
Received: 5 September 2016 Revised: 30 October 2017 Accepted: 15 January 2018

DOI: 10.1111/coin.12162

O R I G I N A L A R T I C L E

Avoiding game-tree pathology in 2-player
adversarial search

Inon Zuckerman1 Brandon Wilson2 Dana S. Nau2

1Department of Industrial Engineering
and Management, Ariel University,
Ariel, Israel
2Department of Computer Science,
University of Maryland, College Park,
MD, USA

Correspondence
Inon Zuckerman, Department of
Industrial Engineering and
Management, Ariel University, Ariel
40700, Israel.
Email: inonzu@ariel.ac.il

Abstract
Adversarial search, or game-tree search, is a technique for

analyzing an adversarial game to determine what moves a
player should make in order to win a game. Until recently,
lookahead pathology (in which deeper game-tree search
results in worse play) has been thought to be quite rare. We
provide an analysis that shows that every game should have
some sections that are locally pathological, assuming that
both players can potentially win the game.

We also modify the minimax algorithm to recognize local
pathologies in arbitrary games and cut off search accord-
ingly (shallower search is more effective than deeper search
when local pathologies occur). We show experimentally
that our modified search procedure avoids local patholo-
gies and consequently provides improved performance, in
terms of decision accuracy, when compared with the min-
imax algorithm. In addition, we provide an experimental
evaluation on the African game of Kalah, which shows the
improved performances of our suggested error-minimizing
minimax algorithm when there is a large degree of
pathology.

KEYWORDS

adversarial search, game playing, game-tree search, 2-player games

1 INTRODUCTION

For many years and across many cultures, games have been considered to be a model of real-life
strategic situations, and skilled game-playing abilities are still regarded as a distinctive mark of
human intelligence. Game playing is a perfect laboratory for studying complex problem-solving

Computational Intelligence. 2018;1–20. wileyonlinelibrary.com/journal/coin © 2018 Wiley Periodicals, Inc. 1

https://doi.org/10.1111/coin.12162
http://orcid.org/0000-0002-9999-1750

2 ZUCKERMAN ET AL.

A
Max

1

B
Min

-5
C

Min

1

D
Max

-5
E

Max

2
F

Max

3
G

Max

1

FIGURE 1 An example tree using minimax search

as they are easy to represent and pose a restricted environment in terms of the available actions
as defined by the rules of the game.

Adversarial search, or game-tree search, is a technique for analyzing an adversarial game to
determine what moves a player should make in order to win a game. In game trees, nodes repre-
sent world states (eg, an arrangement of pawns on the board game), and edges represent actions
(eg, moving a pawn from one board position to another). One of the state-of-the-art adversarial
search algorithms is based on the minimax theorem, which is known to return an optimal move
in 2-player, perfect information, zero-sum games, when allowed to search the entire game tree.1

However, since many games have combinatorically large game trees that are far too large to
permit exhaustive search in normal game play, implementations of the minimax algorithm, as
proposed by Shannon,2 generally involve searching to a limited depth d, applying a heuristic func-
tion called a static evaluation function that estimates the utility value of the nodes at that depth,
and inserting these estimates into the recursive minimax formula in place of the nodes' true util-
ity values. The values of nodes with depths of less than d can then be computed as normal, giving
estimated utility values for each possible move.

For example, the game tree depicted in Figure 1 is limited to depth 3 (d = 3), where, in this
bound, the max player heuristic values are written in the leaves. When these values are propagated
upward in the tree, the min player on depth 2 will pick the node that minimizes the heuristic
value (hence choosing node D over E and G over H). Consequently, the max player of depth 1 will
be faced between choosing a game state with a heuristic value of −5 from node B or 1 from node
C. Therefore, the move that takes him to node C would be the output of the minimax algorithm.

Various elaborations and enhancements of this formula have been used in computer pro-
grams that outperform humans in a large variety of board games, the most famous example being
the Deep Blue program for the game of Chess.3 There is a wide array of work that extends the
algorithm in various directions. Some look to define more accurately the assumptions on the
opponents' behavior.4,5 Some examine and develop various pruning techniques.6,7 Several works
look at modeling and exploiting their opponents,8,9 whereas others look at the search from the
perspective of a single agent or the physical environment.10,11 There are also game-specific tech-
niques that enhance player ability by examining the tree structure and extensions to different
types of environments (eg, partial information12).

Nevertheless, all of these adversarial search methods and their extensions are implicitly based
on the following assumption: searching deeper improves the quality of decisions.

ZUCKERMAN ET AL. 3

Although no theoretical model has supported this belief,13 in practice, in all popular games (eg,
Chess and Checkers), algorithms that searched deeper almost always resulted in better automated
players.14,15

However, in the early 1980s, Nau16 and Beal17 independently discovered that there are
infinitely many games that exhibit a phenomenon known as game-tree pathology, in which deeper
minimax search results in worse performance. Several years later, Mutchler18 proved that the
Maxn algorithm also suffers from the same pathology. In other words, pathological situations are
one in which searching deeper consistently degrades decision quality.

In spite of the fact that there have been several attempts to study this phenomenon,13,17-25 it
has generally been thought to be quite rare in real games and occur only in artificial game trees
that do not model real games.

Nevertheless, recent work26 has shown that pathological situations can occur in Chess (in
2 specific endgame positions), the African game of Kalah, and the single-player 8-puzzle. These
new insights suggest that the widespread assumption that real games are not pathological should
be revisited. In this research, we explore the problem both from a theoretical point of view and
from an algorithmic one. Specifically, in this paper, we make the following contributions.

• We present a thorough review of the game-tree pathology problem.
• We analyze and detect local pathologies and show how they arise within a game tree and that

local pathologies are likely to occur in all interesting games.
• We show how to modify the minimax search procedure to recognize and overcome local

pathologies. Our modified search algorithm is called error-minimizing minimax (EMM), and
it works by tracking both the minimax value of a node and the error associated with it. As the
minimax value of a node is aggregated up the tree in a minimax fashion, the associated error
is also aggregated up the tree.

