Plan Repair

Paul Zaidins1,3, Mark Roberts3, Dana Nau1,2

1Dept. of Computer Science and 2Institute for Systems Research, Univ. of Maryland, College Park, MD, USA
3Navy Center for Applied Research in AI, Naval Research Laboratory, Washington, DC, USA

1{pzaidins, nau}@umd.edu 3{mark.roberts}@nrl.navy.mil

Abstract

Two recent approaches to HTN replanning, IPyHOP and
SHOPFIXER, replan by adapting the previously planned solu-
tion when an action fails. IPyHOP replans the entire solution
tree after the failure, while SHOPFIXER uses pre-calculated
dependency graphs to replace portions of the tree; neither
uses forward simulation of the plan to predict where future
failures might occur.
This paper describes IPyHOPPER, which improves IPyHOP
by retaining more of the information provided by the hierar-
chy and using forward simulation to repair minimal subtrees
that contain future failures. Our experimental comparisons
show that in domains where errors are not rare, IPyHOPPER is
both faster and uses fewer iterations to repair than IPyHOP’s
repair mechanism. IPyHOPPER’s repair speedups are simi-
lar to those of SHOPFIXER when given a probabilistic error
model with nontrivial error rates.

1 Introduction
Given some level of domain expertise, a Hierarchical Task
Network (HTN) can be leveraged to solve complex prob-
lems quickly. Hierarchy is perhaps the most powerful fea-
ture of HTN planners. For planning in static, known envi-
ronments using this hierarchy is straightforward. However,
because the world is often dynamic and full of uncertainty,
acting must be properly coupled with online planning to op-
erate well in such conditions. So the speed and efficiency of
correcting errors in plans is important.

When a failure is encountered the most obvious solution
is to replan using the current state as the new initial state.
Even though it may be incorrect after a failure, the original
plan provides useful information regarding the hierarchy and
implicit action restrictions. Reusing portions of the original
plan may also promote plan stability (Fox et al. 2006).

Two recent approaches to plan repair involve updating
original solution tree: SHOPFIXER (Goldman, Kuter, and
Freedman 2020) and the Lazy-Refineahead repair algorithm
in the IPyHOP paper (Bansod et al. 2022). Both approaches
use portions of the original plan when facing disruptions
during execution, but differ in the following respects.
• Lazy-Refineahead uses the structure of the original plan

up to the point of failure, but discards the original plan
hierarchy past the failed action. In contrast, SHOPFIXER
pre-calculates dependency graphs, so that when action

ends in failure, the plan repair process can skip subtrees
that are not dependent on the action that failed. This al-
lows for minimal fixes, increasing plan stability and re-
ducing repair time.

• SHOPFIXER uses actions and methods in the SHOP 3
format (Lisp code with similar structure to PDDL), so
programmers must understand how to implement meth-
ods in that format. IPyHOP’s methods and operators
are Python functions, making them more accessible to
those unfamiliar with automated planning formalisms.
This makes the explicit dependency graph calculation,
as SHOPFIXER does, impossible due to the lack of well-
defined preconditions or effects.

This paper describes IPyHOPPER, which extends IPyHOP1

to use plan repair techniques inspired by those in SHOP-
FIXER. IPyHOPPER improves IPyHOP’s repair efficiency by
retaining more of the information provided by the hierarchy
and using forward simulation. Rather than cutting the solu-
tion tree at the failed node, it selectively prunes future so-
lution branches using forward simulation to repair minimal
subtrees containing future failures. This avoids future fail-
ures that may arise from the plan alterations from repairing
the minimal subtree of the immediate failed action and alter-
ations brought from prior preemptive repairs. Our contribu-
tions include:

1. A new algorithm, IPyHOPPER, that performs a mix of
in-place repair with forward simulation;

2. Revised benchmarks to support evaluation of
IPyHOPPER against IPyHOP and SHOPFIXER; and

3. Experiments showing that IPyHOPPER reduces planner
iterations and execution time for the 5 tested domains
while keeping similar, or sometimes better, plan costs.

The rest of the paper gives a brief overview of related work,
presents our IPyHOPPER algorithm for minimal repair with
IPyHOP, and describes a comparison of the performance of
IPyHOPPER, Lazy-Refineahead, and SHOPFIXER.

