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ABSTRACT
This paper presents a low-power and miniaturized design
for acoustic direction-of-arrival (DoA) estimation and source
localization, called Owlet. The required aperture, power
consumption, and hardware complexity of the traditional
array-based spatial sensing techniques make them unsuitable for
small and power-constrained IoT devices. Aiming to overcome these
fundamental limitations, Owlet explores acoustic microstructures
for extracting spatial information. It uses a carefully designed
3D-printed metamaterial structure that covers the microphone.
The structure embeds a direction-speci�c signature in the recorded
sounds. Owlet system learns the directional signatures through
a one-time in-lab calibration. The system uses an additional
microphone as a reference channel and develops techniques that
eliminate environmental variation, making the design robust to
noises and multipaths in arbitrary locations of operations. Owlet
prototype shows 3.6� median error in DoA estimation and 102<
median error in source localization while using a 1.52< ⇥ 1.32<
acoustic structure for sensing. The prototype consumes less than
100C⌘ of the energy required by a traditional microphone array
to achieve similar DoA estimation accuracy. Owlet opens up
possibilities of low-power sensing through 3D-printed passive
structures.

CCS CONCEPTS
• Computer systems organization ! Embedded and cyber-
physical systems; Sensors and actuators.
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Figure 1: The vision and technical overview of Owlet, a low-power
and miniaturized system for extracting spatial information from
sound. Owlet uses acoustic microstructures to embed direction-
speci�c signatures on the recorded sound and develops a learning-
based approach for signature recovery and mapping in real-time.

1 INTRODUCTION
Acoustic devices in various forms are becoming ubiquitous in
our environments. Besides voice interfaces, a wide range of
applications are emerging that explore multiple dimensions of
context-awareness and analytics. Applications include indoor
activity monitoring using sound [52, 70, 73], health monitoring
with acoustic cues [12, 71], speech development and acoustic
environment tracking with on-body wearables [24, 66], and many
outdoor applications with distributed sensor nodes [3, 8]. With
emerging low-power and battery-free solutions [40, 59], it is
even possible to continuously collect and process sound on
standalone sensing modules scattered in the environment. Spatial
analysis of sound and source localization can add new capabilities
to such context-aware applications. On the other hand, spatial
sensing of sound plays a key role in robotic navigation and
situational awareness systems, both in air [2, 26, 27] and underwater
[32, 43]. However, traditional techniques for obtaining spatial
information of sound require multiple streams of simultaneously
recorded sound using an array of microphones – an energy-hungry
hardware requirement often di�cult to meet on the stand-alone
sensing modules. In this paper, we seek to develop an acoustic
sensing system that can enable spatial information processing in
power-constrained ubiquitous computing devices with small form
factors.

Sensing spatial features of sound, such as direction-of-arrival (DoA)
or source location, requires sampling the wave in space using an
array of microphones. Given the conventional DoA estimation
algorithms fundamentally depend on this spatial sampling model,
the dimension of the array and number of microphones are crucial



MobiSys ’21, June 24–July 2, 2021, Virtual, WI, USA Nakul Garg, Yang Bai, and Nirupam Roy

for their performance. According to the sampling theorem [37],
a separation equal to the signal’s half-wavelength (_/2) between
microphones in a linear array is considered ideal for DoA estimation.
Moreover, the angular resolution (in terms of the inverse of the
Half Power Beam-width) of the DoA is proportional to the total
length of the array. Therefore, the traditional algorithms require a
large hardware setup to achieve �ne-grained resolution for DoA
estimation. Moreover, arrays often require simultaneous samples
from the microphones, which increases power consumption and
hardware complexity proportional to the number of microphones.
Despite the tremendous proliferation of acoustic devices in
ubiquitous computing, the hardware and power requirements, and
limitation in form-factor hinder solutions requiring high-resolution
spatial information. In this paper, we seek to develop an alternative
method for spatial signal processing. We break away from the
spatio-temporal sampling model and explore the interaction of
the waves with structures for a low-power, low-complexity, and
miniaturized solution.

The use of acoustic structures for directional hearing is common
in nature. The symmetric left and right ears in most mammals,
including humans, resemble a two-element array for the directional
processing of sound. However, biophysical studies show that
these species use cues from sound’s interaction with the
three-dimensional structure of their heads for �ne-grained
localization of the source [10]. In most owl species, the two ears are
asymmetrical in their positioning in both horizontal and vertical
planes [22]. This structural diversity helps them to precisely localize
low-frequency noises, which is not possible through symmetric
sensing given the separation between their ears. Surprisingly,
some insects with body dimensions much smaller than a tenth
of the wavelength of the relevant sound, achieve a localization
performance similar to that of mammals [58]. For instance, a small
grasshopper with a body width of 3<<, a fraction of the target
sound’s wavelength, can sense precise location information. The
secret lies in the asymmetric orientation and structural formations
that lead to a di�erent response based on the direction of the
incoming sound. The sensory system and the neural network
in these species have evolved to relate these responses to the
direction of arrival of the sound. We take inspiration from such
structure-aided hearing techniques to design a DoA estimation
system for power-constrained miniaturized devices.