• We provide experimental results showing that the EMM provides improved decision accuracy
compared to the minimax algorithm. We also show that EMM exhibits no pathology even in
situations where minimax does exhibit pathology.

• We evaluate experimentally the EMM algorithm in the African game of Kalah and show a
setting in which it performs better than minimax for all depths.

We start our presentation in the next section with a review of the game-tree pathology problem.
We will present its background, causes, and various insights that were collected for almost
30 years of research. We then move to Section 3 with the setup and analysis of our theoretic model.
Our EMM algorithm is presented in Section 4, and our experimental evaluation is presented in
Section 5. We then conclude with a discussion (Section 6) and future directions.*

2 BACKGROUND AND RELATED WORK

When an automated agent needs to make a decision about what course of action to take, it is
believed that looking further ahead to predict the result of that action will lead to a better decision.
For instance, when playing Chess, it is believed that a player who can visualize in his mind 6
moves ahead will be better than a player who can visualize 3 moves ahead. The intuition is that
as we look further ahead, we will be getting closer to the end of the game and see events that we
would have missed with a shallower observation.

*The preliminary results of this paper were presented at the European Conference on Artificial Intelligence.27

4 ZUCKERMAN ET AL.

This principle has been demonstrated many times with automated Chess and Checkers play-
ers who were using the minimax algorithm and showed tremendous improvement with an
improvement in the processing power that allowed them to search deeper in the game tree.14,15

However, in the early 1980s, Nau16 and Beal17 independently found out that there is
a class of games in which searching farther ahead consistently led to worse decisions
rather than better ones. This property was denoted as lookahead pathology or game-tree
pathology.

Over the years, there have been several attempts to explain the phenomena and describe fac-
tors that affect it. The first of the factors that has been shown to correlate with game-tree pathology
is the game tree's branching factor. The branching factor is the number of successor nodes at
each node in the tree. In his original publication, Nau presented a mathematical proof that there
exists a (large) class of games in which game-tree pathology was inevitable if the branching factor
was sufficiently large. This is so because of a tendency in the minimax algorithm to eliminate low
values at Max's move and high values at Min's move. In later papers, Nau19,28 experimented with
Pearl's game and showed experimentally that game-tree pathology was indeed more likely with
large branching factors.

In the early years of research on game-tree pathology, people were looking into the phenom-
ena using only a 2-valued function: a win and a loss. Later on, the granularity of the heuristic
function (that is, the number of different values the heuristic function can have) was thought
to be one of the factors that causes game-tree pathology. Early on, Bratko and Gams20 as well
as Pearl29 compared the granularity value of 2 to higher granularities and concluded that higher
granularities do not prevent game-tree pathology.

However, later on, Scheucher and Kaindl22 considered multivalued evaluation functions (ie,
high granularities) and showed (using simulation studies) that the multivalued model did cause
a sharp error reduction for deeper search using minimaxing. More recently, Lus̆trek et al30

also showed that as the branching factor increases, the granularity needed to avoid game-tree
pathology also increases. This is somewhat more intuitive than the above factor because a
low-granularity heuristic function will not be able to distinguish among game states that are dif-
ferent from one another in a finer manner. Consequently, deeper search is more likely to return
the same value for every child in the current node, thus reducing its accuracy.

Probably the most accepted cause for pathology is the notion of local similarity, that is, simi-
larity among the utility values of nearby nodes in the game tree. Researchers were using different
methods to control the local similarity feature and explore it in their model. Beal31 included in
his game trees a fraction of nodes with all the successors having the same utility. Nau19,28 used a
modified Pearl game to construct instances of the game while controlling the amount of depen-
dencies between the nodes (this is further discussed in Section 5). Pearl13 suggested traps as an
alternative explanation. Traps are moves that cause the game to end abruptly, introducing very
accurate, if not perfect, heuristic values at some shallow nodes. Others22,30 used an incremental
approach that is also somewhat similar to Nau's model.

Sadikov et al23 differentiated between 2 types of accuracy affecting pathology: evaluation accu-
racy and decision accuracy. Evaluation accuracy refers to the difference between heuristic values
and the backed-up values. On the other hand, decision accuracy is a measure of how many cor-
rect decisions are made by deeper search compared to shallow search. Their experimental results
on the King-Rook-King chess endgame show that although a heuristic evaluation may be increas-
ingly inaccurate with deeper search, the decision accuracy may actually improve. The explanation
for this unexpected result is that heuristic evaluators, by nature, introduce a bias into the evalu-
ation values. The bias is similar among all nodes on the search frontier so the relative ordering
among nodes is preserved. It is for this reason that we focus on decision accuracy as our measure
of performance in our experiments.

ZUCKERMAN ET AL. 5

All of the above methods for controlling local similarities showed that eliminating local sim-
ilarity resulted in game-tree pathology. In other words, local similarities between the nodes,
as often occurs in real games, reduce the phenomena of game-tree pathology in the game
tree. Another factor that affects game-tree pathology is the graph structure of the game tree.
Specifically, Nau32 showed that a class of games normally pathological is shown to become non-
pathological when the games are modified so that game positions can be reached by more than
one path. Another factor is with respect to the reliability of evaluated nodes, that is, if suffi-
ciently many nodes in a game tree are evaluated reliably compared to other nodes on their level,
performing minimax to lower depths will reduce the heuristic error.20 Nevertheless, in a recent
paper, Nau et al26 showed that both of those factors can be considered specific cases of the local
similarity factor discussed above.

About 20 years after the first observation of the game-tree pathology phenomena, in a paper by
Bulitko et al,24 the authors showed that game-tree pathology can also be found in a single-agent
search, that is, even when there is no opponent in the game. Single-agent search usually revolves
around the A∗, IDA∗, RTA∗, or LRTS algorithms,33-36 which attempt to estimate the cost from the
current state to a goal state. Nowadays, UTC and MCTS are very popular game-tree techniques for
the real-life application of game-tree search in various domains, for example, in general (video)
game playing.37-39 In several research papers described below, the above algorithms have been
shown to behave pathologically in different problem instances.

