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Abstract

Learning from seen attribute-object pairs to generalize to un-
seen compositions has been studied extensively in Composi-
tional Zero-Shot Learning (CZSL). However, CZSL setup is
still limited to seen attributes and objects, and cannot general-
ize to unseen concepts and their compositions. To overcome
this limitation, we propose a new task, Open Vocabulary-
Compositional Zero-shot Learning (OV-CZSL), where un-
seen attributes, objects, and unseen compositions are evalu-
ated. To show that OV-CZSL is a challenging yet solvable
problem, we propose three new benchmarks based on exist-
ing datasets MIT-States (Isola, Lim, and Adelson 2015), C-
GQA (Mancini et al. 2022) and VAW-CZSL (Saini, Pham,
and Shrivastava 2022; Pham et al. 2021), along with new
baselines and evaluation setup. We use language embeddings
and external vocabulary with our novel neighborhood expan-
sion loss to allow any method to learn semantic correlations
between seen and unseen primitives.

Introduction
Attributes explain the semantic properties of objects and are
essential for efficient in-the-wild object recognition (Farhadi
et al. 2009; Lampert, Nickisch, and Harmeling 2009; Berta-
sius and Torresani 2020). For instance, an unseen image
of dog can be identified for its novel attributes, “a fluffy
brown dog” even if the breed is unknown. However, data
annotation for object-attribute is prohibitively expensive. It
is challenging to scale annotated data because: (1) labels for
each attribute and object are required individually, and (2)
annotated data is required for all possible object-attribute
compositions. Prior works (Misra, Gupta, and Hebert 2017;
Isola, Lim, and Adelson 2015; Yu and Grauman 2014) cir-
cumvent the first challenge by assuming a limited vocab-
ulary of attributes and objects (‘seen’ primitives) and fo-
cus primarily on the second challenge of unseen compo-
sitions, which is referred to as Compositional Zero-shot
Learning (CZSL). However, dealing with unseen attributes,
unseen objects, and unseen compositions together is still an
open problem. In this paper, we propose a new task, Open
Vocabulary-Compositional Zero-shot Learning (OV-CZSL),
which attempts to address aforementioned challenges simul-
taneously, (1) dealing with unseen attributes and unseen ob-
jects, and (2) recognizing unseen attribute-object composi-
tions.
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Figure 1: We propose a new task, Open Vocabulary-
Compositional Zero-shot Learning (OV-CZSL), that ex-
pands upon Compositional Zero-shot Learning (CZSL).
CZSL focuses on evaluating unseen compositions ripe
lemon, peeled apple of seen attributes (ripe,
peeled) and seen objects (apple, lemon), using train-
ing samples (ripe apple,peeled lemon). The novel
OV-CZSL is trained with the same data as CZSL. How-
ever, it can be evaluated on unseen attributes (sliced), ob-
jects (potato) and their unseen compositions. These un-
seen compositions also include seen attribute-unseen object
(peeled potato), unseen attribute-seen object (sliced
lemon) and unseen attribute-unseen objects (sliced
potato).

Recognizing unseen classes (Zero-shot learning) and
composing unseen relations between primitive seen classes
(compositional learning) are both well known challenges
in computer vision. Towards a more generic understand-
ing of the unseen concepts, we introduce OV-CZSL that
bridges the gap between ZSl and CZSL. Drawing inspi-
ration from neuroscience, humans prototype and learn ab-
stract concepts (fruit) while learning concrete concepts (ap-
ple, banana) (Zeithamova et al. 2019) (also known as con-
cept learning). For instance, we can associate visually simi-
lar concepts (apple, orange) as an abstract concept(fruit), by
linking them via language semantically. By extending this
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Figure 2: System Overview: ResNet18 (He et al. 2016a) is used as visual feature extractor. Label Embedder embeds the image
feature vAO along with BERT (Devlin et al. 2019) textual feature for the pair wAO. Object-Attribute Disentanglement module
separates visual features into attributes and objects as vA and vO. Moreover, along with target labels for attribute wA, object wO,
and pair wAO, we use neighbors for all of these from the semantic embedding space (NA, NO and NAO respectively). We use
cosine similarity loss, along with novel Neighborhood expansion loss to solve the task of OV-CZSL.

idea, with a seen concept peeled lemon, we can relate
lemon with another vegetable, e.g. potato. Even though
an image of peeled potato is never seen; by under-
standing the concept of peeled, we can extrapolate what
peeled potato would look like (Figure 1). Accordingly,
we leverage seen attributes and objects, along with exter-
nal knowledge, to semantically associate and learn new con-
cepts and their compositions.

