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ABSTRACT

Eavesdropping on private conversations is one of the most common
yet detrimental threats to privacy. A number of recent works have
explored side-channels on smart devices for recording sounds with-
out permission. This paper presents LidarPhone, a novel acoustic
side-channel attack through the lidar sensors equipped in popular
commodity robot vacuum cleaners. The core idea is to repurpose
the lidar to a laser-based microphone that can sense sounds from
subtle vibrations induced on nearby objects. LidarPhone carefully
processes and extracts traces of sound signals from inherently noisy
laser reflections to capture privacy sensitive information (such as
speech emitted by a victim’s computer speaker as the victim is en-
gaged in a teleconferencing meeting; or known music clips from
television shows emitted by a victim’s TV set, potentially leaking
the victim’s political orientation or viewing preferences). We imple-
ment LidarPhone on a Xiaomi Roborock vacuum cleaning robot and
evaluate the feasibility of the attack through comprehensive real-
world experiments. We use the prototype to collect both spoken
digits and music played by a computer speaker and a TV soundbar,
of more than 30k utterances totaling over 19 hours of recorded
audio. LidarPhone achieves approximately 91% and 90% average
accuracies of digit and music classifications, respectively.

CCS CONCEPTS

· Computer systems organization → Sensors and actuators;
· Security and privacy → Embedded systems security.
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Figure 1: Figure depicts the LidarPhone attack, where the ad-

versary remotely exploits the lidar sensor equipped on a vic-

tim’s robot vacuum cleaner to capture parts of privacy sensi-

tive conversation (e.g., credit card, bank account, and/or so-

cial security numbers) emitted through a computer speaker

as the victim engages in a teleconference meeting.

1 INTRODUCTION

The proliferation of smart sensing devices in our homes opens up
many opportunities for acoustic side-channel attacks on private
conversations. Recently a number of academic papers reveal loop-
holes in smartphone sensors that potentially allow conversations
to be recorded without permission [2, 21, 40, 54, 80]. Voice acti-
vated devices, smart speakers, and smart security cameras are often
considered as sources of potential privacy threats. While devices
with sound recording interfaces are the usual suspects, this paper
launches a novel acoustic side-channel attack from a seemingly
innocuous household device ś a vacuum cleaning robot. Many of
these indoor robots are equipped with lidars ś a laser-based sen-
sor for navigation [55, 77]. We develop a system to repurpose the
lidar sensor to sense acoustic signals in the environment, remotely
harvest the data from cloud, and process the raw signal to extract
information. We call this eavesdropping system LidarPhone.

Sounds are essentially pressure waves that propagate through
the vibrations of the medium. Hence, sound energy in the environ-
ment is partially induced on nearby objects creating subtle physical
vibrations within those solid media. The fundamental concept of
LidarPhone lies in sensing such induced vibrations in household
objects using the vacuum robot’s lidar sensor and then processing
the recorded vibration signal to recover traces of sounds. This sens-
ing method is inspired by the principles of laser microphones that

https://doi.org/10.1145/3384419.3430781
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use reflected laser beams to sense sounds from vibrating objects.
Although laser mics require sophisticated setups, the rotating lidar
sensors are equipped with at least a laser transmitter and reflection
sensor. This enables the key possibility to transform a lidar to a mi-
crophone. Figure 1 illustrates a potential attack scenario, where the
adversary launches a remote software attack on the vacuum cleaner
(as often witnessed in recent security breaches [19, 22, 47, 49]) to
obtain lidar sensor readings. Of course, a practical implementation
of this idea requires overcoming several challenges.

One of the main challenges in using a lidar as a laser mic is the
extremely low signal-to-noise ratio (SNR) of the reflected signals.
This is in part due to LidarPhone’s reliance on different physical
principles than laser mics, despite their apparent high-level similar-
ities. Laser mics target highly reflective materials (i.e., producing
specular reflections) such as glass windows, which when vibrating
cause significant changes to the return path and/or focus of the
reflected laser, leading to high SNR. By contrast, a lidar’s hardware
amplifiers and analog-to-digital converter (ADC) are tuned to be
sensitive only to low intensity signals as they are mostly reflecting
off of rough surfaces such as trashcans thereby producing diffuse
reflections. Hence, even if the lidar receives high intensity signals
from a glass window, it would saturate its receiver and provide no
useful information. Furthermore, the lidar has a fixed receiver at
an adjacent position to its transmitter, making it difficult to receive
specular reflections, as they are only reflected off of the glass at
one particular angle. This is why a laser mic requires the adversary
to manually align its receiver’s position accordingly.

Furthermore, the sound signals are attenuated as the objects are
not in contact with the speaker (i.e., mechanically decoupled). Also,
the minutely vibrating objects attenuate some frequency compo-
nents of the signal while adding additional noise. To overcome this
challenge of low SNR, we utilize different signal processing tech-
niques including filtering of the frequency components that contain
noise. To further reduce the effect of noise, we perform noise reduc-

tion by subtracting the dynamically profiled noise using spectral
subtraction [5]. Moreover, we equalize the signal by increasing the
gain of (i.e., łboostingž) the lower frequency components, as high
frequency components of the signals are attenuated by the objects.

The other major challenge in designing LidarPhone attack is
due to the lidar’s low sampling rate. Given its rotating motion, the
sampling rate for a single point on a target object is equivalent to
the lidar’s rotation frequency. We further increase the sampling rate
by considering an attack when the lidar is put to halt to rotation

frequency (often 5 Hz) × samples per rotation (typically 360), which
increases the sampling rate from 5 Hz to 1.8 kHz for the case of a
Xiaomi Roborock vacuum cleaner lidar. Despite the large improve-
ment, 1.8 kHz is still significantly below the minimum frequency
of 5 kHz for obtaining an intelligible speech signal [51]. Hence,
we utilize supervised learning techniques by extracting relevant
features to classify a list of digits, perform speaker and gender iden-
tification, and infer known sound clips played during TV shows. We
leverage deep learning techniques through our use of convolutional
neural networks. The seemingly innocuous information extracted
by our model may leak privacy sensitive information including
credit card, bank account, and/or social security numbers, as well
as the victim’s political orientation from news introduction music.

The vibration sensing mechanism and sound inference tech-
niques are core to LidarPhone. Additionally, we build on existing
reverse engineering building blocks to demonstrate a proof-of-
concept remote system hijack that allows attackers to control the
robot and capture sensor data. We implement a prototype of Lidar-
Phone on a Xiaomi Roborock vacuum cleaning robot and evaluate
the feasibility of the attack through comprehensive real-world ex-
periments. We collect digit utterances and music excerpts played
with a computer speaker and a TV soundbar by pointing the lidar at
several common household objects (including trash cans or paper
bags), collecting 30k utterances totaling over 19 hours of recorded
audio. From our empirical analysis, LidarPhone achieves digit and
music classification accuracies of 91% and 90%, respectively. Overall,
we make the following contributions:

• We introduce a novel remote eavesdropping attack that uti-
lizes lidar sensors on commodity robot vacuum cleaners.

