Lecture slides for Automated Planning: Theory and Practice

Chapter 23 Planning in the Game of Bridge

Dana S. Nau University of Maryland

5:34 PM January 24, 2012

Dana Nau: Lecture slides for Automated Planning Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Computer Programs for Games of Strategy

Connect Four:	solved
Go-Moku:	solved
Qubic:	solved
Nine Men's Morra	is: solved
Checkers:	solved
Othello:	better than humans
Backgammon:	better than all but about 10 humans
Chess:	competitive with the best humans
•	
•	
Bridge:	about as good as mid-level humans

Computer Programs for Games of Strategy

• Fundamental technique: the minimax algorithm

 $\min(u) = \max\{\min(v) : v \text{ is a child of } u\} \text{ if it's Max's move at} u$

= min{minimax(v) : v is a child of u} if it's Min's move at u

9

9

10 -3 5 9 -2 -7 2

- Largely "brute force"
- Can prune off portions of the tree
 - cutoff depth & static evaluation function 10
 - alpha-beta pruning
 - transposition tables

. . .

• But even then, it still examines thousands of game positions

• For bridge, this has some problems ... Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

3

3

How Bridge Works

- Four players; 52 playing cards dealt equally among them
- Bidding to determine the trump suit
 - Declarer: whoever makes highest bid
 - Dummy: declarer' s partner
- The basic unit of play is the trick
 - One player leads; the others must follow suit if possible
 - Trick won by highest card of the suit led, unless someone plays a trump
 - Keep playing tricks until all cards have been played
- Scoring based on how many tricks were bid and how many were taken

Dana Nau: Lecture slides for Automated Planning

Game Tree Search in Bridge

- Bridge is an *imperfect information* game
 - Don't know what cards the others have (except the dummy)
 - Many possible card distributions, so many possible moves
- If we encode the additional moves as additional branches in the game tree, this increases the branching factor *b*
- Number of nodes is exponential in *b*
 - ♦ worst case: about 6x10⁴⁴ leaf nodes
 - average case: about 10²⁴ leaf nodes

b = 4

- A chess game may take several hours
- A bridge game takes about 1.5 minutes

Not enough time to search the game tree

Dana Nau: Lecture slides for Automated Planning

Reducing the Size of the Game Tree

- One approach: HTN planning
 - Bridge is a game of planning
 - The declarer plans how to play the hand
 - The plan combines various strategies (ruffing, finessing, etc.)
 - If a move doesn't fit into a sensible strategy, it probably doesn't need to be considered
- Write a planning procedure procedure similar to TFD (see Chapter 11)
 - Modified to generate game trees instead of just paths
 - Describe standard bridge strategies as collections of methods
 - Use HTN decomposition to generate a game tree in which each move corresponds to a different *strategy*, not a different *card*

	Brute-force search	HTN-generated trees
Worst case	≈ 6x10 ⁴⁴ leaf nodes	≈ 305,000 leaf nodes
Average case	≈ 10 ²⁴ leaf nodes	≈ 26,000 leaf nodes

Dana Nau: Lecture slides for Automated Planning

Methods for Finessing

Dana Nau: Lecture slides for Automated Planning

Instantiating the Methods

Dana Nau: Lecture slides for Automated Planning

Generating Part of a Game Tree

Dana Nau: Lecture slides for Automated Planning

Game Tree Generated using the Methods

Dana Nau: Lecture slides for Automated Planning

Implementation

• Stephen J. Smith, then a PhD student at U. of Maryland

- Wrote a procedure to plan declarer play
- Incorporated it into *Bridge Baron*, an existing commercial product
 - This significantly improved Bridge Baron's declarer play
 - Won the 1997 world championship of computer bridge
- Since then:
 - Stephen Smith is now Great Game Products' lead programmer
 - He has made many improvements to *Bridge Baron*

» Proprietary, I don't know what they are

- Bridge Baron was a finalist in the 2003 and 2004 computer bridge championships
 - » I haven' t kept track since then

Other Approaches

- Monte Carlo simulation:
 - Generate many random hypotheses for how the cards might be distributed
 - Generate and search the game trees
 - » Average the results
 - This can divide the size of the game tree by as much as 5.2x10⁶
 » (6x10⁴⁴)/(5.2x10⁶) = 1.1x10³⁸
 - still quite large
 - » Thus this method by itself is not enough

Other Approaches (continued)

- AJS hashing Applegate, Jacobson, and Sleator, 1991
 - Modified version of transposition tables
 - » Each hash-table entry represents a set of positions that are considered to be equivalent
 - » Example: suppose we have AQ532
 - View the three small cards as equivalent: Aqxxx
 - Before searching, first look for a hash-table entry
 - » Reduces the branching factor of the game tree
 - » Value calculated for one branch will be stored in the table and used as the value for similar branches
- GIB (1998-99 computer bridge champion) used a combination of Monte Carlo simulation and AJS hashing
- Several current bridge programs do something similar

Top contenders in computer bridge championships, 1997–2004

Year	#1	#2	#3	#4
1997	Bridge Baron	Q-Plus	Micro Bridge	Meadowlark
1998	GIB	Q-Plus	Micro Bridge	Bridge Baron
1999	GIB	WBridge5	Micro Bridge	Bridge Buff
2000	Meadowlark	Q-Plus	Jack	WBridge5
2001	Jack	Micro Bridge	WBridge5	Q-Plus
2002	Jack	Wbridge5	Micro Bridge	?
2003	Jack	Bridge Baron	WBridge5	Micro Bridge
2004	Jack	Bridge Baron	WBridge5	Micro Bridge

I haven't kept track since 2004

For more information see http://www.jackbridge.com/ewkprt.htm