Zero-shot learning studies (Wang, Ye, and Gupta 2018;
Ghosh et al. 2020; Gao, Zhang, and Xu 2019; Han et al.
2021), mostly uses external language and map unseen
concepts close to semantically similar seen concepts. For
OV-CZSL, we utilize pre-trained language embeddings
(BERT (Devlin et al. 2019)), to acquire semantically orga-
nized knowledge. Similar to CZSL, we learn a joint image
and language embedding space to deal with unseen compo-
sitions. Within this embedding space, we expand the neigh-
borhood around seen concepts to correlate different con-
cepts and expand our vocabulary. Similar to query expan-
sion in image retrieval (Xie et al. 2014; Dibia 2020; He et al.
2016b), we enforce the visual feature of semantically similar
linguistic concepts to be close in the embedding space. This
helps in training the image encoder to recognize visually
and semantically similar concepts that it has never seen be-
fore (Wang, Ye, and Gupta 2018). We propose a new regular-
izing loss function, Neighborhood Expansion Loss, to per-
form this vocabulary expansion efficiently. Henceforth, we
propose new benchmarks for the OV-CZSL task, building
on three standard attribute-object datasets MIT-States (Isola,
Lim, and Adelson 2015), C-GQA (Mancini et al. 2022) and
VAW-CZSL (Pham et al. 2021; Saini, Pham, and Shrivastava
2022). As shown in Figure 1(b), we expand on the CZSL
task, to create more challenging sets for evaluating OV-
CZSL, which includes a mixture of seen and unseen com-
positions of seen and unseen attributes and objects. We also
propose a Neighborhood Expansion Loss that helps train our
model to generalize efficiently on unseen pairs, while main-
taining the seen pair accuracy of the existing models. To
summarize, our contributions are as follows:
• We propose a challenging and practical extension on

CZSL, Open Vocabulary-Compositional Zero-shot Learn-
ing (OV-CZSL), for learning compositions beyond the

seen attributes and objects.
• We create three new benchmarks for MIT-states (Isola,

Lim, and Adelson 2015), C-GQA (Mancini et al. 2022)
and VAW (Pham et al. 2021; Saini, Pham, and Shrivas-
tava 2022) for OV-CZSL, along with an efficient evalua-
tion setup.

• We also propose an approach for OV-CZSL, which utilizes
plug-and-play Neighborhood Expansion Loss to regular-
ize training and generalize to unseen concepts and com-
positions.

Problem Setup
OV-CZSL is motivated by in-the-wild recognition, where it
is infeasible to train on all possible objects and attributes
for learning their compositions. To compare it with ZSL and
CZSL setups, we discuss the train and test splits for these.
Zero-shot Learning (ZSL) has distinct seen labels used for
training and unseen labels used for testing. For attributes,
we represent the seen and unseen sets as A and A∗ respec-
tively. Similarly, ZSL for objects will have O and O∗ for
seen and unseen sets, respectively. Compositional Zero-Shot
Learning (CZSL) deals with unseen compositions of seen at-
tribute and seen object pairs. Training set for CZSL is seen
pairs (AO) and test set is unseen compositions of seen ob-
ject and attribute classes, (AO)∗. By definition, there is no
overlap between train and test sets in both ZSL and CZSL.

The goal for Open Vocabulary-Compositional Zero-shot
Learning (OV-CZSL) is to recognize attributes and objects
beyond its seen vocabulary (hence it’s open vocabulary).
During training, only a set of compositions of seen at-
tributes and objects AO are used. For testing, we evaluate on
compositions of seen attribute-unseen object AO∗, unseen
attribute-seen object A∗O, unseen attribute-unseen object
A∗O∗ and a set of unseen compositions of seen attributes
and objects (AO)∗. The unseen test set for OV-CZSL is
{AO∗, A∗O,A∗O∗, (AO)∗}. Hence, the formulation is OV-
CZSL can be considered as a generalized combination of
ZSL and CZSL tasks.

Related Work
Zero-shot learning. Different from ZSL, Generalized Zero-
shot Learning (GZSL) has distinct seen labels used for



: sliced lime     

 :  peeled potato
 :  sliced grapefruit

 :  ripe lime

 : peeled apple

BE
R

T 
Te

xt
 F

ea
tu

re
s

Figure 3: Neighborhood Expansion Loss. In the pair embedding space, we embed visual feature vAO close to wAO. Further, we
use k = 5 neighbors of correct label wAO, and make their word embeddings closer to the visual embedding vAO as well. This
gives our model the ability to generalize to unseen compositions.

training and evaluated on both seen and unseen labels dur-
ing testing. Most works use auxiliary attribute descrip-
tions of the object classes, for ZSL of objects (Wang,
Ye, and Gupta 2018; Han et al. 2021; Ghosh et al. 2020;
Narayan et al. 2020). Other works use word embeddings
and pre-computing semantic features from Wikipedia et
al., for identifying attributes or objects on commonly used
datasets (AwA (Lampert, Nickisch, and Harmeling 2014),
CUB (Wah et al. 2011), SUN (Patterson and Hays 2012),
ImageNet (Deng et al. 2009)). In summary, there is no
datasets and papers zero-shot attribute classification, along
with zero-shot object classification and along with composi-
tion of attributes-objects.
Compositional Zero-shot learning. Most recent works rely
on joint embedding space for images and labels, with lin-
guistic losses (Nagarajan and Grauman 2018; Purush-
walkam et al. 2019; Mancini et al. 2022, 2021; Li et al. 2020;
Yang et al. 2020; Lu et al. 2016). Nagarajan et al. (Nagara-
jan and Grauman 2018) proposed two scenarios for evalua-
tion: (1) Closed world, where images are classified into only
unseen pairs, and (2) Open world, where both seen and un-
seen pairs are used for evaluation. Moreover, (Mancini et al.
2021) proposed another Open world setting, where for M at-
tributes and N objects, they consider all possible combina-
tions of M x N pairs, which might or might not be part of
seen and unseen pairs for evaluation. Note that, in this work,
‘Open’ refers to extra vocabulary it can generalize to, but the
evaluation is done in a closed world setup only. None of the
existing works learn to compose novel unseen compositions.
Open Vocabulary. Recently, the focus on using limited la-
bels to learn unseen in-the-wild classes has grown tremen-
dously. Sergio et al. (Guadarrama et al. 2014) first proposed
the task of open vocabulary object retrieval using descrip-
tive natural language phrases by combining category and
instance-level recognition. Further, Hang et al. (Zhao et al.
2017) proposed an open-vocabulary framework for scene
parsing, which built an image-text common embedding
space using hierarchical semantic relations. Open vocabu-
lary setup has evolved over time, for scene parsing (Guadar-
rama et al. 2014), object detection (Zareian et al. 2021; Shi
et al. 2022; Gu et al. 2021; Ye et al. 2018; Du et al. 2022),
and object segmentation (Ghiasi et al. 2021). Moreover, we
want to emphasize that most Open-Vocabulary works use
CLIP (Radford et al. 2021) in the pipeline, however using