• We present the design and implementation of LidarPhone by
introducing and solving corresponding challenges inherently
surpassing those of existing laser mics.

• We evaluate LidarPhone with real-world experiments using
a commodity robot vacuum cleaner, a computer speaker, and
a TV soundbar to demonstrate its feasibility.

Through this work, we reveal a new direction of side-channel
attacks that exploits active light sensors. While we investigate
lidars on a vacuum cleaner as an example, our findings may easily
be extended to many other active sensors including smartphone
infrared sensors (for face recognition [75]) and motion detector PIR
sensors [6, 32]. We hope that our findings will spur research on
detecting forthcoming attacks and new defense methods.

2 A PRIMER ON LASER-BASED SENSING

We present the relevant background information on lidar sensors
and laser-based microphones.

2.1 Lidar Sensor

A Light Detection and Ranging (lidar) sensor is designed to scan
the surrounding scene by utilizing laser-based ranging techniques
to create a distance map. Specifically, the lidar steers an infrared
laser beam toward a target and measures the time-delay of the
reflected beam to estimate the time-of-flight (Δ𝑡 ) of the signal. With
the known speed of the laser signal (𝐶), the distance to the target

object (𝑑) is measured through a simple calculation (𝑑 =
𝐶×Δ𝑡

2 ) [78].
In practice, however, the physical method to measure distance
varies depending on the accuracy, resolution, range of operation,
and complexity of the electro-mechanical lidar sensor. Low-cost
sensors (e.g., in robot vacuum cleaners) adopt a geometric approach
that estimates distances from the angles of the transmitted and
reflected beams [29] as illustrated in Figure 2.

The recent popularity of lidar sensors is due to their iconic pres-
ence in autonomous vehicles [14]. More recently, lidars are also
frequently used in many commodity vacuum cleaning robots [11ś
13, 34, 44ś46, 53]. They utilize lidar sensors for navigation and
mapping purposes as they clean houses. The pervasiveness of such
lidar sensors opens up avenues for scalable attack opportunities for
adversaries, that we demonstrate through LidarPhone.
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Figure 2: Operating principles of an inexpensive lidar: light

reflected from a surface is focused through a lens, non-

infrared frequencies are removed, the laser signal is cap-

tured by an imaging sensor, then amplified and quantized

to create the final signal.
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Figure 3: Differences between focused specular reflections

relied upon by a laser mic (left) versus lower SNR diffuse

reflections received by LidarPhone (right).

2.2 Laser Microphones and Their Limitations

The coherent signal source of lasers and their small wavelength (a
few hundred nanometers) enable fine-grained distance measure-
ment, which can be utilized to measure subtle motions or vibrations.
This property of lasers led to a technique for long-range audio eaves-
dropping, namely the laser microphone [41]. Sound travels through
a medium as a mechanical wave and induces minute physical vibra-
tions in nearby objects. The key function of a laser mic, often used
a spying tool, is to shine a laser beam on an object placed close to
the sound source and measure this induced vibration to recover the
source audio. A laser mic pointed at a glass window of a closed room
can reveal conversations from inside the room from over 500 meters
away [57]. To achieve high intensity reflections, laser mics require
the adversary to manually align the transmitter and the receiver to
obtain specular reflections of light from highly-reflective surfaces
(e.g., glass). Unlike in diffuse reflections, almost all incoming light
energy is returned at a specific angle (i.e., angle of incidence) as
depicted in Figure 3. Hence, the intensity amplitude of specular
reflections is significantly higher than that of diffuse reflections.

However, the inexpensive lidar sensors equipped by the robot
vacuum cleaners are manufactured to operate only on diffuse

reflections [30, 31]. This is appropriate for navigation in an envi-
ronment where most reflecting surfaces are not smooth, and the
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(c) Lidar on Trashcan

200 400 600 800

Time (ms)

0

0.2

0.4

0.6

0.8

F
re

q
u

e
n

c
y
 (

k
H

z
)

-70

-60

-50

-40

-30
(d) Lidar on IKEA bag
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Figure 4: Figure depicts the utterance ("nine") captured by:

(a) original audio (b) microphone recording at 3 m (c) pro-

cessed lidar recordings from reflections off of a trashcan and

(d) an IKEA bag. The figures illustrate the feasibility of cap-

turing speech signals with a lidar. The corresponding audio

files are available at bit.ly/lidarphone-sensys.

sensor must function with a fraction of the returned light intensity
of a specular reflection. This phenomenon poses a significant chal-
lenge to LidarPhone’s design as the diffuse reflections significantly
limit the available signal-to-noise-ratio (SNR) for high resolution
vibration detection as depicted in Figure 3. Since the hardware
amplifiers and ADC are optimized only for low amplitude diffuse
reflections, our preliminary experiments show that even if the lidar
sensor opportunistically finds a position (near a glass window or a
mirror) to receive a high intensity specular reflection, the received
signals are saturated and clipped. To successfully sense sounds
using lidar sensors, LidarPhone must operate with low-intensity
signals, and recover signals that are close to the noise floor.

3 FEASIBILITY STUDY

We present a preliminary study demonstrating LidarPhone’s feasi-
bility by playing an utterance of the digit łninež through a computer
speaker and recording it with a laptop microphone and a lidar. The
lidar records the sound by capturing the laser reflections off of two
objects positioned near the speaker ś a trashcan covered with a
translucent plastic trash bag, and a polypropylene IKEA plastic bag.

Figure 4 illustrates the spectrogram of the four signals, namely
(a) original, (b) laptop microphone, (c) lidar recordings reflected
off of the trashcan, and (d) the IKEA bag. The spectrograms depict
the corresponding frequency (𝑘𝐻𝑧) with varying time (𝑚𝑠). The
sampling rates of both the (a) original and (b) laptop microphone
are 8kHz, while the two processed lidar recordings from both the
(c) trashcan and (d) IKEA bag are 1.8kHz. We plot them until 0.9kHz
for all four plots for consistency. From this study, we observe that
the lidar is able to capture the speech signal, but with significantly
reduced SNR. We also observe additional challenges of LidarPhoneś
that the lidar primarily captures only lower frequency components
up to around 0.6kHz. This may be because the vibrating objects
attenuate high frequency components as well as adding additional
noise. Furthermore, we also observe that the SNR depends on the
object’s material. The IKEA bag is sturdier than the trashcan’s
plastic covering, and is therefore more difficult to deform due to
incident acoustic energy; the spectrogram depicts the significant
attenuation of the signal.

https://bit.ly/lidarphone-sensys
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4 THREAT MODEL

We present LidarPhone’s threat model, namely the attacker’s goal
and capabilities, and further outline its assumptions.
Goal and Capabilities. The goal of the attacker is to launch a
stealthy remote eavesdropping attack by utilizing the lidar readings
from the victim’s robot vacuum cleaner. The lidar captures sound
signals by obtaining its reflections off of objects that minutely
vibrate due to nearby sound sources (e.g., victim’s computer speaker
or TV soundbar). To achieve this goal, the attacker may launch two
types of attacks, namely Speech-based and Sound-based Attacks.
The attacker has capabilities to remotely exploit vulnerabilities in
robot cleaners, often witnessed in recent real-world attacks [10,
26, 38, 70], to (1) stop the lidar spinning to capture reflections off
of a single point of the object; and (2) obtain the corresponding
raw lidar intensity values. Furthermore, the attacker has additional
capabilities for each attack.