In the work of Lus̆trek,40 the author shed some light on the causes for game-tree pathology
in single-agent searches. His experiments showed that the distribution of true values is just one
cause for pathology, the other being the heuristic function itself. Lus̆trek concluded that pathology
has been observed even for consistent and admissible heuristic functions, and the reasons are still
unknown. We do know that pessimistic heuristic functions (functions that never underestimate
the difficulty of the problem) were found to be less prone to game-tree pathology in synthetic
game trees,40 the 8-puzzle problem,25,41 and path-finding problems42 in which an empirical study
showed a degree of pathology in over 90% of the problems considered.

Game-tree pathology has also been observed in multiplayer game-tree search, where the
straightforward extension of the minimax algorithm, Maxn,43 has been shown to also suffer from
pathological behavior.18 A recent attempt to cope with game-tree pathology in multiplayer games
was described in the work of Shmueli and Zuckerman.44

Finally, a large experimental study was performed to examine the relationship between the
degree of pathology in a game tree and the 3 prominent causes of pathology, namely, branch-
ing factor, local node similarity, and evaluation function granularity.26 In that study, the authors
defined the degree of pathology for a search of depth d as the fraction of correct decisions made
by searching to depth d over the fraction of correct decisions made by searching one level deeper.
Experimenting on synthetic trees, they discovered that, in general, pathology is more likely to
occur, and has more severe effects, when searching with a higher branching factor, lower evalu-
ation function granularity, and lower local node similarity. Expanding their study to include real
games, they showed that endgame databases exhibit some degree of local pathology despite being,
overall, nonpathological (5.5%-9.2% of positions for chess were pathological). They also showed
that the African game of Kalah (for a sufficiently high branching factor) is the first real game to
consistently exhibit pathology throughout the game. In addition, experiments on the single-agent
8-puzzle showed that 19.7% of positions exhibit pathology.

All of the work above either suggests potential sources of pathology or classifies a set of games
as being pathological. Based on the literature review, it is clear that identifying a single or even a
handful of sources of pathology is a difficult task. Instead of isolating the cause of pathology, in

6 ZUCKERMAN ET AL.

this work, we propose to detect when it begins to manifest itself during the propagation process
and truncate the pathological portions of search at a shallower depth. This will be explained in
the following section with our theoretical analysis of “local game-tree pathology.”

3 THEORETICAL ANALYSIS

In this paper, we are looking at perfect information, zero-sum games for 2 players. We name the
game tree G where each node n has a set of moves m(n) for the player-to-move p(n). The terminal
nodes are assigned a utility u(n), where 1 represents a win for player 1 and −1 represents a win
for player 2. Utilities can then be propagated using the standard minimax formula.2

minimaxd(n) =

⎧⎪⎪⎨⎪⎪⎩

eval(n), if d = 0
u(n), if n is terminal
maxn′∈m(n)minimaxd−1(n′), if p1’s move
minn′∈m(n)minimaxd−1(n′), if p2’s move.

To determine which move is best, one needs to simply compute the minimax values and then pick
a state with a maximal minimax value. When ambiguous, we will use the term correct minimax
value (or correct maxn value) to refer to the value of a node n computed according to minimax(n).
In the above formula, u(n) represents the real utility values when reaching a terminal state,
whereas eval(n) is the static evaluation function that provides an estimate of the utility value of
the nodes at the depth limit.

We still do not have a decision procedure to verify whether a certain game is pathological or
not. In the following analysis, we show that the question is not a binary one; rather, we claim that
every game has pathological situations. We call these pathological situations local pathologies. As
a consequence (and in accordance with the work of Nau et al26), one can say that different games
exhibit different degrees of local pathologies.

To simplify the presentation, we start with a quick analysis of a game with a branching factor
of 2,† showing that local pathologies are likely to occur in all interesting games. For this analysis,
we will assume a static evaluation function that returns the correct utility value on any given node
with probability 1 − e (similar to the model used in the work of Delcher and Kasif21), which also
means that incorrect values will be returned with probability e.

We will be looking at the evaluation error at nonterminal nodes. An evaluation error occurs
when a node's minimax value is miscalculated by a depth-limited minimax computation. At one
extreme, we can imagine a depth 0 minimax computation wherein a static evaluation function
is applied to the parent node. In this case, the evaluation error will simply be that of the static
evaluation function, ie, e. When deeper minimax searches occur, we have different evaluation
errors for different types of nodes. Here, we examine only searches of depth 1, as any search to
depth d can be instead thought, for the sake of analysis, as many depth-1 searches.

In games with a branching factor of 2, there are 4 possible types of nonterminal nodes. These
are shown in Figure 2 (nodes B and C are symmetric and are therefore considered together). At

†We hope it will be obvious how the analysis will extend to higher branching factors. The pseudocode of our algorithm is
general to any branching factor.

ZUCKERMAN ET AL. 7

Type A

1

1 1

Type B or C

1

-1 1

Type D

-1

-1 -1

FIGURE 2 The different types of nonterminal nodes when searching forward one level of a minimax search.
Types B and C are mirror images of one another, so are presented together. The graph shows the relationship
between the errors in the nodes and their children after a minimax search. Notice that only type-D nodes
increase the error [Color figure can be viewed at wileyonlinelibrary.com]

each node, it is player 1's move; thus, the node's minimax value is the maximum of the minimax
values of its children (which are not terminal, but rather the search's horizon).

Using an evaluation function with error e, we can calculate the probability that a depth-1
minimax search will return the wrong value for the root node in each type of node, ie,

error(A) = e2

error(B) = e(1 − e)
error(C) = error(B)
error(D) = 1 − (1 − e)2

.