CLIP (Radford et al. 2021) makes the setup not-ZSL, since
CLIP has already seen most attributes and objects. Hence,
we avoid using CLIP for our setup. To the best of our knowl-
edge, this is the first work exploring Open Vocabulary for
Compositional Zero-shot Learning (OV-CZSL), and propos-
ing a new challenging benchmark. We compare with base-
lines for both tasks ZSL and CZSL for OV-CZSL.

Approach
In this section, we describe our method to tackle OV-CZSL.
We emphasize that similar to ZSL, for solving OV-CZSL,
the approach must balance the tradeoff between seen and un-
seen class accuracy. Existing works in CZSL consider only
the composition of seen attributes and objects (Mancini et al.
2022, 2021; Purushwalkam et al. 2019; Saini, Pham, and
Shrivastava 2022; Nagarajan and Grauman 2018), and fail
to generalize on compositions of unseen classes. We recom-
mend new baselines for future work in OV-CZSL.

Task Formulation
OV-CZSL focuses on learning to compose seen and unseen
attributes and objects. Each image I , has an attribute label
A and an object label O. We use ∗ to represent the unseen
concepts, i.e. unseen attributes are A∗ and unseen objects
are O∗. Training labels are set of seen attribute-object pairs,
represented by Y s, where Y s = AO. Similar to CZSL, we
evaluate on seen attribute-objects yet unseen compositions
(AO)∗. Further, with unseen attributes and objects, there are
three combinations of labels: 1) seen attribute and unseen
object AO∗, 2) unseen attribute and seen object A∗O, 3)
unseen attribute and unseen object A∗O∗. The overall test
set is denoted as Y u, where Y u = (AO)∗ ∪ AO∗ ∪ A∗O ∪
A∗O∗. Note that train and test set compositions are mutually
exclusive, i.e., Y s ∩ Y u = ∅.

Methodology
Our architecture is based upon common state-of-the-art
baselines in CZSL (mostly OADis (Saini, Pham, and Shri-
vastava 2022)). We extract image and textual features us-
ing pre-trained networks (ResNet18 (He et al. 2016a) and
BERT (Devlin et al. 2019) respectively). The pair em-
bedder is LabelEmbedder (Nagarajan and Grauman 2018)
(LE) and the Object-Attribute Disentanglement module is



Table 1: Dataset Splits. We denote ∗ for unseen concept, such that A and O are seen attribute and objects, whereas A∗ and
O∗ denote unseen attributes and objects. AO and (AO)∗ are seen and unseen compositions or seen attributes and seen objects
respectively. AO∗ are seen attribute-unseen object pairs, A∗O are unseen attribute-seen object set and A∗O∗ are the unseen
attribute-unseen object pairs. We propose new benchmark splits for OV-CZSL on datasets MIT-states (Isola, Lim, and Adelson
2015), C-GQA (Mancini et al. 2022) and VAW-CZSL (Pham et al. 2021; Saini, Pham, and Shrivastava 2022).

Attributes Objects Training Set Validation Set Test Set

Datasets A A∗ O O∗ AO AO/(AO)∗/A∗O/AO∗/A∗O∗ AO/(AO)∗/A∗O/AO∗/A∗O∗

MIT-states (Isola, Lim, and Adelson 2015) 84 31 182 63 955 236 / 105 / 126 / 177 / 44 289 / 130 / 157 / 218 / 50
C-GQA (Mancini et al. 2022) 311 102 504 170 4094 1012 / 447 / 525 / 517 / 147 1239 / 542 / 664 / 655 / 176
VAW-CZSL (Pham et al. 2021) 330 135 406 110 7142 1767 / 803 / 1420 / 1253 / 412 2161 / 982 / 1737 / 1532 / 504

from OADis (Saini, Pham, and Shrivastava 2022), as shown
in Figure 2. The Disentanglement module separates the vi-
sual features for attribute and object.
System Architecture. Similar to OADis (Saini, Pham, and
Shrivastava 2022), we use the second last layer before Av-
eragePool of pre-trained ResNet18 (He et al. 2016a), for
spatial features fI ∈ R512×49. The Label Embedder mod-
ule (MLP) extracts final feature vAO for pair embedding,
with same dimension as the word embedding final feature
wAO, extracted from BERT (Devlin et al. 2019) Text Fea-
tures (Figure 2). The disentanglement module separates the
attribute and object visual features using backbone features
for I , Iattr and Iobj, where Iattr is image with same attribute as
I , and Iobj is an image with same object as I . I and Iattr are
used to extract visual feature for attribute vA. Similarly, vi-
sual feature for object vO is extracted from I and Iobj. Using
textual features (wA and wO), these visual embeddings for
attributes and objects are regularized, i.e. given a seen image
with label peeled apple, we push the visual embedding
of this image closer to text embedding of the label. More
details can be found in (Saini, Pham, and Shrivastava 2022).
We use cross-entropy along with cosine similarity to get the
final classification score for each attribute, object and pair,
same as (Mancini et al. 2022). Let visual feature is v and
text feature is w, y is the correct seen label, then the main
classifier logits can be defined as (where δ is the tempera-
ture factor):