When launching a Speech-based Attack, the attacker targets po-
tentially privacy-sensitive information from speech emitted by the
computer speakers as the victim engages in a teleconferencing.
There are three types of Speech-based Attacks: (1) Digit Inference,
that predicts the spoken digit (out of a list of potential digits) to
leak sensitive information including credit card, social security,
and bank account numbers; (2) Gender Inference, that determines
whether the speaker is a male or a female; and (3) Speaker Inference,
that determines the identity of the speakers (out of a list of potential
speakers). Digit Inference is a targeted attack, where the attacker
targets a specific victim. Hence, the attacker has the capabilities
to train on the targeted victim’s recordings before launching this
attack. For example, the victims may be high value targets such as
political figures or celebrities, enabling the attacker to easily obtain
labeled training data from publicly available recordings.

Second, when launching a Sound-based Attack, the attacker tar-
gets the introductory music of news programs emitted by the vic-
tim’s TV soundbar, as different news channels exhibit certain polit-
ical biases [3]. Hence, inferring the news channel that the victim
watches on a regular basis may likely reveal his/her political orien-
tation [73], often valued as privacy sensitive information [23].
Assumptions.We make the following assumptions when design-
ing LidarPhone. First, we assume that the victim has a robot vacuum
cleaner that is equipped with a lidar in his/her home or office. Sec-
ond, we also assume that the victim has a commodity computer
speaker and/or a TV soundbar along with everyday objects (e.g.,
trashcan or takeaway bag) positioned relatively near (i.e., within a
few meters of) the victim’s desk or TV stand. We discuss how the
attacker identifies and targets these objects in Section 7.2.

5 ATTACK DESIGN AND IMPLEMENTATION

We present the details of LidarPhone’s design and implementation.

5.1 Design Overview

We present the modules that constitute the design of the two types
of LidarPhone attack in Figure 5, namely the Speech- and Sound-

based Attacks. The Speech-based Attack is divided into two phases,
namely the Bootstrapping and Prediction Phases. In the Bootstrap-
ping Phase, the attacker collects multiple acoustic signals captured
by the lidar as training data. All of these data are first input to its
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Figure 5: Figure depicts the design overview of LidarPhone.

The captured audio signal is pre-processed in stages, and

used to train models for digit, speaker or gender inference.
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Figure 6: The effect of pre-processing stages on a Lidar-

Phone-recorded utterance ("2"). The low SNR raw signal (a)

has some information restored through outlier removal and

interpolation to produce (b), which has equalization and

noise removal applied to produce (c).

Pre-processing module to increase the signal-to-noise ratio (SNR).
Subsequently, the pre-processed signals are input to the Training
module along with their corresponding ground truth labels. In the
Attack Phase, the attacker takes as input the lidar signal captured
from the victim’s home and applies the same pre-processing tech-
niques before it is input to its Prediction module, along with the
trained model from the Bootstrapping Phase. Ultimately, the Predic-
tion module outputs the predicted speech such as spoken digits of
credit card, bank account, and/or social security numbers, which
was originally emitted from the victim’s speakers.

Furthermore, the Sound-based Attack enables the attacker to infer
the TV news channel that the victim watches by pattern matching
the introductionmusic recorded by the lidar across a list of introduc-
tion music clips from popular news channels. The attacker initiates
this attack by also applying the aforementioned pre-processing
pipeline, which subsequently gets input to the Correlation module.
In this module, the attacker correlates the input signal across the
potential list of music clips and outputs the most likely one.

5.2 Speech-based Attack

We describe the modules that constitute Speech-based Attack,
namely Pre-processing, Training and Prediction modules.
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5.2.1 Pre-processing. This module takes as input the signal cap-
tured by the lidar sensor and performs a series of pre-processing
techniques prior to being input to the subsequent module. The
pre-processing step is crucial to the success of the LidarPhone at-
tack mainly due to inherently low SNR in the lidar signal. This
is attributed to the following reasons. First, the object (such as a
trashcan or a takeaway bag) is not in contact with the speaker
(i.e., mechanically decoupled), attenuating a large portion of the
signal. Second, the minutely vibrating object also attenuates parts
of the signal, while adding noise. In general, many objects tend
to further attenuate high frequency components. Third, capturing
such vibration with the lidar sensor at a certain distance away also
contributes to additional source of attenuation and noise. Hence,
we apply the following series of techniques to ultimately increase
the SNR of our input signal.
Correcting DCOffset. The received signal may exhibit a DC offset

due to minute differences in the receiver sensitivity of lidar sensors.
In addition, different objects may reflect the laser signal back to the
lidar with different intensities (e.g., glossy plastic vs. wood). Given
that the DC offset is the mean amplitude of the signal offset from
zero, it may contribute to clipping of the higher amplitude portions,
reduced volume, and/or distortion of the sound signals. Hence, we
level the DC offset by subtracting the mean of the signal from the
original signal.
Outlier Removal and Interpolation. A non-negligible propor-
tion of laser signals that the lidar receives are marked by the lidar
as invalid (i.e., outliers). This is because some reflected laser signals
may be lost as the incident beam reflects off glossy portions of ob-
jects, while others are corrupted upon transmission from the lidar
due to hardware limitations. We observe that these outliers consti-
tute more than 25% loss of data (at least 1 in every 4 points), further
reducing the sampling rate from the original 1.8 kHz (see Section 1).
Figure 6(a) depicts this phenomenon as an intense noise band cen-
tered at 25% of our sampling rate (465 Hz), muffling the actual
utterance by comparison. In order to overcome this problem, we
remove such outliers and restore some information by utilizing cu-

bic spline interpolation, restoring the signal to the original sampling
rate of 1.8 kHz. We specifically use cubic interpolation to accurately
model the signal while avoiding Runge’s phenomenon [56] where
higher order interpolations lead to unwanted oscillations contribut-
ing to additional noise. These steps remove the noise band and
greatly improve the SNR of the signal, as seen in Figure 6(b).

Pre-processed 
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Figure 8: LidarPhone CNNarchitecture, consisting of: one in-

put layer (downscaled spectrogram), four convolutional lay-

ers, two dense layers with dropout, and an output layer.