In this paper, we present a design and prototype of an acoustic
localization system that introduces acoustic structures around a
microphone to embed directional cues. Acoustic wave interacts
with physical structures on its propagation path and as a result,
the wave �eld is transformed. Such behavior of waves is clearly
observable at a large scale in room acoustics, where the same sound
appears di�erent due to the shape, size, and object placement in the
room. We show that it is possible to manipulate sound waves using
a small 3D-printed acoustic structure, such that it leaves a unique
signature to the passing sound. When we place a microphone inside
that structure of few centimeters in dimension, it records sounds
carrying that signature. If designed carefully, this structure can
embed distinct signatures for sounds coming from di�erent angles
even at the resolution of a few degrees. Our system can detect these

signatures to identify the DoA of the recorded signal. We call this
system Owlet, named after the bird with marked auditory �nesse.

We are not the �rst to observe the opportunity in environmental
variations of sound �elds. Past work has explored localization
by �ngerprinting multipath environments and analyzing nearby
re�ections [64]. Probably closest to our work is [18] that places
objects in a 60 ⇥ 60 cm space with a microphone at the center. This
work shows that the sound scattered by the nearby objects holds
directional cues and can be processed to �nd its direction of arrival.
The concept of Owlet fundamentally similar to these studies but
di�ers in two important ways. We focus on developing a small
centimeter-scale sensing system that can potentially be used on
resource-constrained robots or as a ubiquitous sensing solution.
Owlet prototype has shown angular resolution similar or better than
the past work with a tiny 1.52<⇥1.32< sensor. Secondly, we address
the issue of system’s robustness to environmental changes. Owlet
is designed to perform beyond an anechoic chamber or controlled
lab environment and eliminate the requirement of location-speci�c
training data.

One of the main challenges faced by Owlet is harnessing multipath
diversity in a small form factor. Due to the large wavelength of
low-frequency acoustic signal, it requires re�ectors of comparable
size to achieve such diversity which is directly related to the
achievable spatial resolution of the system. We work around this
limitation by developing a di�raction-based technique, as opposed
to the re�ection-based approach, to design miniature acoustic
structures. The idea is based on the observation that when sound
passes through a small aperture, it undergoes di�raction and
appears as an independent sound source. We exploit this di�raction
property to design a 3D-printed cylindrical cover, called stencil,
for the microphone. These stencils carry optimally coded patterns
of holes on the surface that create a complex but predictable
multipath interference inside the structure. The interference pattern
carries a signature of the direction of arrival of the recorded sound.
We include principles of metamaterial designs in the stencil for
improved angular diversity. Owlet system learns these signatures
through a one-time calibration process and maps them to the DoA
of sound at run-time.

The other major challenge is to make the design robust to
environmental changes that can in�uence the incoming sound
in arbitrary ways. In other words, for the system to be useful in
practice, it should be able to function in arbitrary environments
while calibrated only once during manufacturing. As mentioned
before, room acoustics can in�uence a sound �eld and make the
mapping of direction-speci�c signature fails. Owlet introduces a
reference microphone to the design and takes a communication
theoretic approach to eliminate the transient multipath e�ects
during signature generation and mapping. This technique makes
Owlet robust to environmental change and suitable for real-world
applications.

This paper explores acoustic structures as passive components in
new types of low-power and miniaturized solutions for ubiquitous
sensing. Representative applications include wearable devices
for acoustic environment sensing toward speech development
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assessment in infants [29, 51] or personal analytics [21, 23] that
require the direction of the sound. Navigation techniques in
SWaP-constrained [14, 45] in-air and underwater mobile robots can
be bene�tted from spatial sensing with Owlet. Moreover, Owlet can
enable direction estimation and localization in energy harvesting
systems which is di�cult to achieve with traditional microphone
arrays. Figure 1 presents the broader vision and technical overview
of our work. While several opportunities for applications open up,
this paper focuses on developing the core capabilities and assessing
the limits of the systems. We have made the following three speci�c
contributions at the current stage of this project:

• A novel method of using passive elements for directional sensing
that leads to low-power, low-complexity, and miniaturized system
for acoustic localization. Developed sensing and signal processing
ensure robust DoA estimation in a diverse environment with
a one-time in-lab calibration. The system has achieved 3.6�
of median error which is comparable to existing microphone
array-based solutions with a fraction of its power and space
requirements.

• A replicable method for designing and 3D-printing optimal
acoustic structures to encode incoming sounds with directional
cues. It presents a method for sound �eld shaping with controlled
di�raction in small physical metamaterial structures.