C(v, w) =
eh(v,w)∑

y∈Y s eh(v,y)

h(v, w) = cos(v, w) = δ · vTw

∥v∥ ∥w∥
(1)

Neighborhood Expansion Loss
Previous CZSL methods perform fairly well for OV-CZSL,
however fail to generalize on totally unseen compositions
set, i.e. A∗O∗. By using common techniques of data aug-
mentation and learning rate decay leads to improved gen-
eralization on unseen compositions, but deteriorates perfor-
mance on seen compositions. Hence the goal of novel Neigh-
borhood Expansion Loss (NEL) is to balance the general-
izability and learnability of the model. To achieve this, we
leverage ideas from label smoothing and label propagation.
Label smoothing is a regularization technique used to re-
duce overfitting. Although, as explained in (Yuan et al. 2020;

Müller, Kornblith, and Hinton 2019), it is not always help-
ful and often introduces noise in the system. We use label
smoothing to make the model less confident with training
classes, such that negative bias for unseen classes decreases,
and the model does not overfit on seen classes. Further, to
transfer knowledge from seen to unseen concepts, we use la-
bel propagation techniques (Zhou et al. 2003). It is a graph-
based method for semi-supervised learning (Fergus, Weiss,
and Torralba 2009; Shrivastava, Singh, and Gupta 2012). In
a transductive setting, given labeled and unlabeled exam-
ples, label propagation defines a graph between samples, to
connect unlabeled samples to potential labels. In our paper,
we use neighbors from external knowledge sources (open
vocabulary) to learn unseen pairs from seen pairs.

With traditional cross-entropy loss, the model only learns
to minimize the distance between the the visual embed-
dings and text embeddings for each image and correct label
(peeled lemon). However, for limited seen compositions,
this strategy causes a negative bias against unseen pairs. In
a way, it forces the model to never learn unseen pairs, since
it is too confident for the correct label. To overcome this, we
apply label smoothing, which reduces negative bias for un-
seen classes during training with NEL. Another problem is
extending knowledge from seen to unseen compositions. For
that, we use label propagation. For each seen pair, we find
k nearest-neighbors Nk using word embeddings for labels
(details in next section). These neighbors make the ‘open-
vocabulary’ aspect of OV-CZSL. As shown in Figure 3, if
seen pair is peeled lemon, we also learn visual embed-
dings for unseen compositions sliced lime, peeled
apple, peeled potato, sliced grapefruit and
ripe lime as well by minimizing the distance between
visual feature for given image of peeled lemon with the
textual embeddings of the 5 mentioned neighbors. This in-
tuition is from human learning, that we can correlate similar
looking objects using language, such as oranges are similar
to lemons. With this new loss, we expand our vocabulary be-
yond seen classes, by correlating similar concepts using lan-
guage priors. Note that these neighbors are weighted, and
the distance between visual feature with its original label
(peeled lemon) is smaller than distance with its neigh-
bor embeddings. so that the correct label is still learnt with
higher confidence than it’s neighbors.

Let N represent the neighbor set of seen pair text embed-
ding w. For M training labels, cross-entropy is defined as H
where, ym is 1 for the correct class and 0 for the rest. Label



Table 2: Results on MIT-states (Isola, Lim, and Adelson 2015) and CGQA (Mancini et al. 2021). We report Top 1 AUC,
which balances % between seen and unseen compositions with different bias terms. HM is Harmonic Mean where maximum
AUC is computed. Following (Purushwalkam et al. 2019), best accuracy values are reported for Seen AO and Unseen pairs
{AO∗, A∗O,A∗O∗, (AO)∗}. All other accuracies for individual splits are computed with bias where HM is maximum. Our
method with NEL loss outperforms previous methods on most unseen compositions.

MIT-States C-GQA

Model Test@1 HM Seen Unseen AO (AO)∗ A∗O AO∗ A∗O∗ Test@1 HM Seen Unseen AO (AO)∗ A∗O AO∗ A∗O∗

LE (Nagarajan and Grauman 2018) 1.01 7.64 16.29 9.46 10.24 11.38 5.98 4.15 2.87 1.17 8.39 19.37 8.36 10.76 6.51 9.53 2.67 1.08
CompCos (Mancini et al. 2021) 1.97 10.22 26.53 10.29 14.32 21.09 5.86 2.89 0.63 2.35 9.64 40.19 7.25 21.19 20.24 4.47 1.95 0.26
OADis (Saini, Pham, and Shrivastava 2022) 1.83 9.55 25.35 10.79 12.18 16.06 6.40 5.41 1.34 2.33 9.74 42.88 7.12 20.86 15.19 6.17 3.47 0.61

Ours 2.41 10.94 29.02 11.13 14.11 18.87 8.24 5.49 3.54 3.18 12.11 42.38 9.77 19.78 16.07 12.86 2.87 3.04

Table 3: Results on VAW-CZSL (Pham et al. 2021; Saini,
Pham, and Shrivastava 2022). All measures are shown in Top
3 AUC. HM is Harmonic Mean where maximum AUC is com-
puted. All other accuracies for individual splits are computed
with bias where HM is maximum. Our approach outperforms
previous baselines for unseen compositions.