1IPyHOP and IPyHOPPER can plan for both tasks and goals, but
for brevity we will refer to both of them as HTN planners. Section
2.5 provides further justification for this terminology.

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

2 Related Work
Our work is based on the implementation of IPyHOP and we
compare to SHOPFIXER, so we will discuss each of these
before pointing out other related work.

2.1 IPyHOP
IPyHOP (Bansod et al. 2022), is an iterative, domain-
independent, totally-ordered, Goal Task Network planner
written in the Python programming language. Goals and
tasks are ordered tuples while methods and actions are ar-
bitrary Python code blocks. Input goals and tasks are repeat-
edly decomposed until only actions remain. This results in a
solution tree from which the plan can be read as the preorder
traversal of actions (i.e., leaves) of the tree.

IPyHOP’s repair algorithm, Lazy-Refineahead, works by
finding the failed action in the solution tree, removing all
nodes to the right of the failed action in the preorder traver-
sal, and then marking nodes that lost children. From there
the plan is repaired by iterating through the tree and redo-
ing decomposition at those marked nodes with the current
state used for the preorder traversal’s leftmost new nodes.
It should also be noted that method preconditions are only
checked during planning and during plan repair for methods
touched during repair.

2.2 SHOPFIXER

SHOPFIXER (Goldman, Kuter, and Freedman 2020) is a plan
repair system for the SHOP 3 (Goldman and Kuter 2019)
HTN planner. Unlike IPyHOP, SHOP 3 uses highly struc-
tured Lisp code for methods and actions. Variables are in-
stantiated primarily through unification. This allows for the
computation of causal links in the solution tree. SHOPFIXER
uses these causal links to isolate plan repair to only the sec-
tions of the solution tree that are relevant. This served as part
of the inspiration for IPyHOPPER, the principal difference
being that our methodology does not impose any structural
restrictions on the decomposition methods and actions, as
dependencies are found implicitly through simulation rather
than explicitly computed. Thus, IPyHOPPER can still speed
up plan repair even when a dependency graph is not known.

2.3 Plan Repair by Domain Modification
Given a planning domain D, task t and initial state s0,
suppose an HTN planner returns a solution plan π =
(a1, . . . , ai, . . . , an). While executing π, suppose an execu-
tion error occurs at ai, producing a state s′i rather than the
predicted state si. ? define a modified planning domain D′

in which (i) the predicted outcome of ai is s′i and (ii) given
D′, t, and s0, the HTN planner returns a solution plan π′

such that the first i actions are the same as in π. Thus if no
further errors occur, t can be accomplished by executing the
part of π′ that starts at the action after ai.

Unlike IPyHOPPER, π′ preserves none of the unexecuted
part of π. We think the actions in π′ after ai are the same
as Lazy-Refineahead would have produced. Technically this
can be viewed as a hybrid approach between plan repair and
replanning.

2.4 Other Approaches
There has been work speeding up replanning by reusing plan
solution trees (Soemers and Winands 2016). This differs
from standard plan repair in that existing plans are modi-
fied for new tasks as opposed to altering an existing plan
for the same task given an interruption. RepairSHOP (?)
uses a directed, dependency graph know as a goal graph
to track alternative decisions (decompositions and instan-
tiations). When plan repair is needed, the planner is re-
set to the planning state of the first applicable alternative
found. HOTRiDE (?) takes a similar approach with its task-
dependency graph.

2.5 Evolution of HTN Terminology
Some of the best-known early formulations of HTN plan-
ning included both goals and tasks (???). However, SHOP
and its successors used a simplified HTN formulation that
omitted goals (??Goldman and Kuter 2019). Their popular-
ity led researchers to lose track of goals as a part of HTN
planning, and HGNs were subsequently conceived as sepa-
rate from HTNs (??). In this paper, we return to the earlier
concept that HTN planning includes both goals and tasks.