• A hardware/software prototype of the entire system for the
community to reproduce, evaluate, and build on the Owlet system.
Next, we elaborate on the core intuition, system design, and key
�ndings of this project.

≈
Stencil

Approximation
of the stencil

Sound source
Sound source

Hole pattern
for a specific DoA

Microphone
Microphone inside 

the stencil

Sound holes

Figure 2: The concept of using a stencil with direction-speci�c hole
patterns and microstructures for passive �ltering of the incoming
sound. The stencil embeds a directional response to the recorded
signals.

2 CORE INTUITIONS AND PRIMERS
Fundamentally, we aim to design a controlled environment
around the microphone such that the recorded signal contains a
unique ‘direction-speci�c’ channel impulse response. This impulse
response can be extracted from the microphone recording and
will serve as a signature of the sound’s angle of arrival. While a
regular room environment or larger objects near a microphone are
known to create a diverse multipath e�ect to add direction-speci�c
response to the signal, we envision achieving much �ne-grained
diversity with a compact form factor by combining the concepts
of di�raction, interference, and structural resonance. To this end,
we design a porous cap for the microphone, called stencil. It has

particular hole patterns at di�erent sides as shown in Figure 2.
Sound coming at a speci�c angle pass through the unique patterns
of holes and combines at the microphone. The holes on the stencils
are connected to microstructures of di�erent parameters leading to
a unique frequency response.

The stencil forms a metamaterial with internal microstructures
that naturally modulates incoming sound to introduce a unique
directional signature. As the impact of the microstructures depends
on the frequencies of the sound, the signature is basically a vector
of complex gains, ⌧\ , of the frequency response. The concept is
explained in Figure 3.

f f

Sound DoA = θ1 Sound DoA = θ2

f

Signature_θ1 Signature_θ2

f

C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6

Complex frequency gains represent 
directional signature (Gθ)

Mic

Acoustic micro-structures for 
directional filtering
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Figure 3: The concept of passive directional�ltering using a stencil
of acoustic microstructure. The stencil embeds a directional signa-
ture to the recorded sound unique to its direction of arrival (DoA).
The spectrum of complex gains represents the signature for further
computation.

2.1 Metamaterials for passive �ltering
Sound frequencies get ampli�ed or attenuated when it interacts
with structures. At a large scale, multipath re�ections show such
variations in frequencies due to constructive and destructive
interferences. While re�ections can create directional signatures in
sounds, it requires large form factors comparable to the wavelength
of sound. Given Owlet focuses on the low audible frequencies,
wavelengths are large, and it would require re�ectors almost a half
of a meter in size. To miniaturize the acoustic structure for passive
�ltering of the passing sound we use concepts of metamaterials.
Metamaterials are specially designed structures with assemblies of
substructures that give new property to the material. In designing
our metamaterial stencil, we employed principles of (a) di�raction,
(b) capillary e�ects, and (c) structural resonance.

(a) Di�raction:Waves, when encountering the edge of an obstacle
in their path, tend to bend or de�ect around it. This phenomenon
is called di�raction. Di�raction leads to an interesting property of
sound waves when it passes through a hole [56]. If the aperture
of the hole is small compared to the wavelength of the sound,
the wave di�racts at the edge of the hole and the hole behaves
as a virtual point source of that sound. If the receiver is on the
other side of a barrier having multiple such holes, it observes
multipath-like environment with multiple virtual sources discussed
earlier. Interaction between signals from these virtual sources
creates a pattern of constructive and destructive interferences
depending both on the location of the receiver and the frequency



MobiSys ’21, June 24–July 2, 2021, Virtual, WI, USA Nakul Garg, Yang Bai, and Nirupam Roy

of the signal. We use diverse patterns of small sound holes on the
stencil to create a multipath e�ect at the inside microphone within
a small form factor.

(b) Capillary e�ect: Acoustic impedance varies when sound
propagates through small capillary tubes [54]. Moreover, the length
and cross section of the tubes impacts the speed of passing sounds.
We implement capillary tubes of various shapes in the stencil
to emulate the e�ect of phase di�erences for sound paths. This
leads to prominent diversity in frequency spectrum despite small
separations between sound holes.

Cylindrical stencil with
capillary tubes

Cylindrical stencil with
micro resonators

US penny for 
reference

Hemispherical stencil with
capillary tubes

19 mm

30 mm15 mm
10 mm

11
 m

m 13
 m

m

Internal cavity 
structure of the 

stencils

Figure 4: Di�erent types of metamaterial stencils used in our ex-
periments.

(c) Structural resonance: Certain sound frequencies get ampli�ed
when oscillating air pressures meet cavities on their way [69]. This
property is called Helmholtz resonance and it is commonly observed
in whistling bottles. We designed millimeter scale Helmholtz
resonators embedded in the stencil and connected to the sound
holes. We vary the shape of these tiny structural resonators to
generate arbitrary resonance e�ects at di�erent frequencies.