Model Test@3 HM AO (AO)∗ A∗O AO∗ A∗O∗

LE (Nagarajan and Grauman 2018) 1.49 8.27 15.62 10.48 5.79 2.78 0.98
CompCos (Mancini et al. 2021) 2.69 10.68 20.21 20.58 5.04 2.48 0.5
OADis (Saini, Pham, and Shrivastava 2022) 2.68 10.91 21.19 15.65 6.75 3.16 0.76

Ours 2.91 11.35 23.02 16.18 7.86 3.37 1.36

smoothing (Müller, Kornblith, and Hinton 2019) makes the
model less confident for the correct label, by weighting the
loss for correct label with a smoothing factor α < 1. Thus
cross-entropy between the modified targets yLS

m and and the
network’s outputs Cm is minimized.

H(y, C) =

M∑
m=1

−ym log (Cm)

yLS
m = ym(1− α) + α/M (2)

The Neighborhood Expansion makes the target for actual
label is weighted highest, and rest weights are distributed
among neighbors, with least weights are assigned to other
labels.

yNE
m = ym(1− α)T + yk(1− α)(1− T ) + α/(M + k)

where, k is the number of neighbors, yk are labels for neigh-
bors from open-vocabulary, T is smoothing term for label
propagation (weighting neighbors) and α is smoothing term
for label smoothing. Thus, Neighborhood Expansion Loss is
a combination of label propagation and label smoothing. We
use Cosine Similarity-based cross-entropy H classification
loss and Neighborhood Expansion Loss for attribute, object,
and pair embeddings, represented by Attr Cls, Obj Cls, and
Pair Cls shown in Figure 2. Here, we elaborate on the Pair
Cls loss:

LAO = H(yAO, C(vAO, wAO))

LNE
AO = H(yNE

AO, C(vAO, wAO)) (3)

We can define similar loss functions for Attr Cls and Obj Cls
as well. For each embedding space, we use both losses, and
overall objective function L is:

Table 4: Comparison with ZSL baselines. We show re-
sults on two ZSL baselines for seen and unseen attributes
and objects. Using NEL significantly improves outperforms
existing ZSL baselines.

Model Emb. A A∗ O O∗

SEKG (Wang, Ye, and Gupta 2018) GloVe 5.04 3.10 5.19 3.17
BERT 3.37 2.33 5.72 2.29

TF-VAEGAN (Narayan et al. 2020) GloVe 5.86 5.76 5.93 4.52
BERT 4.54 3.05 5.82 3.93

Ours GloVe 20.75 13.67 32.19 7.86
BERT 20.37 11.42 29.3 10.07

Lpair = β1LAO + (1− β1)LNE
AO

Lattr = β2LA + (1− β2)LNE
A

Lobj = β3LO + (1− β3)LNE
O

L = Lpair + γ1Lattr + γ2Lobj. (4)

Experimental Setup
Following CZSL works, we propose new splits for OV-
CZSL on existing dataset MIT-States (Isola, Lim, and
Adelson 2015), C-GQA (Mancini et al. 2022) and VAW-
CZSL (Pham et al. 2021; Saini, Pham, and Shrivastava
2022). MIT-states (Isola, Lim, and Adelson 2015) is rela-
tively small, is a popular choice for CZSL. It has 115 at-
tributes, 245 objects, 1962 compositional pairs, and 53k im-
ages. C-GQA (Mancini et al. 2022) a larger dataset with 413
attributes, 674 objects and a total of ∼ 7k pairs and 39k im-
ages. VAW-CZSL (Pham et al. 2021; Saini, Pham, and Shri-
vastava 2022) is the largest of all, with 533 attributes, 543
objects, ∼ 15k (15785) pairs and 92k images. The scale for
C-GQA and VAW-CZSL is similar, however, VAW-CZSL
has more shared attributes among objects. C-GQA has more
one-to-one attribute object pairing, without much sharing of
attributes among objects. We do not use UT-Zappos (Yu and
Grauman 2014) since it only has 16 attributes and 12 objects.
Dataset Splits. Following the ZSL works (Han et al. 2021;
Wang, Ye, and Gupta 2018), we split attributes and objects
into 75-25% split for training and testing. Since we are using
ResNet18 (He et al. 2016a) trained on Imagenet (Deng et al.
2009) as backbone for visual features, we make sure that at-
tributes and objects common with Imagenet labels are part of
training set (seen attributes and seen objects). This ensures
that the unseen attributes and objects are truly zero-shot, and



Table 5: Using NEL with other baselines. We show effect of
NEL for different baselines. All methods using NEL perform
better for OV-CZSL splits.

Model AO (AO)∗ A∗O AO∗ A∗O∗

LE (Nagarajan and Grauman 2018) 10.24 11.38 5.98 4.15 2.87
LE + NEL 10.65 6.11 5.61 4.09 7.71

+0.4 -5.2 -0.3 - +5.5

CompCos (Mancini et al. 2022) 14.32 21.09 5.86 2.89 0.63
CompCos + NEL 15.73 19.72 8.03 4.13 1.77

+1.4 -1.3 +2.1 +1.24 +1.1

OADis (Saini, Pham, and Shrivastava 2022) 12.18 16.06 6.40 5.41 1.34
Ours (OADis+NEL) 14.11 18.87 8.24 5.49 3.54