3 Repairing Minimally with IPyHOPPER

Before we formally describe IPyHOPPER, we will contrast it
with an example from the IPyHOP paper. Figure 1(a) copies
Figure 1 by Bansod et al. (2022). It represents a notional
hierarchical plan for tasks t1, t2, and t3. Hexagonal nodes
indicate method instances mi for a task tj , and rectangular
nodes indicate an operator instance oi. The resulting plan,
π = 〈o1, o2, ..., o11, o12〉 is produced using a Depth First
Search (DFS) tree preorder traversal. Moreover, o7 produces
effects on which o11 relies, shown as a red dashed line; this
will be an important detail in the following comparison.

While executing π, o7 nondeterministically fails. The
Lazy-Refineahead algorithm discards the plan structure for
the parent of the failed node as well as the nodes to the
right of the failed node in preorder traversal, which includes
m1 t4, m1 t5, and m1 t3. This results in nine nodes re-
moved from the tree. But it might be the case that only a
few of these need to be changed to repair the plan.

Instead, IPyHOPPER preserves as much of the tree as pos-
sible to minimize computation and maximize stability (Fox
et al. 2006). It does this by combining forward simulation
(i.e., action application to each state) with localized repair.
As simulation progresses forward, each action is checked for
applicability. If the simulation succeeds for all actions in the
remaining plan, then the repair was localized to the failed
node. When the simulation fails for an existing action in a
plan, that is treated as a potential future failure, resulting in
further repair.

To make this concrete, consider Figure 1(b), where a
dashed green line indicates starting point of simulation with,
t4, the parent of the failed action having been unexpanded.
IPyHOPPER removes only the children of t4 to find a new
decomposition the parent of the failed action using the cur-
rent state, resulting in two new actions.

IPyHOPPER simulates forward from o13 to check for any
future problems from the repair. Forward simulation reveals
that actions o8, o9, and o10 will succeed so the tree support-
ing these actions remain in the plan. The result is shown in
Figure 1(c) between the green and orange dashed lines. At
this point, suppose o11 fails, perhaps because its precondi-
tion from o7 was not met by the new actions o13 and o14.
Figure 1(d) shows that IPyHOPPER makes another repair to
rightmost instance of t4, resulting in a new action o15. From
the original plan, actions o8, o9, and o10 remained. We in-
clude Figure 2 to demonstrate the difference in the repair
process with Lazy-Refineahead. Note how the parent and
all pre-order succeeding nodes are unexpanded regardless
whether the actions could still have been performed.

To summarize, IPyHOPPER repairs a plan by removing a
failed node’s immediate subtree then repairing while simu-
lating possible future failures. Using the new observed state,
it fixes the tree at the point of failure, traversing upward as
needed while simulating forward. If the simulation yields er-
rors, it fixes the next point of failure and continues simulat-
ing forward. This repeats until it reaches an unrecoverable
state or the end of the simulated plan without a failure. A
repair-simulate cycle might introduce further failures. This
occurs when failure points have a common ancestor and the
rightmost failure point has no applicable repair given the
previous failure point repair. In such a case, it backtracks
to the previous failure point. Backtracking to the root node
of our tree indicates no plan is possible. Otherwise, it returns
the repaired plan.

3.1 The Repair Algorithm
Algorithm 1 formalizes the above example. We assume here
that the root of the full tree exists as the parent of all tasks
provided to the planner as in IPyHOP.

Lines 2 and 3 place the parent of the failed action and cur-
rent state into the stack and enters the repair-simulate loop.
This loop continues until either simulation results in a suc-
cessful plan or the algorithm reaches an unrecoverable state.

Lines 5 and 6 read the top node and state from the stack
and replace the top node with its parent. This results in either
moving up the solution tree when repair fails for the current
subtree or moving to the previous repair when arriving at the
root.

Line 7 removes the current decomposition of f to allow
for a new decomposition. This begins the minimal repair,
from which Lines 8 to 12 will check to see if any decompo-
sition methods are relevant and if so will attempt to repair
the subtree of w rooted at p.