Peak Normalization. Upon interpolation, we perform a peak nor-
malization by dividing the value at each point by the maximum
signal peak-to-peak value, scaling signal amplitudes to the range
[−1, 1]. This is mainly to control for varying parameters including
different sound pressure levels of speech emitted from the speakers,
and the distance from the lidar to the target object.
High-pass Filter.We apply a 5th order high-pass Butterworth filter
to the normalized signal, with a cutoff frequency at 0.5 Hz to filter
out low frequency components. This is applied because objects are
more affected by low frequency signals (e.g., environmental noise
like air-conditioning), contributing in large part to the high noise
we observe. In addition, this filter also levels, or detrends, the gradual
decrease of the lidar signal over time. Such decrease is because the
objects are minutely pushed in one direction as the sound signal
łdeformsž the object, especially if the objects are constituted of thin
and light objects (e.g., plastic or paper).
Noise Removal.We further denoise the filtered signal, applying
spectral subtraction as the following operation: 𝑌 (𝜔) = 𝑋 (𝜔) −

𝑁 (𝜔), where 𝑋 (𝜔) and 𝑁 (𝜔) are the frequency domain spectra of
the input signal and its noise component, respectively. Upon the
subtraction, we obtain 𝑌 (𝜔), namely the resulting signal with noise
removed.We estimate𝑁 (𝜔) by searching in the signal for a segment
with the lowest overall energy (i.e., ambient noise). The attacker
cannot obtain 𝑁 (𝜔) definitively due to the attack’s opportunistic
nature, and the problem is exacerbated by the noise profile changing
over time as the target object deforms. To perform this estimation,
we segment𝑋 (𝜔) into windows of 1024 samples each, and set𝑁 (𝜔)

as the lowest energy window within the previous 30 windows.
The effect of noise removal is seen in Figure 6(c) as a reduction
in intensity of the noise surrounding the sharp yellow frequency
bands of the actual utterance.
Equalization. Figure 7 depicts our equalization procedure, where
we increase the gain of, or łboostž, the lower frequency components
of the signal. Objects generally attenuate high-frequency compo-
nents, concentrating most of the useful information in the reflected
signal within the lower frequency components.

Hence, we implement our equalizer based on empirical obser-
vations of the average frequency response across different objects
(see Section 6.4.1) as we play a known łchirpž signal (i.e., a sig-
nal increasing linearly in frequency from 10 Hz to 1 kHz over ten
seconds) near them. Our equalizer consists of a filterbank of 37
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bandpass filters (5th order Butterworth), which are derived from
partitioning the frequency spectrum from 0 Hz to 925 Hz (the ap-
proximate Nyquist frequency of our signals) into bins of size 25 Hz
each. Each filter has an associated gain factor that is derived ahead
of time from our average frequency response across the chosen
objects. For example, if most objects reflect a signal with a higher
magnitude component in the 50 ś 75 Hz band compared to 75 ś
100 Hz, the gain factor for the 50 ś 75 Hz filter would be set higher
than the 75 ś 100 Hz filter to amplify the existing information.

To apply the equalizer, the input signal is partitioned into com-
ponents by the filterbank. Each component has its gain increased
by a certain factor, and we sum the resulting signals. The effect
of the equalization stages is depicted in Figure 7, where the input
time-series signal has its lower frequencies amplified after passing
through the equalizer. The output of this stage is used as input for
the training and prediction phases of the Speech-based Attack, and
the correlation stage of the Sound-based Attack.

5.2.2 Training and Prediction. The Training module takes as in-
put pre-processed lidar signals across multiple training data to
ultimately train a classification model to be utilized in the sub-
sequent Prediction module during the Attack Phase. Furthermore,
the attacker would input the corresponding ground truth labels
based on specific type of Speech-based Attack they are planning to
launch, namely Digit, Speaker, or Gender Inferences. For example,
when training the model for the Digit Inference, the labels would
correspond to digits such as łzerož, łonež, ..., łtenž.

We implement LidarPhone’s classification modules (i.e., Training
and Predictionmodules) with a convolutional neural network (CNN)
using the Keras [8] and TensorFlow [1] machine learning frame-
works, with the CNN architecture shown in Figure 8. We design
our architecture such that the input to the CNN is a 200 × 200 spec-
trogram of our pre-processed signals, where the spectrograms are
generated by computing the Short-time Fourier Transform (STFT)
of the input signals. Specifically, we leverage the spectrograms
as input because transforming the signal to this combined time
and frequency domain representation allows for consistently better
classification accuracies over a raw time-domain signal. CNNs in
particular have been shown to learn more discriminative features
from frequency domain representations due to their ability to learn
complex features, while preventing overfitting through the use
of max-pooling and dropout layers [24]. These advantages consis-
tently allow CNNs to outperform traditional classifiers such as SVM
that use hand-crafted features such as Mel-frequency cepstral coef-
ficients (MFCCs) [16, 50], and unsurprisingly, many state-of-the-art
audio classification systems use similar approaches [27, 28, 71].

After our input layer, our architecture consists of: two convolu-
tional layers with ReLU activations andmax-pooling layers between
them, two fully connected dense layers with ReLU activations and
a dropout rate of 0.5 each, and a softmaxed output layer to create a
probability distribution of the predicted classes. Our architecture
is inspired in part by the well-known AlexNet [33] architecture
for image recognition, with the aforementioned modifications to
tailor it for our spectrogram input and audio classification task. The
spectrogram is generated for each signal in Python using librosa

to generate the STFT with 1025 frequency bins and 128 samples
per STFT column since this enabled optimal model performance.

The spectrograms are then downscaled for two reasons: a CNN
can be trained significantly faster with a smaller image size, and
larger input vector sizes may lead to the model learning excessively
complex features. The latter is problematic due to our relatively
small dataset, which may lead to overfitting and poor accuracy on
the test set if the model learns features which are too complex and
over-specialized to the training set [79]. This module concludes
LidarPhone’s Bootstrapping Phase allowing the attacker to acquire
the classification model to be used in the Attack Phase.

During the Attack Phase, the attacker utilizes the remotely ob-
tained lidar signal to ultimately infer privacy sensitive speech in-
formation. The Prediction module takes as input the pre-processed
signal, along with the trained classification model, and performs
the CNN classification to output the predicted information from
speech such as spoken digits for Digit Inference.

5.3 Sound-based Attack

We now describe the corresponding modules that constitute the
Sound-based Attack, namely the Correlation module.

5.3.1 Correlation. When launching the Sound-based Attack, the
attacker uses a captured lidar recording from the victim’s robot
vacuum cleaner of a small music segment (~10 - 20 seconds) to
ultimately infer the news introduction music played through the
victim’s TV soundbar. The attacker first pre-processes the signal uti-
lizing the aforementioned techniques to increase the SNR, and sub-
sequently inputs the signal to the Correlation module. The attacker
performs a cross-correlation of the captured and pre-processed
signal (𝑥 [𝑛]) against a previously-prepared pool of original 𝑘 music
signals, i.e., 𝑂 = {𝑜1 [𝑛], 𝑜2 [𝑛], · · · , 𝑜𝑘 [𝑛]} from shows on popular
news channels. | |𝑥 | | and | |𝑜𝑖 | | represent the total number of samples
in 𝑥 and the original signal, 𝑜𝑖 ∈ 𝑂 , respectively, where | |𝑥 | | ≤ | |𝑜𝑖 | |.