+2.9 +2.8 +1.8 - +2.2

CLIP (Radford et al. 2021) (ZSL) 20.08 22.03 23.38 23.21 34.93
CLIP+ FT 25.89 22.03 24.87 25.60 34.50
CLIP+FT+NEL 25.97 23.06 25.90 25.70 36.45

- +1.0 +1.3 - +2.0

are never seen. A set of valid compositions of seen attribute
and object pairs becomes the training set Y s. Test set, de-
noted as Y u has unseen compositions of seen attributes and
objects (AO)∗, as well as, other sets of seen and unseen at-
tributes with unseen objects (AO∗, A∗O, A∗O∗). We further
split Y u 40-60%, to make validation and test splits, similar
to CZSL. To evaluate learnability on seen compositions, test
and validation split also have subset of Y s. All split creations
are random and are selected from 10 random splits, based on
the balance between seen and unseen accuracies (refer sup-
plementary). Table 1 shows statistics of the benchmark split.
Evaluation. We follow Generalized CZSL (Purushwalkam
et al. 2019; Li et al. 2020; Saini, Pham, and Shrivastava
2022; Mancini et al. 2021) evaluation protocol, to evaluate
on both seen and unseen pairs (Y s,Y u) with a scalar term
used to overcome negative bias for unseen pairs. Since, the
OV-CZSL task is already challenging, we use Closed world
evaluation setup (mentioned in related work), where AUC
is reported over only “valid” unseen pairs while ignoring
the “invalid” pairs. Area Under the Curve (AUC) is com-
puted between the accuracy on seen and unseen composi-
tions with different bias and Harmonic Mean (HM), to bal-
ance the bias. We also report separately accuracy for each
set (AO, (AO)∗, AO∗, A∗O, A∗O∗) at the bias-term where
HM is maximum. The seen pairs Y s consist of AO whereas
the unseen pairs Y u are {AO∗, A∗O,A∗O∗, (AO)∗}. Fol-
lowing (Purushwalkam et al. 2019), best accuracy values are
reported for seen and unseen pairs.
Neighborhood list. Since some datasets are small, and the
testing pair labels might not be semantically similar to train-
ing pairs. To expand the vocabulary, we use external knowl-
edge sources. In total, we use 2294 attributes/adjectives and
4090 objects aggregated from Visual Genome (Krishna et al.
2016), Flick30k (Young et al. 2014), COCO-captions (Chen
et al. 2015), and LocalizedNarratives (Pont-Tuset et al.
2020). These attributes and object pairs make up ∼118650
compositions, as valid extra compositions we use for neigh-
borhood search. We find 10 neighbors for each seen attribute
and objects from the external source, using GloVe (Penning-
ton, Socher, and Manning 2014) embeddings cosine sim-
ilarity score. Using the neighbors for attribute and object,
we find all possible compositions (∼100) for each pair. The

compositions are then analyzed for validity using the exter-
nal pair list described above. 10 valid compositions are cho-
sen as neighbors for the seen pair. If the external pair list
does not have any compositions, we only choose composi-
tions of first 6 closest attributes and objects from the neigh-
bor list. Hence, neighbor search is based on individual at-
tribute and object, instead of pairs directly. More details on
for neighbor search and hyperparameter sensitivity of NEL
are explained in suppl.
Training Details. Following standard practice in CZSL (Na-
garajan and Grauman 2018; Purushwalkam et al. 2019;
Mancini et al. 2022, 2021), we use Frozen ResNet18 (He
et al. 2016a), pre-trained on ImageNet (Deng et al. 2009)
for image features (without finetuning) and BERT (Devlin
et al. 2019) text embeddings for labels. A linear layer on top
of BERT (Devlin et al. 2019) features is used for pair embed-
dings. We use image augmentations (random crop, horizon-
tal flip) for all baselines and our method, like OADis (Saini,
Pham, and Shrivastava 2022). For MIT-States (Isola, Lim,
and Adelson 2015), the network is trained with Adam op-
timizer, with weight decay 1e-6, learning rate 3e-5 and de-
cay at epoch 120 and 130. Smoothing factor α = 0.8, tem-
perature for cosine similarity δ = 0.05, temperature for
weights of neighbors T = 0.5, number of neighbors k = 5,
weights for losses are β1 = 0.8, β2 = β3 = 0.95, and
γ1 = γ2 = 0.05. The model is trained for 150 epochs
and best performance based on validation AO performance.
More details are mentioned in suppl.

Results
CZSL Baselines

The main task for OV-CZSL is compositional learning
for seen and unseen attribute-object pairs. Our architecture
is most similar to OADis (Saini, Pham, and Shrivastava
2022), with embedding space and losses from LE (Nagara-
jan and Grauman 2018) and CompCos (Mancini et al. 2021).
Hence we compare with these 3 baselines and show accu-
racy for each individual split. Other baselines for CZSL,
(e.g. TMN (Purushwalkam et al. 2019), AttrOpr (Nagara-
jan and Grauman 2018), GraphEmb (Mancini et al. 2022))
are either outperformed by CompCos (Mancini et al. 2021)
or perform poorly on unseen pairs (e.g. KG-SP (Karthik,
Mancini, and Akata 2022), Symnet (Li et al. 2020)). Note
that, even though the external open vocabulary may or may
not have any lables from our test set, we explicitly do
not include test classes in the external knowledge sources.
Hence, baselines which have any test labels while train-
ing(GraphEmb (Mancini et al. 2022)) are not compared
with, since they have use test lables while training.
Results on MIT-States and C-GQA. We report the AUC
and harmonic mean (HM) for Top1 predictions on both
datasets in Table 2. Seen and Unseen accuracy is the
overall best accuracy without bias calibration. Interestingly,
LE (Nagarajan and Grauman 2018) generalizes well on un-
seen compositions, but does not perform as well for seen
compositions overall. Moreover, CompCos (Mancini et al.
2021) works the best for CZSL task, as its performance
for AO and (AO)∗ remains unbeatable. However, it fails