In trees of type A, the root player sees that there is a forced “win” for him. Therefore, in order
for him to “loss,” or in other words, in order for this “win” label to be false and changed to a
“loss” label, it must be the case that both his children are mislabeled. This is because if only one
is incorrectly labeled, he will still win from taking the other action (the one that is still marked as
“win”). Thus, the “win” label at the root will need to be changed to a “loss” only if both children
will be mislabeled. Mislabeling a child occurs at the probability of e (as this is the error of the
evaluation function); therefore, as we need both to be mislabeled, we arrive at e2.

In trees of types B and C, the root player sees that there is a win for him at one of his children
(the other child is a loss). Therefore, in order for him to “loss,” or in order for this “win” label to
be false and changed to a “loss” label, it must be the case that both his “win” children are wrong
(probability of e) and the “loss” child stays true (probability of 1−e); therefore, we arrive at e(1−e).

Last, for trees of type D, the root player sees a forced “loss,” and in order for it to be really a
“win,” it can be due to 3 possibilities: both children can be mislabeled and changed to a “win,”
but even if only one of them turns out to be mislabeled, it is enough, as the root player would

http://wileyonlinelibrary.com

8 ZUCKERMAN ET AL.

choose it and not the “loss” node. We simply compute as all possibilities minus the possibility that
both children are labeled correctly with a “loss.” Therefore, we arrive at 1 − (1 − e)(1 − e).

When comparing these functions by simply applying the static evaluation function with error
e to the root node, we get

error(D) ⩾ e ⩾ error(B) ⩾ error(A)
for any error e ∈ [0, 0.5].‡ That is, the error resulting from searching below type-D nodes exceeds
the error resulting from simply applying the static evaluation directly, whereas for nodes of types
A, B, and C, the error for depth-1 search is less than that for simply applying the evaluation func-
tion. Figure 2 shows this relationship in a graph, where we plot the value of e against the error
present at each type of node for simply evaluating the node (f(e) = e) and for searching below it.

Only in type-D nodes is the error at the root greater than the error at the leaves, and, since
any depth-d search can be seen as a combination of d depth-1 searches, we can conclude that
type-D nodes are the source of search pathology. This is not to say that any time one reaches a
type-D node, a shallower search should be preferred—it may be that each child of a type-D node
is a type-A node, in which case the error at the root will be 1 − (1 − e)(1 − e), which is less than e.
However, if the entire tree consisted of nodes of type A, B, or C, then there could not be evaluation
pathology.§

We expect all interesting games to contain nodes of type D. This is especially true for zero-sum
games as they are not interesting if 1 player always wins, and without type-D nodes, it would be
impossible for another player to win! (having nodes of types C and B will always result in the root
player winning, unless he decides to choose the losing action on purpose).

4 THE EMM ALGORITHM

Our search algorithm is based on the minimax algorithm but also tracks the error associated with
the node value. Its input is a game state and outputs an action to take. The search computes the
static evaluation function at any given node. If the static evaluation allows a tighter error bound
than the propagated value, then that value and error bound are substituted in the final return
statement.

We now detail a short example of how EMM might traverse a given tree, shown in Figure 3.
This tree shows a depth-2 search—the leaf nodes are nonterminal but are instead evaluated with
a static evaluation function with 10% error. Thus, the evaluations of nodes D, E, F, and G are all
given with 10% error. When processing node B, in which it is player 2's move, we see that both
children of B are evaluated as a loss (value 1) for player 2 and, therefore, that the node is a loss for
player 2. However, since this value is in error if either of the static evaluations for node D or E is
in error, we have a 19% chance that the evaluation at node B is in error. Since a static evaluation
of the same node gives the same value (1—loss for player 2), but with only 10% error, EMM uses
the statically evaluated value and those error guarantees for that node. For node C, the opposite
occurs. In node C, EMM concludes that the node is a win for player 2 with a 9% chance of error,
as node F would have to have been evaluated correctly (90% chance) and node G incorrectly (10%
chance). Thus, the error resulting from the search avoids the 10% error resulting from the static
evaluation function, and EMM assigns a loss with 9% error for node C. We can now conclude
that node A is a win, with a 9.1% error rate. Only if node B turns out to be incorrect (10%) and

‡The error is limited to 0.5 as larger values mean that the evaluation function is worse than strict random selection.
§So long as the static evaluation function mislabels each node with independent probability e.

ZUCKERMAN ET AL. 9

FIGURE 3 An example tree using error-minimizing minimax search

node C stays correct (91%) will node A be incorrectly labeled. This could be compared to when we
did not prefer the statically evaluated error rates, in which case, node A would be incorrect with
a probability of 17.29%.

Figure 4 details the EMM algorithm. By keeping track of both the error from searching and
the error from evaluating, the algorithm naturally distinguishes between pathological nodes (type
D) and nonpathological nodes (types A, B, and C). However, it is important to note that as the
true node type is not explicitly known to the algorithm (just an estimation that is based on the
propagated values), the algorithm might often misestimate the node type and propagate according
to incorrect rules. Further, notice that the algorithm is not limited to a branching factor of 2.

5 EXPERIMENTAL EVALUATION

In order to evaluate the algorithm, we have conducted an extensive set of experiments on
2 different games, the first being the board-splitting game.13 This game will provide us a clean
environment in which we can easily control the depth of the tree and the degree of pathology,
and having a branching factor of 2, it will allow us to correctly evaluate the percentages of “cor-
rect” decisions of both algorithms. However, as the board-splitting game is not a very popular
game, we have conducted an additional set of experiments on the African game of Kalah (also
called Mancala), which will allow us to evaluate the EMM algorithm's ability to perform well in
a real game.

5.1 The board-splitting game
The board-splitting game was developed by Pearl.13 It is a perfect information game in which
2 players take turns dividing a 2-dimensional board, consisting of 1's and 0's, into b equal pieces
and discarding all but one piece. Player 1 splits the board vertically and decides which half of the
board to keep, then player 2 splits the board horizontally and decides which half to keep, and the
other way around. The game is over when only 1 square remains. If this square is a 1, then the
last player to move is declared the winner; otherwise, the other player wins. A running example
of an 8 × 8 game instance is depicted in Figure 5.

