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1. Dataset issues of C-GQA [10]

GraphEmb [10] proposes a new benchmark for composi-
tional zero-shot learning. However, there are some issues
with the dataset have been raised on their official github
page [1, 2]. These issues are related to (1) the attribute-
object pairs being placed into the incorrect train, validation,
and test subset, and (2) there are missing images for a decent
amount of pairs (20%), which could potentially affect the fi-
nal experiment results. Due to [10] being unable to provide
a corrected version of the dataset in time before the CVPR
2022 deadline, we were unable to run any experiments for
C-GQA. Post the deadline, we did run some preliminary
results where our method outperformed GraphEmb [10].
Although, a major issue we observed was for OADis, C-
GQA [10] training set did not have similar attributes and
objects samples for constructing Iattr and Iobj. However, we
propose for learning compositional concepts, firstly disen-
tangled concepts must be learnt, and for that, we require
Iattr and Iobj. Hence, we do not report results on C-GQA for
OADis.

2. Dataset Creation: VAW-CZSL

We propose a new benchmark for the compositional zero-
shot learning task (CZSL), focusing on images of objects
and attributes in the wild that span across a much larger
number of categories. We select the VAW dataset [12] to
create our benchmark. VAW contains images originally
from Visual Genome (thus objects and attributes in the
wild). Every image of an object instance contains an ob-
ject label and one (or possibly multiple) attribute labels. In
the followings, we describe our steps in creating the VAW-
CZSL benchmark, which shares some similarities with the
C-GQA dataset.

Different from C-GQA, we consider object instances
whose bounding boxes are larger than 50 x 50. C-GQA
selected instances whose boxes are larger than 112 x 112,
which could possibly leave out small, narrow objects that
are still recognizable from images. For every object in-
stance, among its possibly multiple attributes label, we
keep only one attribute that has the lowest frequency in
the dataset (i.e., the uncommon attribute) to be consistent

with the standard CZSL benchmark. By keeping the most
uncommon attribute and using the top-3 & 5 evaluation
metrics, all methods will be evaluated based on whether
they are able to rank this uncommon (but still representa-
tive) attribute in its top-3 & 5 predictions rather than al-
ways predicting the most frequent attributes. From this,
we follow the similar steps from [10] to merge plurals and
synonyms (e.g., {airplane, plane, aeroplane, airplanes...},
{rock, stone, rocks...}). We then keep only those attribute
and object categories with frequency greater than 30 to
make sure all primitive concepts have a decent amount of
data for training and evaluating.

We use images in VAW-training as our training set, and
use images in VAW-val and VAW-test for creating the val-
idation and testing splits following the standard general-
ized benchmark in CZSL. We first merge VAW-val and
VAW-test in one set, and follow similar steps mentioned
in [10] to create a validation and test set of seen and un-
seen attribute-object pairs. At the end, we remove ob-
jects and attributes that no longer appear in the training
set. This is because a model that has never seen an at-
tribute (or object) will find it impossible to generalize to
unseen pairs containing this attribute (or object). This prob-
lem happens with the C-GQA dataset where 8% of at-
tribute and 22% of object categories do not exist in their
training set. More details about dataset can be found in
Table 1. The dataset splits are made publicly available at
https://github.com/nirat1606/OADis.

3. Implementation Details
Following baselines, we use ResNet18 [5] pre-trained on
Imagenet [4] as backbone feature extractor. Since, proposed
auxiliary losses leverage image features, we use a single
convolutional layer with Batch Normalization, ReLU and
dropout for Image embedder with output dimension 1024
and dropout as 0.3. Note that we extract ResNet features
before average pool. For word embeddings, we initialize
with GLoVe [11]. Object Conditioned network, uses mul-
tiple linear layers, first for objects and attributes separately,
then for concatenated features. Label embedder takes 1024-
d feature, performs AveragePool and finally embeds in a
300-d space. Each loss uses compatibility function, i.e.

https://github.com/nirat1606/OADis


cosine similarity, followed by cross-entropy loss over the
compatibility function. Object similarity and attribute simi-
larity modules also use two linear layers with dropout 0.05.
On UT-Zappos, because the dataset is very small, we find
using a linear layer (a smaller and simpler module than
OCN) with dropout 0.1 results in better performance. We
use Adam optimizer with weight decay 5e−5, and learning
rate 2.5e−6 for the GLoVe embedding. The learning rate
for the rest of the model is 3e−4 on MIT-States, and 1e−4

on UT-Zappos and VAW-CZSL. We decay the learning rate
by 10 at epoch 30 and 40 on MIT-States, at epoch 50 on
UT-Zappos, and at epoch 70 on VAW-CZSL. OADis needs
to be trained for 70-150 epochs depending on the dataset,
and training time is comparable with other methods (5-7
hours). These implementation details are also provided in
our released source code.