The expansion is performed using a modified IPYHOP
planning mechanism. The most important changes are pre-
venting planning to progress to the top node of a subtree
(thus allowing targeted subtree repair) and altering IPyHOP
methods to find all potential variable bindings rather than a
single binding (thus allowing functionality similar to unifi-
cation). There are two cases to consider: (1) If there are rel-
evant methods, but no applicable expansions, return to the
top loop at Line 4. (2) If no relevant actions exist, check if
p is a common ancestor of any other node in the stack and,
if so, remove p and its associated state from the stack as the

next loop will clobber previous repairs. Either case results in
a return to the top of the loop.

A successful repair of the subtree of w results in advanc-
ing the simulation at Lines 17 to 25. Simulation proceeds
by reading the suffix of π starting from w and following it
to completion from our current state. At this point, there are
two cases to consider. (1) If π has another failure, s′ be-
comes the state at failure, the parent of the action that failed
is placed on the stack, and the loop returns to the top. (2)
If the simulation completes the rest of π without failure we
terminate the loop and return π as the repaired plan to begin
executing. We note here that the stack thus functions as our
backtracking mechanism as the stack consists of the parents
of our repaired nodes. We exhaust all possible repairs for our
current node before returning to the immediate prior repair
point to look for a solution If the stack should become empty
(i.e., the algorithm arrive at the root), then tree must have
have stripped down to the root and π will be empty. When
this occurs, an empty plan indicates failure of the algorithm
to produce a viable repair.

Algorithm 1: IPyHOPPER plan repair algorithm.
1 Def IPyHOPPER(state: s, decomposition tree: w, failed

action node: f):
2 p← parent of f in w;
3 stack ← [(p, s)];
4 while stack not empty do
5 f, s← pop(stack);
6 p← parent of f in w;
7 unexpand f ;
8 if f has possible decomposition then
9 subTree← subtree of w with root f ;

10 attempt expansion of subTree from s;
11 if subTree cannot be fully expanded then
12 continue;
13 else
14 if if the parent p is an ancestor of a previous

node then
15 pop(stack);
16 continue;
17 π ← plan from w;
18 simulate(s, π);
19 if simulation failed then
20 s′ ← input state for failed action;
21 pa ← parent of failed action node;
22 push(stack, (pa, s′));
23 continue;
24 else
25 break;
26 π ← plan from w;
27 return π;

4 Experiments

We incorporated Algorithm 1 into Run-Lazy-Refineahead
with no other changes, resulting in IPyHOPPER. We com-
pared IPyHOPPER to IPyHOP as well as to SHOPFIXER.

(a) (b)

(c) (d)

Figure 1: An example IPyHOPPER repair using Figure 1 by Bansod et al. (2022). See prose for a detailed description.

(a) (b)

Figure 2: With Lazy-Refineahead, 1(b), 1(c), and 1(d) would have been the above.

4.1 IPyHOP Comparison
To evaluate how well IPyHOPPER improves the performance
of IPyHOP, we repeat the study on two domains from the
IPyHOP paper (Bansod et al. 2022).

The robobsub domain comes from the RoboSub 2019
competition. An autonomous submersible is expected to
complete a course consisting of several tasks. Not all tasks
must be completed for an attempt at the course to be con-
sidered complete, but these optional tasks yield additional
points. For such tasks non-empty decompositions are at-
tempted first by the internal ordering of the methods and
if no non-empty decomposition is applicable an empty de-
composition is returned rather than concluding no plan is
possible.

The rescue domain consists of several unmanned air and
ground vehicles attempting to perform search an rescue op-
erations following some disaster. One important difference
between these domains is that the rescue domain has states
from which recovery is impossible.

The experimental setup is identical except for more runs;
the starting seeds increased from 1,000 to 10,000 with num-
ber of trials per seed increased from 11 to 100. We evaluate
using two metrics from Bansod et al. (2022). Total decom-
positions assesses the total number of nodes expanded, thus
tasks and actions are both counted, while total action cost is
the sum of the costs of all actions attempted, including failed
and successful actions.

For the Rescue domain, we found that of our 10,000
seeds, 412 were unsolvable. Of the remaining 9,588 con-
figurations, 82 of them had at least one trial end in an un-
solvable state when using the Lazy-Refineahead algorithm.
IPyHOPPER had no such partial seed failures.