We focus on 2 versions of the game that differ only in the construction of the initial board.
The first version is referred to as a P-game (short for the Pearl game). The initial board for each
P-game is generated so that each square is randomly and independently assigned a value of 1 with

10 ZUCKERMAN ET AL.

FIGURE 4 EMM(s, eval, d): Error-minimizing minimax search. For game state s, evaluation function eval
(returning an evaluation of a board from the perspective of the player-to-move) with error es, and search depth d,
returns a pair (a, e), where a is the valuation of state s and e is the error associated with that valuation. 𝛾(s,mv) is
the state-transition function, returning the new state after making move mv from state s

probability p and a 0 with probability 1 − p. The board size itself is b
⌊

d
2

⌋
× b

⌈
d
2

⌉
, where b and d are

the desired branching factor and depth of the game tree, respectively. Minimax has been shown
to be pathological on P-games using a natural evaluator.

The second version is referred to as an N-game. This construction was introduced by Nau19

to emulate the dependence of heuristic values among siblings, in order to create nonpathological

instances of the game. For an initial board of size b
⌊

d
2

⌋
× b

⌈
d
2

⌉
, a value of 1 is assigned to each

edge of the game tree with probability p and −1 with probability 1 − p. Each leaf of the game
tree represents a single square on the board, and its value is determined by summing up the edge
values from the root to that leaf, giving the leaf a value of 1 if the sum is positive and 0 otherwise.

ZUCKERMAN ET AL. 11

FIGURE 5 An example of an 8 × 8 board-splitting game

Since these 2 versions of the game are considered to be on opposite ends of a spectrum (in
terms of degree of pathology), we also experiment on games that fall in between, where we suspect
that the game tree might be more similar to that of a real game. These games are constructed
and classified by an additional parameter we refer to as the mixing factor, ie, m ∈ [0.0, 1.0]. After
constructing a standard N-game, there is a probability m that each square is randomly perturbed
and assigned a new value according to the P-game construction method. A game with a value of
m = 0.0 is a pure N-game, and similarly, a game constructed with a value of m = 1.0 is a pure
P-game.

The mixing factor is similar to the local similarity parameter that Nau et al26 used to generate
synthetic game trees with varying local similarity. They showed that this similarity measure is
inversely correlated with the degree of pathology. Therefore, we expect that our analogous game
construction will generate games with a greater amount of local pathology as the mixing factor
varies from 0.0 to 1.0.

Our experiments compare the performance of minimax and EMM. We also use 2 different
static evaluation functions.

1. An artificial static evaluation function. This is a binary function that returns the true mini-
max value of a state with probability (1 − e) and the incorrect value with probability e, where
e is a predetermined error rate.

12 ZUCKERMAN ET AL.

FIGURE 6 Fraction of correct decisions using the artificial evaluator (e = 0.2) in a 2-player P-game with b = 2.
EMM, error-minimizing minimax [Color figure can be viewed at wileyonlinelibrary.com]

2. A natural static evaluation function based on the percentage of winning squares on the
remaining board. The player runs many fast simulations of random moves in both parts of the
board to find a winning percentage. To make this a binary evaluation (required by EMM), a
state with more wins than losses is evaluated as a win, whereas one containing more losses
than wins is a loss.

For the natural evaluation function, we estimated the associated error (used by the
error-minimizing search) as the fraction of the board that is not associated with the estimated
winner. For example, in a board of size 16, having 12 winning boxes will classify this board as a
win, with an estimated error of 4

16
= 0.25.

A pathology is characterized by a decrease in correct decisions with an increase in search
depth. Therefore, we measure performance in terms of the fraction of correct decisions made at
the root node, where a returned move is “correct” when its true minimax value is maximal among
moves at that node. In other words, if a winning branch is available, a correct move will be one
that directs the player toward that branch. Scenarios with different branching factors produced
similar results.

Figure 6 shows the fraction of correct decisions made by each algorithm using the artificial
evaluator (e = 0.2) on 5000 nontrivial P-games with 11 turns (ie, full game tree of height 11) and
a branching factor of 2. EMM clearly outperforms minimax as the search depth increases. Both
games achieve a perfect decision rate of 1.0 at search depth 11 since this equates to searching
the complete game tree. We can also see that EMM does not exhibit pathological characteristics,
whereas minimax does.¶ In fact, at a search depth of 7, EMM is making over 20% more correct
decisions than minimax (P < 0.05 in a t test for depths 5, 7, and 9).

Figure 7 shows the performance of the algorithms, but this time, the natural evaluator is used.
Here, EMM is still nonpathological, whereas minimax search is pathological and loses approxi-
mately 10% accuracy by searching ahead just 3 moves to depth 7. Here, we can see that even using
a more realistic evaluation function, with an estimated error, EMM still outperforms minimax
with increasing search depth (in depth 7, P < 0.01 in a t test).

¶The slight drop from depth 7 to depth 9 is due to the fact that EMM does not always identify the correct node type to
work on. In another series of experiments with the true node types, we obtained better results, and the slight drop had
vanished.

http://wileyonlinelibrary.com

ZUCKERMAN ET AL. 13

FIGURE 7 Fraction of correct decisions using the natural evaluator in a 2-player P-game with b = 2. EMM,
error-minimizing minimax [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Fraction of correct decisions using the natural evaluator in a 2-player N-game with b = 2. EMM,
error-minimizing minimax [Color figure can be viewed at wileyonlinelibrary.com]

Figure 8 shows that EMM also performs well on N-games (versions of the game that were con-
structed to be completely nonpathological). EMM performs comparably with minimax, which,
given our independence assumption and the strong dependence among N-game siblings, is very
promising.