4. Ablation studies (extension)
As mentioned in the paper, we show ablation for vari-
ous other parameters. All the ablations are done for MIT-
states [6], for one random seed initialization, and are con-
sistent for other datasets as well.

4.1. Choice of word embeddings

Prior works [7,8,10] experiment with various kinds of word
embeddings. In fact, GraphEmb [10] has more advantages
over all other baselines, since they use a combination of
word embeddings word2vec [9] and fasttext [3], whereas
rest of the works use GloVe [11] only. To keep the re-
sults fair between all methods, we run all the baselines, even
GraphEmb [10] with only GloVe [11], and report the accu-
racy in Table 1, in the main paper. Results for using differ-
ent embedding combinations is shown in Table 2. Overall,
since our method uses word embeddings for visual disen-
tanglement, the choice of word embeddings does not impact
the performance much. Although, empirically, we found
our model performs best when GloVe embeddings are used.

4.2. Object-conditioned network

We experiment with different networks on top of word em-
beddings, namely Linear, MLP and Object-Conditioned.
Object conditioned network uses word embedding for ob-
ject to concatenate with attribute-object composition em-
beddings. We show in Figure 1, the diagrammatic repre-
sentation of different networks.

4.3. Values for λ and δ

We find the temperature variables λ and δ empirically. The
values λ = 10 and δ = 0.05 works best for OADis. Ta-
ble 3 shows the results for all the different configurations.
To understand the effect of each temperature variable, we
keep all the rest of the parameters constant and only change
the studied parameter.
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Figure 1. We show the different networks used on top of word
embeddings. Empirically and following our intuition, Object-
Conditioned network works best among the three (rest two are
Linear and MLP). (Sec 4.2)

4.4. Different weights for losses

We mention different weights for each loss function in the
paper, in Section 3.3. Each α value is empirically found,
and is used in the following equation for final loss function:

L = Lcls + α1Lattr + α2Lobj + α3Lseen + α4Lunseen

Note that Lcls is the main branch. The object and attribute
losses are complementary, as shown in paper (Table 4).
Hence, α1 and α2, which are the weights for Lattr and Lobj
share the same values, i.e. 0.5. Finally, α4 and α5 have the
same value since both are composition losses for seen and
unseen pairs, i.e. 0.05. The chosen weights for α values are
in bold in Table 4.

5. Qualitative results
We show more qualitative results to support our architecture
for different datasets.

5.1. UT-Zappos.

We show nearest neighbor results in paper for MIT-
States [6] (Fig. 4(a)). Here, we show similar study for UT-
Zappos [13] in Figure 3. Using the hallucinated composed
features of unseen pairs, we find the top 5 nearest neighbors
from test set. The red boxes show incorrect labels, where
green show the correct labels.

5.2. Attention Maps

In Figure 2 and 4, we show the qualitative results on MIT-
States [6] and VAW-CZSL, with examples f and fattr and
overlayed feature maps. To re-iterate, for images with fea-
tures f and fattr, mattr · f shows how the regions in f which
are most similar to fattr, and m·fattr shows the regions in fattr
which are most similar to regions in f . Lastly, m′

obj · fattr
shows the regions of fattr which are most dissimilar to f .



Table 1. Dataset Details: This table shows the statistics for different datasets and their splits. The proposed VAW-CZSL benchmark
significantly increases the number of attributes and objects.

Train set Val set Test set

Datasets: Attr. Obj. Seen Pairs. # Images Seen Pairs Unseen Pairs # Images Seen Pairs Unseen Pairs # Images

MIT-States [6] 115 245 1262 30338 300 300 10420 400 400 12995
UT-Zappos [13] 16 12 83 22998 15 15 3214 18 18 2914
VAW-CZSL [12] 440 541 11175 72203 2121 2322 9524 2449 2470 10856

f: browned cake fattr: browned chickenf : clear lake fattr: clear sky

f: caramelized nuts fattr: caramelized fish

f: coiled bracelet fattr: coiled rug

f: pierced basket fattr: pierced brass

f: ripe coffee fattr: ripe berries

f : dirty floor fattr: dirty pool

fattr: narrow cabinetf : narrow valley

f : pressed metal fattr: pressed wood

f : whipped foam fattr: whipped salad

(a) (b)

Figure 2. (a) Failure Cases: Shows the image pairs, f and fattr, and the similarity and dissimilarity map overlayed (details in Sec 2).
Moreover, we show for some cases for MIT-States, the examples are very vague or incorrect to actually capture attribute and object
concepts separately. For instance, in clear lake and clear sky, it is very difficult to distinguish lake and sky. Hence the similarity
and dissimilarity maps do not perform very well. Other examples are also of failure cases where the overlayed similarity and dissimilarity
maps do not make sense. (b) Correct Examples: This shows some good examples, where the similarity and dissimilarity maps capture
the attibutes and objects correctly for MIT-States.