Rescue IPyHOPPER produces plans with lower total ac-
tion cost using fewer node expansions. Figure 3(a) shows
that IPyHOPPER produces a lower total action cost for most
problems, resulting in an averaged reduction of 2.28± 0.02
with 95% confidence. This is most likely a domain-specific
effect, as the algorithm does not impose any cost-related
conditions. Most plan costs occur in discrete, relatively nar-
row bands while IPyHOP produces a much less coherent
pattern. This is likely a consequence of the stability that the
new algorithm imposes through minimal plan changes.

Figure 3(b) shows that IPyHOPPER expands significantly
fewer nodes than Lazy-Refineahead for all configurations
(28.77 ± 0.03 with 95% confidence). This is in line with
expectations, as the failures in this domain are generally fix-
able by repairing only the immediate parent of the failed
node, while Lazy-Refineahead must replan all of the unexe-
cuted plan.

Robosub IPyHOPPER produces plans with higher total ac-
tion cost using fewer node expansions. Figure 3(c) shows
that IPyHOPPER produces plans with a significantly higher
total action cost for all problems (33.80 ± 0.02 with 95%
confidence). This is unexpected, but perhaps a consequence
of the unique feature of most actions being skippable in this
domain. Optional objectives are rewarded with additional
points, but are not required. The method of last resort to de-
compose such tasks is often simply to return nothing.

Table 1: Mean percentile change in paired sample differ-
ence for CPU time and mean iteration count by domain. A
negative value indicates that IPyHOPPER is outperforming
Lazy-Refineahead.

Change in mean Change in mean
Domain CPU time (%) iteration count (%)

Openstacks -34.5 -16.1
Rovers -40.7 -49.3

Satellites -34.0 -49.3

Figure 3(d) shows that IPyHOPPER not only expands sig-
nificantly fewer nodes (59.45 ± 0.07% with 95% confi-
dence), but also reveals a nearly constant number of node
expansions. This suggests IPyHOPPER is exceptionally sta-
ble for this domain.

4.2 SHOPFIXER Comparison
To compare IPyHOPPER to SHOPFIXER, we compare
the difference between Lazy-Refineahead and IPyHOPPER
on the SHOPFIXER domains explored by Goldman and
Kuter (2020): openstacks, rovers, and satellites.

Our first task was to adapt the SHOP 3 methods as faith-
fully as possible. This is somewhat challenging because the
exact format of the state is more ”Pythonic” and IPyHOP
does not use unification. We also needed to enable IPyHOP
methods to return multiple different instantiations based on
ground arguments. Otherwise, we replicated the spirit of the
SHOP 3 methods, actions, and deviations.

We ran each problem 1000 times with a nominal error rate
of 10%. To replicate the potential error distribution from the
SHOPFIXER experiments while allowing for multiple errors
in a single experiment, we scaled each action’s likelihood of
error linearly in proportion to the number of potential errors
for that action and the current state.

Errors were introduced randomly and are uniformly ran-
domly selected from all potential errors for that action and
the current state. In general this meant that the action-state
pair with the largest number of potential errors (as calculated
by a running max) would have some error occur with proba-
bility equal to the nominal probability. Time spent calculat-
ing execution errors was not included in time measures for
the planner. All domains here had only recoverable failures,
so we did not need to consider the case of failed planning.

We recorded three metrics: action count, CPU time, and
iteration count. Action count is the number of all actions at-
tempted, thus both failed and successful actions are counted.
CPU time is the elapsed process time from immediately
prior to the initial call to the planner for a plan to immedi-
ately after the successful completion of the last action. Iter-
ation count is the total number of iterations the planner runs
for both in initial planning and every call to the plan repair
algorithm. Iteration count includes iterations spent travers-
ing through the solution tree without expanding nodes, and
is slightly different than node expansions.

Openstacks IPyHOPPER has similar performance in terms
of action counts but generally uses less CPU time and fewer

(a) (b)

(c) (d)

Figure 3: Scatter plots showing the mean action cost and node expansions for the Lazy-Refineahead and IPyHOPPER algorithms,
in the Rescue and Robosub domains. For the metrics shown, points below the dashed line represent IPyHOPPER
performing better than Lazy-Refineahead.

iterations. Figure 4 shows the spread for IPyHOPPER is no
larger than SHOPFIXER and, for the larger problems, is sig-
nificantly smaller in iteration count and CPU time. This
comes from the increased stability of the new algorithm.
There is a notable decrease in the medians of the itera-
tion count and CPU time distributions when looking across
all problems. However, this varies across problems. Action
counts are essentially identical between the algorithms.