The cross correlation łslidesž 𝑥 over each original signal in
the pool, 𝑜𝑖 . At an offset of 𝑡 samples, 𝑥𝐶𝑜𝑟𝑟 (𝑡) of the captured
signal 𝑥 and an original sample 𝑜𝑖 is defined as 𝑥𝐶𝑜𝑟𝑟 (𝑥, 𝑜𝑖 , 𝑡) =

∑ | |𝑜𝑖 | |

𝑙=0
𝑜𝑖 [𝑙]𝑥 [𝑙 − 𝑡 + 𝑁 ], where 𝑁 = max( | |𝑥 | |, | |𝑜𝑖 | |). This sliding

approach is necessary since the captured signal can be significantly
shorter than the original samples, and the signal could be at any
offset within any 𝑜𝑖 . This is why a cross-correlation is more effec-
tive than the CNN classification technique used in the Speech-based
Attack. We determine the highest correlation score for 𝑜𝑖 as 𝑠𝑐𝑜𝑟𝑒𝑜𝑖 ,
or the highest score of all the 𝑥𝐶𝑜𝑟𝑟 (𝑥, 𝑜𝑖 , 𝑡) scores across the slid-
ing windows. Subsequently, we compare the scores across all 𝑘
music signals to determine predicted music, 𝑜𝑝𝑟𝑒𝑑 , to be the one
with the maximum 𝑠𝑐𝑜𝑟𝑒𝑜𝑖 as 𝑜𝑝𝑟𝑒𝑑 = argmax𝑜𝑖 (𝑠𝑐𝑜𝑟𝑒𝑜𝑖 ).

6 EVALUATION

We now evaluate LidarPhone to demonstrate its feasibility.

6.1 Prototype and Experimental Setup

Apparatus. We develop the LidarPhone prototype on a Xiaomi
Roborock S5 [61] ś a popular robot vacuum cleaner that is repre-
sentative of other robot vacuum cleaners on the market that use
lidars for mapping purposes [11ś13, 34, 44ś46, 53]. We reverse en-
gineer the ARM Cortex-M based firmware of the robot based on
a prior attack [19], and gain root access of the system using the
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Figure 9: Figure depicts our experimental setup for the Speech-based Attack (top left), and Sound-based Attack (bottom left).

We vary multiple parameters to comprehensively investigate the behavior of LidarPhone.

Dustcloud software stack [20]. The robot is typically connected to
the Xiaomi cloud ecosystem for its standard operations and data ex-
change. We override this interface with the Valetudo software stack
on the rooted device and control the robot over a local network [4].

We design hardware spoofing circuitry to mislead the lidar unit
into activating its laser despite not rotating. While a LidarPhone
attack does not require any hardware modifications, as a proof-of-
concept implementation, we implement this step for convenience to
avoid changing the lidar’s firmware. This gives us access to the raw
lidar sensor streams while the robot and the lidar are stationary, and
allows us to decode the binary data packets on a remote machine.
Hence, we obtain a sampling rate of 1.8 𝑘𝐻𝑧 from 360 samples

per rotation × 5 Hz rotation frequency (see Section 1). However,
to preserve the robot’s ability to navigate using the lidar, we do
not interfere with the onboard data processing flow. Rather, we
duplicate the lidar data stream on the robot and send it over the
wireless network to a laptop using netcat [52] for LidarPhone’s
acoustic processing. The robot then transmits an analog lidar light
intensity signal that we process separately offline.

Figure 9 depicts the experimental setups and our evaluation
procedure on two realistic home scenarios. For the Speech-based
Attack we simulate a desktop setup resembling a typical work-
from-home (WFH) scenario using a popular desktop speaker set
(Logitech Z623 [36]), where the speakers are placed on a desk and
the subwoofer is placed on the ground [18]. To simulate a living
room or home theater scenario for the Sound-based Attack, we use
a common TV soundbar (LG SL5Y [35]). We conduct both experi-
ments in an air-conditioned room to simulate the noise generated
by climate control systems in a typical home office or home theater.

Data Collection. We use a portion of the Free Spoken Digit
Dataset [25] for Digit Inference, consisting of 20 utterances per digit
(i.e., 0 to 9). For Gender Inference and Speaker Inference, we use the
TIDIGITS dataset [15], containing speech signals from ten partici-
pants (five males and females, respectively), with two utterances
per digit per participant for digits łzerož to łninež. Finally, for our
Sound-based Attack, we construct a dataset of introductory music
sequences for ten popular news channels in the U.S. across the
conservative-liberal political spectrum [48]. The music sequences
are retrieved from YouTube, and consist of five conservative-
leaning segments which are coded as FOX [69], FRT [64], FST [68],
HAN [65], and SSR [67], and five liberal-leaning segments coded
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Figure 10: Overall performance of Speech-based Attack for

different inference tasks.

as CNN [43], MER [66], MSN [63], NPR [42] and PBS [62]. In each
case, sound is played through the speaker/soundbar near a common
household object (see Figure 15 for a full list of ten objects) to collect
more than 30k utterances totaling over 19 hours of recorded audio.

6.2 Overall Performance

We define a true positive as a captured digit or music segment that
is classified correctly by its corresponding classifier, whereas a false
negative is a captured segment that is classified as anything other
than its correct class. We present the overall performance in terms
of accuracy, precision (the ratio of true positives to all positive
predictions), and recall (the ratio of true positives to true positives
and false negatives) for both Speech- and Sound-based Attacks.

6.2.1 Speech-based Attack. Figure 10 summarizes the overall per-
formance of the Speech-based Attack for different inference tasks.
We use a representative and realistic test configuration, where Li-
darPhone targets a trashcan (translucent trash bag) that is 20 cm
from a speaker emitting 70 dB speech.

True gender
Male Female

Predicted gender
Male 96% 4%
Female 4% 96%

Table 1: Confusion matrix for gender inference.

(i) Digit Inference: Figures 10 and 11(a) depict the classification
accuracy for ten (0-9) spoken digits for the single speaker case.
We achieve a classification accuracy of 91% on average across all
digits. This result is significantly higher than a random guess of
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Figure 11: Confusion matrices for (a) digit classification ac-

curacy and (b) speaker classification accuracy, with 20 utter-

ances per class. The LidarPhone-processed digit audio and

spectrogram files (from "0" to "9") are available for compari-

son at bit.ly/lidarphone-sensys.