For Figures 9 and 10, we fix the depth of the search to 5 (e = 0.2 as before) and observe
the ratio of correct decisions made by EMM and minimax in games with a varying degree of
local pathology; a number greater than 1.0 indicates that EMM is making more correct decisions
than minimax. For the artificial evaluator (Figure 9), EMM always outperforms minimax, even
in N-games, but it performs better as the games shift more toward P-games (m = 1.0) where it
makes 26% more correct decisions. With respect to the natural evaluator (Figure 10), we see that
around m = 0.5 and higher is where EMM begins to outperform minimax. This indicates that
EMM is better not only in strongly pathological games (P-games) but also in games with smaller
degrees of pathology.

5.2 Product rule
EMM bears some resemblance to the product rule.45 The product rule computes the probability
that a given node is a win for player 1 and then aggregates those probabilities up the tree in a
method similar to the one used by EMM. The major difference between EMM and product rule

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

14 ZUCKERMAN ET AL.

FIGURE 9 Ratio of correct decisions made by error-minimizing minimax (EMM) to the number of correct
decisions made by minimax using the artificial evaluator in a 2-player board-splitting game with b = 2 and a
varying degree of pathology [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 10 Ratio of correct decisions made by error-minimizing minimax (EMM) to the number of correct
decisions made by minimax using the natural evaluator in a 2-player board-splitting game with b = 2 and a
varying degree of pathology [Color figure can be viewed at wileyonlinelibrary.com]

search is in the short-cutting of the aggregation up the tree when the static evaluation function is
less erroneous than the minimaxed value. This limits the search below nodes with pathological
characteristics: when searching below a node produces more erroneous values, the error associ-
ated with that search will be higher and the results of the search will be more likely to be thrown
away. In this fashion, EMM can be said to “recognize” the pathological portions of a game tree,
avoiding them, while doing full-depth search on nonpathological portions of the tree.

A product rule (PD) search to depth d can be written recursively as follows:

𝑝roductd(n) =

⎧⎪⎪⎨⎪⎪⎩

eval(n), if d = 0,
u(n), if n is terminal,
1 −

∏
n′∈m(n)𝑝roductd−1(n′), if p1’s move,∏

n′∈m(n)𝑝roductd−1(n′), if p2’s move.

We conducted similar experiments on the board-splitting games to evaluate the EMM algorithm
against minimax and the product rule both in branching factors 2 and 3. Figure 11 shows the frac-
tion of correct decisions made by each algorithm using the artificial evaluator on 5000 nontrivial
P-games with varying depths. EMM clearly outperforms the other algorithms as the search depth

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

ZUCKERMAN ET AL. 15

FIGURE 11 Fraction of correct decisions using the artificial evaluator on P-games. EMM, error-minimizing
minimax [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 12 Fraction of correct decisions using the artificial evaluator on N-games. EMM, error-minimizing
minimax [Color figure can be viewed at wileyonlinelibrary.com]

increases (in depth 5, P < 0.01 in a t test against both algorithms). In this set of experiments,
EMM is the only algorithm that does not exhibit pathological characteristics. The results of apply-
ing EMM to N-games are also promising. Figure 12 shows that EMM significantly outperforms
both of the other algorithms and is not pathological. The results show that EMM and the prod-
uct rule both perform substantially better than minimax with increasing search depth (in depth
5, P < 0.05 in a t test).

5.3 The Kalah game
The Kalah game is an ancient African game46 (also called Mancala). A Kalah board contains a
number of pits, each containing a number of seeds, in which the objective is to acquire more seeds
than the opponent, either by moving them to a special pit (called a kalah) or by capturing them
from the opponent's pits. The game is played by 2 players that take turns “sowing seeds.” A player
sows seeds by choosing a pit, scooping up all the seeds in that pit, and moving counterclockwise,
dropping 1 seed in each of the pits immediately adjacent to the starting pit. If the last seed in his
hand goes in his storage pit, he gets another turn. Otherwise, his turn ends. The game ends when

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

16 ZUCKERMAN ET AL.

FIGURE 13 The Kalah game board [Color figure can be viewed at wileyonlinelibrary.com]

a player runs out of seeds on his side of the board, and the player with the most captured seeds
wins. Figure 13 shows a diagram of the game board.

In order to cope with the complexity of the game, in our experimental study, we used the same
limitations that were proposed in the work of Nau et al.26 First, instead of ending the game when
1 player runs out of seeds, we will limit the game to a predefined number of moves. Second, in
order to create a uniform branching factor, we allow making a move from an “empty” pit; such
move will not have any effect on the board and it is basically a way of not taking any action. Last,
we did not provide a second move when the last seed goes in the storage pit.

We used a real heuristic function that provides solid performance in real games. The function
is composed of various features that were collected from the literature47: we looked at whether the
last seed falls in the player or the opponent's kalah and whether the following opponent's move
will increase the number of seeds in my side, and we aim to maximize the number of beneficial
moves the player might take.

In the experiment, we generated random initial boards by distributing seeds across the avail-
able pits. Both algorithms were using the same search depth and the same heuristic function and
played each random board twice: one in which the first player is minimax and the second player
is EMM, and the other way around. The values of the heuristic function were normalized to the
range between 0 and 1 and were mapped to the extreme values for the EMM case. We used a
static error value of 0.2 that was found using trial and error. Each data point in Figure 14 is thus

FIGURE 14 Win percentage for each algorithm as a function of the search depth. EMM, error-minimizing
minimax [Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

ZUCKERMAN ET AL. 17

the result of 10 000 randomly generated games. The results show quite convincingly that in this
setting, EMM has the upper hand across all depths.

6 DISCUSSION AND FUTURE WORK

Despite the positive results we have seen, there are several potential weaknesses present in EMM
that need to be addressed in future research. The first is the assumption of a particular form of
static evaluation function. Generally, if one finds a static evaluation function that is wrong 10%
of the time, those errors do not occur independently at random (as we assume in our error prop-
agation equations). Instead, for many natural static evaluation functions, when they are wrong
about 1 game state, they are likely to also be wrong about children of that game state. Incor-
porating the dependence among sibling nodes is an important next step as that is the primary
difference between the performance of the artificial and natural evaluators. However, even with
an independent assumption among nodes, we saw that EMM performed better than minimax in
games where node values were not completely independent (ie, games with degrees of pathology
between P-games and N-games).