Rovers IPyHOPPER produces more varied plan costs but
does so with lower CPU time and fewer iterations. Figure
5 shows a large improvement in iteration count and CPU
time for most problems, especially for the largest problems.
There is still a reduction in spread for iteration count and
CPU time. There is definitely some distribution shift in the
action count, but appears to highly dependent on problem.

Satellites IPyHOPPER produces results similar to Rovers
with sometimes large improvements in action count using

reduced iteration count or CPU time. Figure 6 shows less
of a shift in the action count distributions. Both the rovers
and satellites domain involve multiple heterogeneous agents
with occasionally redundant capabilities fulfilling goals with
essentially no ordering constraint. This sort of problem is
amenable to the IPyHOPPER because repairs of a single sub-
task are localized in the solution tree.

Summary In Table 1 we summarize the performance
gains of IPyHOPPER over Lazy-Refineahead in the SHOP-
FIXER domains. We find that for all three domains there is
a significant improvement in both CPU time and iteration
count.

5 Conclusions and Future Work
IPyHOPPER offers substantial improvement in iteration
count and computation time across all 5 tested domains.
Given the diverse nature of these domains, we speculate that

Figure 4: Key metric distributions for openstacks domain.

Figure 5: Key metric distributions for rovers domain.

Figure 6: Key metric distributions for satellites domain.

this approach could yield similar benefits for many domains
of interest. However, this approach cannot work as-is for all
planning domains, because certain conditions regarding the
definition of actions, methods, and the nature of errors must
be met for plans to be guaranteed to be correct. These con-
ditions are not currently well defined and this could be a
subject of future work.

There seems to be a general increase in the relative ben-
efit of the new algorithm with problem size. However, this
needs to be investigated further because our suspicion is that
the tested domains may be relatively sparse in terms of how
subtasks are related. A better understanding of this quality
of separability may yield valuable insights into planning.
As the requirement for explicit preconditions and effects
is removed in IPyHOPPER, it may offer some transferable
lessons for refinement and hybrid plan repair.

Our experiments were in domains expressed in the well
known PDDL. This does not make use of the full expressi-
tivity possible with IPyHOPPER. Given IPyHOP should be
capable of planning in domains not well expressed in PDDL
form, we would like to measure potential gains in such do-
mains.

Acknowledgements
This work has been supported for UMD in part by ONR
grant N000142012257 and AFRL contract FA8750-23-C-
0515. MR thanks ONR and NRL for funding this research.
The views expressed are those of the authors and do not re-
flect the official policy or position of the funders.

References
Bansod, Y.; Patra, S.; Nau, D.; and Roberts, M. 2022. HTN
Replanning from the Middle. The International FLAIRS

Conference Proceedings, 35.
Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan
stability: replanning versus plan repair. In Proceedings of the
Sixteenth International Conference on International Confer-
ence on Automated Planning and Scheduling, ICAPS’06,
212–221. Cumbria, UK: AAAI Press. ISBN 978-1-57735-
270-9.
Goldman, R. P.; and Kuter, U. 2019. Hierarchical Task Net-
work Planning in Common Lisp: the case of SHOP3. In
Neuss, N., ed., Proceedings of the 12th European Lisp Sym-
posium (ELS 2019), Genova, Italy, April 1-2, 2019, 73–80.
ELSAA. ISBN 978-2-9557474-3-8.
Goldman, R. P.; Kuter, U.; and Freedman, R. G. 2020. Stable
Plan Repair for State-Space HTN Planning.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2020.
HTN Plan Repair via Model Transformation, 88–101. ISBN
978-3-030-58284-5.
Soemers, D. J. N. J.; and Winands, M. H. M. 2016. Hierar-
chical Task Network Plan Reuse for video games. In 2016
IEEE Conference on Computational Intelligence and Games
(CIG), 1–8.