Table 6: Ablation for varying number of neighbors (k).
We show how changing the number of neighbors can intro-
duce noisy labels in the setup. For generalization to unseen
classes, we need fewer neighbors (5 as shown here).

k Val@1 Test@1 HM AO (AO)∗ A∗O AO∗ A∗O∗

1 2.67 2.21 10.46 15.16 17.46 8.02 4.41 2.21
3 2.69 2.18 10.39 16.37 16.71 7.67 4.47 2.21
5 2.69 2.41 10.94 14.11 18.87 8.24 5.49 3.54
7 2.65 2.24 10.44 15.16 17.67 8.09 4.50 2.37
10 2.60 2.16 10.35 13.79 18.33 8.01 4.61 2.14

Table 7: Ablation on different Text Embedding. We show ef-
fect of using different text embeddings for OV-CZSL. We ob-
serve that BERT (Devlin et al. 2019) improves the unseen com-
positions A∗O∗ the most, hence we use BERT (Devlin et al.
2019) for our approach.

Emb Test@1 HM AO (AO)∗ A∗O AO∗ A∗O∗

GloVe 2.37 10.46 13.13 19.11 10.70 3.83 0.69
word2vec 2.37 10.68 13.82 17.46 10.61 4.19 1.13
fasttext 2.33 10.14 13.02 17.04 10.93 4.88 1.64
BERT 2.41 10.94 14.11 18.87 8.24 5.49 3.54

to generalize on compositions of unseen attributes or ob-
jects. OADis (Saini, Pham, and Shrivastava 2022) is some-
where in the middle but does not generalize as well on un-
seen compositions A∗O∗. Our proposed approach gets best
of both world, as it performs close to CompCos (Mancini
et al. 2022) and OADis (Saini, Pham, and Shrivastava 2022)
for CZSL task and beats LE (Nagarajan and Grauman 2018)
for unseen compositions, corresponding to A∗O, AO∗ and
A∗O∗. For C-GQA (Mancini et al. 2022), there are less at-
tributes that share a common object (and vice-versa), which
makes object-attribute disentanglement inefficient on this
dataset. It relies more on backbone visual features (biased
for objects), and performs well on A∗O than on AO∗. Our
method with NEL surpasses most unseen sets with sig-
nificant margin. Overall, in comparing CompCos and our
method, for CZSL compositions AO and (AO)∗, the drop
is accuracy is < 4% while the improvement in A∗O∗ is al-
most 5 times, which is the most challenging split of unseen
attribute-unseen object compositions.
Results on VAW-CZSL. This dataset created from multi-
label VAW (Pham et al. 2021), and VAW-CZSL (Saini,
Pham, and Shrivastava 2022) uses the least frequent labels
for each image across the dataset. Hence top 1 predictions
latch on to different attributes which are present in the im-
age, but are not labeled. We show Top 3 AUC, HM and ac-
curacy for this dataset. Similar variations in performance of
baselines are obeserved for this dataset as well Table 3, i.e.
CompCos performs better in (AO)∗ while our method out-
performs all baselines in every other set.

ZSL Baselines
Zero-shot Learning (ZSL) for unseen attributes and ob-
jects is a by-product of OV-CZSL. Hence, we also com-
pare with some baselines from ZSL. There are various ZSL
methods, but most of them use pre-defined semantics for
objects (Wang, Ye, and Gupta 2018; Ghosh et al. 2020),
AwA (Lampert, Nickisch, and Harmeling 2014), CUB (Wah
et al. 2011), Imagenet (Deng et al. 2009). Our work only re-
lies on text label embeddings and visual features, therefore
we compare with two recent works TF-VAEGAN (Narayan
et al. 2020) and CE-GZSL (Han et al. 2021). Note that these
works do not have any information about unseen test classes
during training, which might or might not be part of external
knowledge but are not explicitly added to the open vocab-
ulary. These methods use semantic features, which we re-
place with GloVe (Pennington, Socher, and Manning 2014)

and BERT (Devlin et al. 2019) text embeddings. We show
results for MIT-States (Isola, Lim, and Adelson 2015) as we
observe similar pattern for other datasets as well. All the
values are bias calibrated, to balance seen and unseen ac-
curacy, for Top-1 predictions. Our proposed method outper-
forms common baselines in ZSL as well, with a significant
margin. More details on why GloVe (Pennington, Socher,
and Manning 2014) embeddings perform the best are ex-
plained in the next section.