Second, it is not clear that estimating error characteristics for natural static evaluation func-
tions the way we did for the board-splitting game (ie, scaling the evaluation function to a range
of [0.0, 1.0] and treating them as probabilities) is the best approach. Understanding how the error
characteristics are affected by parameters of the search, such as depth and branching factor, is
another key to making EMM effective in a larger set of games. In a recent extension to this work,44

we exemplify how the static evaluation error can be better estimated and utilized using learning
techniques.

The algorithm is also limited to 2-player games. We plan to extend the work to multiplayer
domains by building upon the multiplayer extension of minimax, the Maxn algorithm, where
pathology has also been shown to exist.18 We already have preliminary results in this area that
look promising,44 although the mathematical equations of the node type analysis are much more
complex.

Finally, alpha-beta pruning presents a challenge for EMM, because EMM cannot calculate the
errors unless it visits the nodes alpha-beta would prune. Consequently, EMM will be at a serious
disadvantage if a game tree does not contain pathological nodes—but if it does contain patholog-
ical nodes, then the deeper searches performed by minimax with alpha-beta can actually degrade
performance! A pruning procedure should look both at the heuristic value and the propagated
error and try to approximate when to prune. A good starting point should be somewhat similar
to the algorithms found in the work of Rivest.48

In recent years, we have seen a shift in adversarial search research toward Monte Carlo
tree–based searches. In these algorithms, the decision at the root is taken based on a large num-
ber of random simulations of the interaction (see the work of Browne et al49 for a good survey).
Monte Carlo tree search showed promising results in difficult games such as Go, Chess, and oth-
ers; however, to the best of our knowledge, game-tree pathology has not yet been researched with
respect this technique, and it will be worthwhile exploring this point in future research.

7 CONCLUSIONS

We have shown that, of the 4 possible types of nodes, only 1 kind of node (ie, type-D nodes)
increases the evaluation error and, therefore, causes local pathologies in game trees. We also

18 ZUCKERMAN ET AL.

present a probabilistic approach to propagating the evaluation error based on the type of node.
Using these rules, we have argued that such nodes exist in all interesting games, even those not
known to be pathological.

We have presented a new algorithm, based on minimax, that propagates both heuristic values
and error estimates on those values. The algorithm uses the error estimates to recognize and avoid
searching pathological portions of a game tree, while still searching nonpathological portions of
the tree. In this way, the algorithm can adapt to the individual game tree and the degree of local
pathology present.

In experiments performed on a board-splitting game and the Kalah game, the algorithm per-
formed well: it always performed best or nearly identical to minimax. The results show that the
performance of EMM varies as the degree of local pathology in the game changes. This leads us to
conclude that EMM will be most beneficial when used in games with a medium-to-high degree
of local pathology, not just purely pathological games, such as P-games.

In conclusion, we can say that by incorporating the error of the static evaluation function in
the search, we were able to improve upon the abilities of minimax in situations where such search
previously performed badly. We think this may be a generally applicable lesson: when heuristic
values exist in an algorithm, it may be advantageous to treat those values as probabilistically valid
rather than blithely assuming them accurate.

ORCID

Inon Zuckerman http://orcid.org/0000-0002-9999-1750

REFERENCES

1. Osborne MJ, Rubinstein A. A Course in Game Theory. Cambridge, MA: MIT Press; 1994.
2. Shannon CE. XXII. Programming a computer for playing chess. Philos Mag. 1950;41(314):256-275.
3. Hsu FH. Chess hardware in Deep Blue. Comput Sci Eng. 2006;8(1):50-60.
4. Zuckerman I, Felner A. The MP-mix algorithm: dynamic search strategy selection in multiplayer adversarial

search. IEEE Trans Comput Intell AI Game. 2011;3(4):316-331.
5. Wilson B, Zuckerman I, Nau D. Modeling social preferences in multi-player games. Paper presented at: The

10th International Conference on Autonomous Agents and Multiagent Systems - 2011; Taipei, Taiwan.
6. Sturtevant NR, Korf RE. On pruning techniques for multi-player games. In: Proceedings of the Seventeenth

National Conference on Artificial Intelligence and the Twelfth Annual Conference on Innovative Applications
of Artificial Intelligence. Palo Alto, CA: AAAI Press; 2000.

7. Knuth D, Moore R. An analysis of alpha-beta pruning. Artif Intell. 1975;6(4):293-326.
8. Sturtevant NR, Zinkevich M, Bowling MH. Prob-maxn: playing N-player games with opponent models. In:

Proceedings of the 21st National Conference on Artificial Intelligence; 2006; Boston, MA.
9. Markovitch S, Reger R. Learning and exploiting relative weaknesses of opponent agents. Auton Agent

Multi-Agent Syst. 2005;10(2):103-130.
10. Sharon G, Stern R, Felner A, Sturtevant NR. Conflict-based search for optimal multi-agent pathfinding. Artif

Intell. 2015;219: 40-66.
11. Felner A, Stern R, Kraus S. PHA*: performing A* in unknown physical environments. In: Proceedings of the

First International Joint Conference on Autonomous Agents and Multiagent Systems; 2002; Bologna, Italy.
12. Parker A, Nau DS, Subrahmanian VS. Overconfidence or paranoia? Search in imperfect-information games.

In: Proceedings of the Twenty-First National Conference on Artificial Intelligence; 2006; Boston, MA.
13. Pearl J. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Boston, MA: Addison-Wesley

Longman; 1984.
14. Campbell M, Hoane AJ Jr, Hsu FH. Deep Blue. Artif Intell. 2002;134(1-2):57-83.
15. Schaeffer J, Burch N, Björnsson Y, et al. Checkers is solved. Science. 2007;317(5844):1518-1522.

http://orcid.org/0000-0002-9999-1750
http://orcid.org/0000-0002-9999-1750

ZUCKERMAN ET AL. 19

16. Nau DS. Quality of Decision Versus Depth of Search on Game Trees [PhD Dissertation]. Duke University:
Durham, NC; 1979.