Table 2. Results with pre-trained word-embeddings. GloVe [11]
performs the best, and is therefore used for OADis. (Sec 4.1)

Word Embs Val AUC@1 Test AUC@1

Glove 7.6 5.9
Fasttext 7.4 5.3
Word2vec 7.5 5.4
Glove+fasttext 7.4 5.5
Glove+word2vec 7.5 5.6
Fasttext+word2vec 7.4 5.6

Although, the overlayed attention maps for similarity and
dissimilarity make sense most of the times ( Figure 2(b)),
due to some inconsistencies in dataset, we still find some
samples where is it difficult to disentangle the attribute and

Table 3. Results with pre-trained word-embeddings. GloVe [11]
performs the best, and is therefore used for OADis. (Sec 4.3)

λ Val AUC@1 Test AUC@1

0.01 7.5 5.6
0.1 7.5 5.7
1 7.4 5.7
10 7.6 5.9
100 7.4 5.7

δ Val AUC@1 Test AUC@1

0.01 6.4 4.8
0.05 7.6 5.9
0.1 6.7 5.2

object features. The main reasons why this happens is:
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Figure 3. We show the top 5 nearest neighbors using the halluci-
nated unseen composition features for UT-Zappos. All the neigh-
bors with correct labels are represented by green, whereas incor-
rect ones are represented with red outline.

Table 4. We show empirical weights of each loss function in this
table. (Sec 4.4)

α1 and α2 α3 and α4 Val AUC@1 Test AUC@1

0.1 0.05 7.1 5.7
0.5 0.1 7.0 5.3
0.1 0.05 7.5 5.8
0.5 0.05 7.6 5.9
1.0 0.05 7.3 5.6

• Some concepts are abstract, such as clear sky,
pressed metal, dirty floor (fig. 2(a)),
since it is very difficult to separate dirty from
floor. Hence, the attention maps for similarity and
dissimilarity do not make much sense.

• Some images in MIT-States and even in other dataset
are mislabelled (e.g. whipped foam in fig. 2(a)),
which makes it difficult to learn attributes from those.

• Finally, for some cases, like narrow valley, our
method fails to disentangle attribute and object simi-
larity, due to various objects in the scene. For future
work, using a foreground and background separator
before finding similarities and dissimilarities between
features can be helpful.

6. Negative Impact of our work
Our work is a new initiative in the direction of learning vi-
sual features for objects and it’s attributes. We present it

f : red hat fattr: red jacket

f : small tree fattr: small salad

f : floral carpet fattr: floral couch

Figure 4. Correct Examples: We show the similarity and dissimi-
larity attention maps overlayed on images for VAW-CZSL as well.
To re-iterate, for images with features f and fattr, mattr · f shows
how the regions in f which are most similar to fattr, and m · fattr

shows the regions in fattr which are most similar to regions in f .
Lastly, m′

obj ·fattr shows the regions of fattr which are most dissim-
ilar to f .

as a prototype, or an alternative direction for understand-
ing attributes-object pairs. Similar to any other work in vi-
sion, learning attributes of objects can have various positive
implications, e.g. in object detection, knowing attributes
can provide additional knowledge about the objects. How-
ever, knowing the additional information about attributes, it
can be used for persuasion for marketing policies, for even
worse factors. Even though it seems very far fetched ideas,
but using attribute classification along with object detec-
tion, knowing the attributes people can build weapons and
ammunition to either counter attack the present ammuni-
tion. Attribute classification can also be used on humans,
to detect certain traits of human for bypassing large-scale
surveillance applications. In general, attributes provide ad-
ditional information for objects, which can be used nega-
tively or positively.

7. Dataset license
Because we are creating the VAW-CZSL dataset based

on the existing VAW dataset, as per the guideline of CVPR
2022, we provide the VAW dataset URL and license as fol-
lows:

• URL: https://vawdataset.com

• License: https : / / github . com / adobe -
research / vaw _ dataset / blob / main /
LICENSE.md
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