Ablation Studies
We experimentally motivate the design choices as well as
novelty aspect of our approach. All the experiments in this
section are shown for MIT-States (Isola, Lim, and Adelson
2015) dataset. One of the most challenging set in OV-CZSL
is A∗O∗, hence a lot of design choices are based mainly
upon improving performance for this unseen split. We dis-
cuss more hyperparameters in suppl.
Neighborhood Expansion Loss. As the main contribution
of this work is OV-CZSL and Neighborhood Expansion
Loss, we explore if this loss can be used as plug-and-play
for other baselines. In Table 5, third row for each model,
shows the change caused by using NEL with respect to orig-
inally without NEL. red denotes negative change in value,
green denotes the positive change and ‘-’ represents no or
change is less than ±0.2. All methods with NEL improve
significantly for A∗O∗ split, whereas OADis (Saini, Pham,
and Shrivastava 2022) improves for all splits. This is be-
cause NEL is applied for not just pair embedding space, but
also for attribute and object spaces, which are not present
for CompCos (Mancini et al. 2022) and LE (Nagarajan and
Grauman 2018). Although, as mentioned earlier, CLIP (Rad-
ford et al. 2021) makes the setup not-ZSL, we still acknowl-
edge the presence of such larger models and show the im-
portance of NEL loss. The loss can be applied along with
CLIP (Radford et al. 2021) loss function, and slightly im-
prove generalization for the unseen compositions. Despite
NEL being a small modification and the CLIP loss has more
stronger impact, we show the potential to harness bigger
models to generalize beyond seen classes. We expect similar
boost for other Vision+Language models such as BLIP (Li
et al. 2022) along with NEL, while showing results with
CLIP (Radford et al. 2021) as a representative sample.
Textual Features. Textual features are the source of regu-
larization and knowledge transfer, which makes these a cru-
cial design decision. We observe that for zero-shot learning
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Figure 4: To show the impact of NEL, we cluster all attribute and object class labels for MIT-States (Isola, Lim, and Adelson
2015), and evaluate the accuracy for each cluster. These clusters have both seen (ancient, new, young) and unseen (modern,
old) concrete concepts, such that each cluster has one abstract concept (time/age). Our model (OADis+NEL) shows either same
or improved performance for attributes and object clusters, backing our hypothesis of NEL generalizes to unseen concrete
concepts for the similar abstract concepts.

task, GloVe (Pennington, Socher, and Manning 2014) per-
forms better than BERT (Devlin et al. 2019) embeddings.
Since BERT is contextual embeddings, attribute-object em-
beddings from BERT are more helpful than GloVe. We also
compare with other common word embeddings like Fast-
text (Bojanowski et al. 2017) and word2vec (Mikolov et al.
2013) in Table 7. Most word embeddings perform better for
unseen compositions of seen attributes-objects (AO)∗ and
A∗O. We use BERT for all baselines of OV-CZSL since it
outperforms for the most challenging set A∗O∗.
Number of Neighbors. Using too many noisy labels in la-
bel smoothing can affect the performance adversely (Yuan
et al. 2020; Müller, Kornblith, and Hinton 2019). In our
case, more neighbors can act as noisy labels. We experi-
ment to find the ideal number of neighbors, as shown in
Table 6. Among all numbers, our model achieves best per-
formance using 5 neighbors on MIT-States (Isola, Lim, and
Adelson 2015) and C-GQA (Mancini et al. 2022). For VAW-
CZSL (Pham et al. 2021; Saini, Pham, and Shrivastava
2022), we use 10 neighbors for best performance.

How is NEL helping in learning abstract concepts?
Our inspiration for NEL is to learn to generalize similar con-
crete concepts (apple, banana) to all other abstract concepts
(any fruits), such that if 1-2 fruits are seen in the training set,
the model generalizes to other unseen fruits in the test set. To
quantitatively verify this, we cluster all attributes and objects
classes for MIT-states (Isola, Lim, and Adelson 2015), using
k-nearest neighbors, along with a threshold cosine similar-
ity of 0.4 across GLoVe (Pennington, Socher, and Manning
2014) features. We manually check the similarity between
these label clusters and ignore the attributes and objects
across clusters: (1) cluster size is less than 3 and (2) clus-
ters which have classes that are only part of test set, without
having any class in training set. Each cluster has some seen
and unseen concepts. We compare OADis (Saini, Pham, and

Shrivastava 2022) and Our (OADis+NEL) model’s accuracy
for these clusters. Attributes are spread across 11 clusters,
and objects are spit into 26 clusters. As shown in Figure 4,
each cluster is represented with two labels from the cluster
to disclose the abstract concept of the cluster. We observe
that most clusters either show same or improved perfor-
mance while using NET (for our model), across all attributes
and objects. This shows that similar concepts are learnt to-
gether to generalize to unseen abstract concepts. However,
this setup is still limited, such that the model cannot dis-
criminate similar concepts peel from slice and chop,
but can only learn these together closer in the visual+textual
embedding space as styles of cutting.

Conclusion and Discussion
In the era of CLIP (Radford et al. 2021) and DALL-
E (Ramesh et al. 2021), we emphasize that labeled data
is still a bottleneck, which these bigger models dodge
by extensively using all available labeled data. However,
in limited data scenarios, we present a novel task Open
Vocabulary-Compositional Zero-shot Learning (OV-CZSL),
which not only focuses on learning unseen compositions of
seen attributes and objects, but also can generalize to unseen
attributes, unseen objects and their compositions. We pro-
pose new benchmark splits, backed by scientifically stable
methods on existing datasets, MIT-states (Isola, Lim, and
Adelson 2015), C-GQA (Mancini et al. 2022) and VAW-
CZSL (Pham et al. 2021; Saini, Pham, and Shrivastava
2022). Any CZSL model (or even LLM) can be extended
with Neighborhood Expansion Loss, for solving OV-CZSL,
through semantic transfer from pre-trained language embed-
dings. However, open vocabulary compositional learning is
still a challenging problem, with tremendous scope in im-
proving benchmarks (datasets and evaluation). Therefore,
we urge the community to further explore generalized com-
positional learning of attributes and objects.
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