10%. The accuracy is primarily impacted by mispredictions of utter-
ances ‘three’ and ‘four’. Specifically, ‘four’ is mispredicted as ‘five’
relatively frequently, and further inspection reveals that these two
utterances appear almost identical in the spectrogram represen-
tations of our recordings. While the original audio spectrograms
show distinct features for each digit, the low SNR signals we collect,
combined with aliasing effects due to our low sampling rate of
1.8 kHz, reduce their distinguishability in the LidarPhone recording.
Therefore, the model learns slightly less representative features
specific to these digits, and does not classify them as accurately as
others.

(ii) Gender Inference: We perform gender classification on
eavesdropped audio samples to predict the gender of a given
speaker, after training on the entire set of male and female speakers.
Figure 10 and Table 1 shows a mean accuracy of 96% for this task.
We previously hypothesized that male speakers would be classified
with higher accuracy than female speakers since higher fundamen-
tal voice frequencies, which are more common in females, are likely
to fall outside of the frequency band of the recovered sound, leading
to higher error. However, the model performs identically on male
and female cases with 96% classification accuracy. This indicates
that our model still manages to capture distinguishing features
from high-frequency components that have a relatively low SNR.

(iii) Speaker Inference: We present the performance of Lidar-
Phone in identifying the current speaker from a set of 10 speakers
in Figures 10 and 11(b), where average classification accuracy on
this task is 67.5%. We noted that passing only commonly used Mel-
frequency spectral coefficient (MFCC) features to our model instead
of the raw spectrogram allowed for better performance on this task.
Since the MFCCs represent a reduction in the available information
for the model over the raw spectrogram, we expect that our limited
dataset leads to overfitting if the raw spectrogram is used in this
specific case. This results in an inability to generalize to new test
cases, and therefore worse accuracy. The use of MFCC features
improves our accuracy, and we additionally observe that males and
females perform comparably, with 64% accuracy and 71% accuracy
respectively. This trend matches our observations from our gender
classification task.
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Figure 13: System accuracy with different configurations of

our pre-processing pipeline.

6.2.2 Sound-based Attack. We evaluate our accuracy at classifying
an unknown LidarPhone sample of news music as belonging to one
of ten possible popular news segments as specified earlier. We use
a similar setup to the speech eavesdropping attack for evaluation,
namely targeting the same trashcan (translucent trash bag) with
70 dB music playing directly adjacent to the object through the
soundbar. The length of the collected test sample is varied from 1
to 90 seconds, and the mean accuracy across all classes is plotted
alongside accuracy for each individual class in Figure 12.We observe
that the system achieves high recognition accuracy (> 90%) with a
20-second sample of music. As the sample length increases, cross-
correlation becomes increasingly robust to noise, since there is a
lower probability of a long test sample erroneously matching a
similar but incorrect signal. This allows the attacker to be flexible;
for example, the robot does not have to wait for a time when it
can be stationary for a whole minute. The visible fluctuations in
accuracy for some classes even as the sample length increases are
due to the test set decreasing in size as we combine the samples
together. Therefore, a single misprediction has a larger effect on
the absolute accuracy value of that class. However, the results are
again significantly greater than a random guess of 10%.

6.3 Performance of System Modules

We evaluate the internal modules of the Digit Inference attack to
compare between alternative designs.

6.3.1 Pre-processing. We evaluate the effect of our pre-processing
pipeline (presented in Section 5.2.1) on accuracy. From Figure 13,
we can see that outlier removal and interpolation are critical for
model accuracy, resulting in an accuracy improvement of 42.5%.
We observe from the spectrograms in Figure 6 that the embedded
utterance audio in the raw signal has a large noise band caused
by outliers. Therefore, removing these outliers and repairing the

https://bit.ly/lidarphone-sensys
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Figure 15: Different household objects/materials used in Li-

darPhone experiments, in decreasing order of accuracy of

digit audio recovery at 70 dB.

missing data points with interpolation has a significant effect. The
remaining stages comprise a smaller but non-negligible improve-
ment in accuracy, ultimately increasing it to 91%.

6.3.2 Classification. We evaluate classifiers besides our deep learn-
ing model, and show in Figure 14 that our CNN-based classifier
significantly outperforms other techniques. Specifically, we evalu-
ate the widely adopted MFCC feature vector with both a traditional
Support Vector Machine (SVM) and 4-layer dense neural network
architecture. As explained in Section 5.2.2, CNNs are more likely
to infer complex but generalizable features from the input spectro-
gram directly, whereas using the MFCC feature vector in either an
SVM or dense network was simply not sufficiently discriminative
for our low SNR digit recognition task.

6.4 Impacts of Experimental Conditions

We comprehensively evaluate the performance under different ex-
perimental setups and environmental conditions.

6.4.1 Varying Target Objects. Household objects are made of mate-
rials having different rigidities and acoustic impedances and there-
fore respond differently to nearby sounds. We test our digit classifi-
cation algorithm on the data collected from ten common objects as
shown in Figure 15. We select these objects because of the likeli-
hood of finding these on the floor within the reach of the robot’s
laser. We separate the objects into opaque and matte (mostly dif-
fusely reflective), opaque and glossy (some specularly reflective
components), translucent (passing some laser energy through the
object), and transparent (passing most of the energy through). We
also evaluate collecting signals directly from the subwoofer’s front
face, which has a metal grill covering a vibrating diaphragm. This
attack could be conducted if there are no objects within range of
the speaker for LidarPhone to target.
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Figure 16: Digit recognition accuracy of all objects at 70 dB

speaker volume.

Figure 16 shows that while the expected accuracy for a ran-
dom guess of the classes is 10%, LidarPhone achieves significantly
higher scores. Even targeting the subwoofer directly, LidarPhone
achieves 69% accuracy. Another interesting observation is that rel-
atively more transparent objects (e.g., cloth or trash-transparent)
exhibit insufficient laser reflection, leading to degraded signal qual-
ity at the sensor and subsequently lower classification accuracy.
We also note that rigidity is an important factor; some objects like
cardboard-glossy are too flexible, whereas subwoofer-matte is too
rigid, affecting the SNR of our received signal due to unpredictable
or limited vibrations, and leading to lower accuracy scores.

6.4.2 Varying Speaker-to-Object Distance and Speaker Volume. We
evaluate our system against changing the distance of the speaker to
the object, while also changing the speaker loudness, and present
the result in Figure 17(a) for the trash-translucent object. We observe
a general trend of decreasing system accuracy if the speaker moves
further away from the target object or the loudness decreases. This
is intuitively expected due to less sound energy incident on the
object’s surface at further distances and lower volumes.

However, we also observe a rather counter-intuitive effect. When
the speaker is close to the target (20 cm), and the speaker’s volume is
set to its maximum loudness of 75 dB, we observe a loss in accuracy
compared to the 70 dB case. Upon closer inspection of the recovered
spectrograms, we observe that at high effective sound pressure lev-
els (i.e., the combined effect of distance and source sound pressure
level), the recovered signal loses a lot of distinguishing information,
and appears as a uniform smear across the frequency domain on the
spectrogram. Since all the utterances appear uniform, the model is
unable to distinguish useful information to perform classification.