17. Beal DF. An analysis of minimax. In: Clarke MR, ed. Advances in Computer Chess 2. Edinburgh, UK:
Edinburgh University Press; 1980:103-109.

18. Mutchler D. The multi-player version of minimax displays game-tree pathology. Artif Intell.
1993;64(2):323-336.

19. Nau DS. An investigation of the causes of pathology in games. Artif Intell. 1982;19(3):257-278.
20. Bratko I, Gams M. Error analysis of the minimax principle. Advances in Computer Chess. Oxford, UK:

Pergamon Press; 1982.
21. Delcher AL, Kasif S. Improved decision-making in game trees: recovering from pathology. In: Proceedings of

the Tenth National Conference on Artificial Intelligence; 1992; San Jose, CA.
22. Scheucher A, Kaindl H. Benefits of using multivalued functions for minimaxing. Artif Intell.

1998;99(2):187-208.
23. Sadikov A, Bratko I, Kononenko I. Bias and pathology in minimax search. Theor Comput Sci.

2005;349(2):268-281.
24. Bulitko V, Li L, Greiner R, Levner I. Lookahead pathologies for single agent search. In: Proceedings of the

18th International Joint Conference on Artificial Intelligence; 2003; Acapulco, Mexico.
25. Piltaver R, Lus̆trek M, Gams M. Search pathology of 8-puzzle. In: Proceedings of the 10th International

Multiconference Information Society; 2007; Ljubljana, Slovenia.
26. Nau DS, Lus̆trek M, Parker A, Bratko I, Gams M. When is it better not to look ahead? Artif Intell.

2010;174(16-17):1323-1338.
27. Wilson B, Zuckerman I, Parker A, Nau DS. Improving local decisions in adversarial search. Paper

presented at: 20th European Conference on Artificial Intelligence including Prestigious Appli-
cations of Artificial Intelligence (PAIS-2012) System Demonstrations Track. Montpellier, France:
IOS Press; 2012.

28. Nau D. Search and heuristics pathology on game trees revisited, and an alternative to minimaxing. Artif Intell.
1983;21(1-2):221-244.

29. Pearl J. On the nature of pathology in game searching. Artif Intell. 1983;20(4):427-453.
30. Lus̆trek M, Gams M, Bratko I. Is real-valued minimax pathological? Artif Intell. 2006;170(6-7):620-642.
31. Beal DF. Benefits of minimax search. In: Clarke MR, ed. Advances in Computer Chess 3. Oxford, UK: Pergamon

Press; 1982:17-24.
32. Nau DS. On game graph structure and its influence on pathology. Int J Comput Inf Sci. 1983;12(6):367-383.
33. Hart PE, Nilsson NJ, Raphael B. A formal basis for the heuristic determination of minimum cost paths. IEEE

Trans Syst Sci Cybern. 1968;4(2):100-107.
34. Korf RE. Depth-first iterative-deepening: an optimal admissible tree search. Artif Intell. 1985;27(1):97-109.
35. Korf RE. Real-time heuristic search. Artif Intell. 1990;42(2-3):189-211.
36. Bulitko V, Lee G. Learning in real-time search: a unifying framework. J Artif Intell Res. 2006;25:119-157.
37. Genesereth M, Love N, Pell B. General game playing: overview of the AAAI competition. AI Mag.

2005;26(2):62-73.
38. Perez-Liebana D, Samothrakis S, Togelius J, et al. The 2014 general video game playing competition. IEEE

Trans Comput Intell AI Game. 2016;8(3):229-243.
39. Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning. Nature.

2015;518(7540):529-533.
40. Lus̆trek M. Pathology in single-agent search. In: Proceedings of the 8th International Multiconference

Information Society; 2005; Ljubljana, Slovenia.
41. Sadikov A, Bratko I. Pessimistic heuristics beat optimistic ones in real-time search. In: Proceedings of the

17th International Conference on Artificial Intelligence (ECAI 2006). Amsterdam, the Netherlands: IOS Press;
2006.

42. Lus̆trek M, Bulitko V. Thinking too much: pathology in pathfinding. In: Proceedings of the
18th European Conference on Artificial Intelligence (ECAI 2008). Amsterdam, the Netherlands:
IOS Press; 2008.

43. Luckhart C, Irani KB. An algorithmic solution of N-person games. In: Proceedings of the Fifth AAAI National
Conference on Artificial Intelligence; 1986; Philadelphia, PA.

20 ZUCKERMAN ET AL.

44. Shmueli T, Zuckerman I. Avoiding game-tree pathology in multi-player games. Paper presented at: 2015
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT);
2015; Singapore.

45. Tzeng CH, Purdom PW. A theory of game trees. In: Proceedings of the Eighth International Joint Conference
on Artificial Intelligence; 1983; Karlsruhe, Germany.

46. Murray HJR. A History of Board-Games other Than Chess. Oxford, UK: Clarendon Press; 1952.
47. Irving G, Donkers J, Uiterwijk J. Solving kalah. Int Comput Game Assoc J. 2000;23(3):139-148.
48. Rivest R. Game tree searching by min/max approximation. Artif Intell. 1987;34(1):77-96.
49. Browne CB, Powley E, Whitehouse D, et al. A survey of Monte Carlo tree search methods. IEEE Trans Comput

Intell AI Game. 2012;4(1):1-43.

How to cite this article: Zuckerman I, Wilson B, Nau DS. Avoiding game-tree
pathology in 2-player adversarial search. Computational Intelligence. 2018;1–20.
https://doi.org/10.1111/coin.12162

https://doi.org/10.1111/coin.12162

	Avoiding game-tree pathology in 2-player adversarial search
	Abstract
	Introduction
	Background and Related Work
	Theoretical Analysis
	The EMM Algorithm
	Experimental Evaluation
	The board-splitting game
	Product rule
	The Kalah game

	Discussion and Future Work
	Conclusions
	References