We extend this analysis in Figure 17(b). Here, we once again
place the speaker close to the target object at 20 cm, and vary its
volume across a representative sample of the objects, with certain
interesting properties. As before in Figure 17(a), we notice a loss in
accuracy at 75 dB for trash-translucent, which is similar for polyprop.
Interestingly, we notice that for the takeaway bag, the loss in ac-
curacy occurs at 70 dB, and for the poorly-performing subwoofer
object, there is a consistent upwards trend. We believe that this
is due to a material-specific łsaturationž of the target object’s sur-
face once a threshold effective loudness is reached. The effect is
visible across many of our evaluated objects, and the threshold
point also differs across the objects. Note that in Figure 17(a), once
the saturation point is reached at the trashcan’s level of 75 dB at
20 cm, moving the speaker further away or decreasing the source



SenSys ’20, November 16–19, 2020, Virtual Event, Japan S. Sami, Y. Dai, S. Tan, N. Roy, and J. Han

20 60 100

(a) Distance from speaker to object (cm)

0

20

40

60

80

100

A
c
c
u
ra

c
y
 (

%
)

55 dB 60 dB 65 dB 70 dB 75 dB Mean

55 60 65 70 75

(b) Speaker sound pressure level (dB SPL)

0

20

40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

Polyprop Trash-Translucent Takeaway-Glossy Subwoofer Mean

Figure 17: Impact of the source’s loudness on the system per-

formance while varying (a) distance from speaker to object

and (b) target objects.

volume both improve accuracy. We conclude that for laser-based
eavesdropping on different target objects, while louder effective
sound volumes improve audio recovery, there is a clear saturation
point where no more information can be recovered.

6.4.3 Varying Lidar-to-Object Distance. Figure 18 shows the im-
pact of the distance between the lidar sensor and the object. There
appears to be an optimal distance of 150 cm from the lidar to the
target where accuracy is optimized. We explain this as a combina-
tion of two effects. Light sources diverge over longer distances ś i.e.,
if the lidar is further from the object, laser energy is spread onto a
larger area on the object surface, and vice-versa. Secondly, object
surfaces are not monolithic, and exhibit complex effects on their
surface such as resonance and deformation when they vibrate. This
can be attributed to the fact that a lidar closer to the target object
that focuses laser energy on a smaller area observes less motion
of the surface (i.e., lower signal), while also avoiding noise con-
tributed by the non-uniform motion of these surfaces. Therefore,
the lidar distance presents a classic signal-to-noise ratio tradeoff,
with highest SNR at 150 cm.

6.4.4 Varying Background Noise Levels. We assess the impact of
ambient noise levels by playing white noise from the soundbar
near the trash-translucent object while playing speech for the digit
recognition task at 70 dB. Both sound sources are placed equidis-
tant from the target object at 20 cm, and oriented towards the same
point on the object. Figure 19 shows the digit recognition accu-
racy with varying ambient sound levels. Interestingly, the system
performance is mostly unaffected even with loud ambient noise
as equalization and denoising methods applied during the signal
processing steps efficiently eliminate background noise. We only
observe significant drops in accuracy at 75 dB and 77 dB.
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els on digit recognition accuracy.
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Figure 20: Impact of varying ambient lighting conditions on

digit recognition accuracy.

6.4.5 Varying Lighting Conditions. LidarPhone depends on the sub-
tle fluctuations of received laser intensities to recover sounds from
vibration. Ambient lighting conditions can affect the measured in-
tensity of the optical sensing system in our lidar. Figure 20 shows
the performance of the system under different combinations of
natural daylight and compact fluorescent lights (CFL). We are ro-
bust to differing lighting conditions, except the observation of a
small decrease in accuracy in full daylight conditions. The lidar
used in our experiments has a laser that is mostly in the infrared
spectrum, and the receiver has an infrared filter that blocks all other
frequencies of light from reaching the image sensor. Sunlight con-
tains infrared components, which can pollute the received signal,
and therefore decrease accuracy. We likely do not see this drop
in the Daylight + CFL case since we collect orders of magnitude
more training data in this configuration leading to increased model
robustness. We also observe that the CFL-only case achieves the
highest accuracy, indicating that direct exposure to daylight does
present some challenge to LidarPhone’s accuracy.

6.4.6 Varying Subwoofer Usage and Placement. It is a common prac-
tice to place the subwoofer ś the bigger and heavier component of
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Figure 21: Impact of subwoofer placement on digit recogni-

tion accuracy across three cases: (a) Subwoofer placed on the

floor (b) Subwoofer placed on the desk (c) No subwoofer.
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Figure 22: Impact of varying (a) the sampling rate and (b) the

ADC resolution on the digit recognition accuracy.

the speaker set ś on the floor [18]. However, we also evaluate Lidar-
Phone’s performance with various subwoofer placements. Figure 21
compares the average accuracies when the subwoofer is placed on
the floor or desk, and when it is not present. With the subwoofer on
the desk and the system set to the same volume level, we observe
a drop in accuracy. This is expected since the speaker-to-object
distance is increased by roughly the height of the table that the
subwoofer has been placed on. Without the subwoofer, we once
again notice a small drop in accuracy. Since speaker-subwoofer sys-
tems are configured such that the subwoofer is responsible for the
majority of the power of low frequency components, the loss of the
subwoofer leads to significant power loss of those low frequency
components and correspondingly, system accuracy.

6.4.7 Varying of Sampling Rate and ADC Resolution. The sam-
pling rate of our lidar sensor and the quantization resolution of the
in-built analog-to-digital converter (ADC) affect recorded signal
quality. This experiment simulates performing this attack with a
lower-quality or cheaper lidar unit. The native sampling rate for
the lidar in the Xiaomi Roborock S5 is 1860 Hz, with a 16-bit ADC.
Figure 22(a) and 22(b) show the effect of decreasing sampling rate
and ADC resolution respectively on the digit recognition accuracy
for different sound intensities. From Figure 22(a), the classifier’s

Figure 23: Figure depicts an example of a map generated by

a Xiaomi Roborock robot vacuum after a cleaning session.

Patterns in the map reveal the locations of common house-

hold objects and potential LidarPhone attack zones.

performance does not degrade significantly until the sampling rate
is below 500 Hz, where fundamental voice frequencies begin to
be clipped. From Figure 22(b), only an ADC resolution below 11
bits leads to lower accuracy due to increasing quantization noise.
Sensitive equipment like lidars are unlikely to have 11-bit ADCs;
most have either 14-bit or 16-bit ADCs, which shows LidarPhone’s
generalizability to other lidar units. Lastly, the system’s dependency
on the sound pressure levels remains unchanged for these ADC
and sampling rate factors.

7 DISCUSSION

We now discuss the countermeasures, deployment considerations,
and limitations of LidarPhone.

7.1 Countermeasures

7.1.1 Lidar Rotation. One of the potential defenses against Lidar-
Phone’s attack is to further reduce the SNR of the lidar signal. This
may be possible if the robot vacuum cleaner lidars are manufactured
with a hardware interlock, such that its lasers cannot be transmitted
below a certain rotation rate, with no option to override this feature
in software. As presented in Section 1, a rotating lidar reduces the
sampling rate to 5 Hz for a single point on the target object.

7.1.2 Limiting Side-Channel Information. In our implementation,
LidarPhone does not use the distance reading from the lidar, but
instead leverages a łqualityž metric that accompanies each reading.
This is a noisy but high-resolution value directly related to the
intensity of the reflected laser beam [58]. We recommend that lidar
manufacturers reduce the resolution of any user-facing data that
directly corresponds to the intensity of reflected laser light.

7.2 Deployment Considerations

Making the Attack More Generic. Recall that our Digit Inference
(of Speech-based Attack) defined in our Threat Model in Section 4
is a targeted attack, requiring the adversary to collect the victim’s
speech for training purposes prior to launching the attack. However,
we envision a more generic attack, where the adversary may collect
a large amount of speech data from multiple individuals to train a
generic model, enabling attacks on any desired individual.

While we utilize digits as exemplary scenario of capturing pri-
vacy sensitive words (including credit card, bank account, and social
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security numbers), we may extend LidarPhone to capture different
privacy sensitive words. Furthermore, we also envision extending
LidarPhone to discard unseen words by utilizing classification con-
fidence scores, where the attacker may be able to launch a more
automated approach of capturing privacy sensitive words.

Object Search and Targeting. The adversary may utilize the
native mapping features of the robot vacuum cleaner during a recon-
naissance phase before the actual attack to identify probable target
objects. The resulting map exhibits clear patterns as in Figure 23
(e.g., the four legs of a desk), where suitable target objects such as
trashcans can be found in close proximity. Afterwards, the robot
selects an opportune time for the attack phase, where it targets
these locations while seemingly idle.

7.3 Limitations

Recall from Section 6.1 that we prevent the lidar from spinning dur-
ing a LidarPhone attack. While this certainly adds some limitations
to the attack, we find that it may be more plausible to launch a
LidarPhone attack as the robot vacuum cleaner is idle (e.g., docked
in its charging station or under furniture). Given that LidarPhone is
able to launch the attack from a distance away from the object, the
victim would still be vulnerable as long as the robot is in the target
object’s line-of-sight. This approach also renders LidarPhone ro-
bust from the inherent loud noises generated by its vacuum during
cleaning. Additionally, we expect any potential noise caused by in-
dividuals walking near the robot vacuum cleaner to be momentary
and infrequent disruptions to audio recovery.

Furthermore, we find from our evaluation on subwoofer place-
ment in Section 6.4.6 that LidarPhone performs best when the sub-
woofer is present. Market research data [17] indicates that the trend
for possession of home audio systems including subwoofers is in-
creasing, constituting an increasing number of victims vulnerable
to LidarPhone attacks (assuming that they own lidar-equipped robot
vacuum cleaners). However, even without the subwoofer, Lidar-
Phone achieves classification accuracy well above a random guess,
comparable to other novel side-channel attacks [2, 40]. As an op-
portunistic attack, LidarPhone presents a real threat to victims, as
any information gained is beneficial to the attacker.

8 RELATED WORK

We present related work on active vibrometry and passive acoustic
eavesdropping.

8.1 Active Vibrometry

Speech signals, like any other sounds, induce vibration in nearby
objects and create opportunities for sensing and recovering traces
of spoken words by converting this induced vibration to sound. A
family of techniques [41, 59, 60, 72] record this vibration by target-
ing light/LASER beams on the object and measuring the fluctuation
of the reflected signal in phase, frequency (doppler shifts [7]), or
intensity. A number of recent works [37, 39, 74, 76] demonstrate
the measurement of vibration and sound by monitoring changes
in reflected wireless radio signals in diverse scenarios including
occlusions and non-line-of-sight cases. However, techniques that
use LASER vibrometry for acoustic signal recovery are possibly

the closest to LidarPhone. These techniques optimize hardware for
tracking minute variations in received signals to capture vibrations.
In contrast, LidarPhone shows the possibility of exploiting existing

lidar sensors on a commodity product for acoustic eavesdropping.

8.2 Passive Acoustic Eavesdropping

Sensors are ubiquitous in our living environments and a range
of past techniques have explored their signals as acoustic side-
channels. Micro electro-mechanical (MEMS) sensors are used in
mobile devices for motion and orientation sensing. Gyrophone [40]
is among the first to show that acoustic signals could be captured
by MEMS sensors. Later, AccelWord [80] develops techniques to
repurpose accelerometers as low-power voice command detectors.
Spearphone [2] builds on this core concept to uncover a loophole
that bypasses mobile device’s permission protocols and records
sounds from a smartphone’s loudspeaker using its inertial sensors.
PitchIn [21] demonstrates the feasibility of speech reconstruction
from multiple simultaneous instances of non-acoustic sensor (e.g.,
accelerometer) data collected offline across networked devices. On
the other hand, VibraPhone [54] shows that the back-EMF signal of
the vibration motor in smartphones and wearables can be processed
to recover intelligible speech signals. The Visual Microphone [9]
uses high speed video of the target objects to sense vibrations
and therefore the nearby source audio. LidarPhone faces similar
challenges as the Visual Microphone due to indirectly sensing audio
through object vibrations. While LidarPhone’s core technique and
challenges are different from inertial vibration sensing, it shares
the same motivation of acoustic side-channels and speech privacy.

9 CONCLUSION

We propose LidarPhone, a novel stealthy remote eavesdropping at-
tack that exploits the lidar sensor equipped in commodity robot
vacuum cleaners, originally used for mapping purposes. LidarPhone
allows the adversary to obtain privacy sensitive speech information
from laser beams reflected off of minutely vibrating objects (such as
a trashcan or a takeaway bag) located near the victim’s computer
speaker or TV soundbar. LidarPhone overcomes the limitations of
state-of-the-art eavesdropping attacks that require physical pres-
ence to deploy eavesdropping equipment, which limits scalability
and increases the chances of the attacker getting caught. We imple-
ment and evaluate LidarPhone to demonstrate its feasibility through
real-world experiments. We utilize a vacuum cleaner’s lidar sensor
to target different objects in its vicinity, collecting speech utter-
ances or music emitted from a computer speaker or TV soundbar,
respectively. We demonstrate up to 91% and 90% digit and music
classification accuracies, respectively. While we investigate lidars
on robot vacuum cleaners as an exemplary case, our findingsmay be
extended to many other active light sensors including smartphone
time-of-flight sensors. We hope that this work encourages the Sen-
Sys community to investigate appropriate defense mechanisms for
such potentially imminent sensor side-channel attacks.
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