Figure 4 shows 3D printed stencils with embedded microstructures
for directional �ltering. In Figure 5 we show the e�ect of
microstructure stencil in improving angular diversity of the sensor.
It compares the angular variation of the amplitude of the 7:�I tone
on the Owlet microphone setup with and without the stencil. Figure
6 shows diversity in corresponding direction-speci�c frequency
responses of these stencils.

0°

30°

60°
90°

120°

150°

180°

With stencil
Without stencil

Figure 5: Angular diversity of the microphone with and without
the microstructure stencil.

3 SYSTEM DESIGN
The system design focuses on two main tasks: (a) developing an
optimal stencil structure that o�ers maximum angular diversity

and (b) developing computing techniques to �nd DoAs from the
recorded signal. Naturally, the accuracy of the system directly
depends on the diversity introduced by the stencil. Our algorithms
optimize this design by considering parameters of wave propagation
around small structures in simulation and then 3D prints it for
experiments. Before we go into the details of the stencil design, we
explain our processing and DoA estimation techniques which also
serve as an overview of the entire system.

(a) Cylinder_capillary (b) Cylinder_resonator (c) Hemisphere_capillary
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Figure 6: Comparison of the diversity in frequency responses (am-
plitude and phase) of the three types of metamaterial stencils.

3.1 Processing for DoA estimation
In rather simplistic terms, Owlet’s DoA estimation technique is
a two-step process. First, we create a table of direction-speci�c
signatures⌧\ of the stencil by sending known signals from various
directions. We perform this signature generation by playing a
wideband sound signal from a speci�c direction and recording
the signal with a microphone having the stencil cap over it. This
is a one time in-lab calibration, similar to the calibration done for
commercial-grademicrophone arrays. The second step is performed
at the run-time when the system is being used for DoA estimations.
Here we process the incoming signal to extract the signature
introduced by the stencil, ⌘BC4=28; , and then look it up in the
table of pre-collected signatures that maps it to a speci�c DoA.
In practice, we train a deep learning model with variations of the
signature table and use the pre-processed signal at run-time to get
predicted DoA from the model. Note that the signature extraction
from the real-world signal is a crucial part of the processing and it
meets two challenges: (i) estimating ⌘BC4=28; by separating it from
the frequency diversity of the source signal and (ii) eliminating
additional distortions added to the signal by the environmental
multipaths. We explain the technique for signature extraction for
eliminating the source dependency, followed by a technique to deal
with the environmental multipath in arbitrary locations.

3.2 Eliminating source signal dependency
The signal recorded by the microphone inside the stencil is basically
the source signal distorted by the directional-speci�c response of
the stencil. If we assume no environmental e�ect on the source
signal - (l), the signal received by the inside microphone .8= (l)
can be expressed as a multiplication between this source signal and
the stencil’s response �BC4=28; in frequency domain:

.8= (l) = - (l)�BC4=28; (1)



Owlet: Enabling Spatial Information in Ubiquitous Acoustic Devices MobiSys ’21, June 24–July 2, 2021, Virtual, WI, USA

Therefore, when the source signal - (l) is known we can obtain
the stencil’s response by simply calculating .8= (l)

- (l) . The source
signal can be user-de�ned and known for some applications, like
in navigations where the robot localizes itself by �nding DoA of a
known control signal. However, DoA estimation is useful in many
other applications including localizing an ambient noise source or
�nding the user’s direction from spoken words. In such scenarios,
the source signal is unknown to the system, and it is di�cult to
separate�BC4=28; from the arbitrary source signal. We eliminate this
problem by introducing a secondary microphone which is placed
outside the stencil. The incoming sound is recorded simultaneously
by these two microphones, but the outside microphone’s recording
is una�ected by �BC4=28; . Note that, unlike in microphone arrays,
the secondary microphone can be placed arbitrarily close to the
primary microphone. Figure 7 shows the physical design and the
realistic signal model of the system.

H’env

Henv

Source sound: X

Yin = X.Henv . Hstencil

Yout = X.H’env

Hstencil
Stencil

Inside mic

outside mic
Environmental 

multipath response

Direction-specific 
response of stencil

Figure 7: The two-microphone model for eliminating source and
environmental dependency.

Consider the channel frequency responses to the inside and
outside microphone are �4=E and � 0

4=E respectively. These channel
responses manifest the e�ects of the multipath signal propagation
from the source to the microphones and the signal’s re�ections from
nearby objects. The presence of the stencil around the internal
microphone introduces additional modulation to the recorded
signal, represented by the frequency response�BC4=28; . Considering
the linearity of the channels, the signal recorded by the inside
microphone will experience both the impulse responses as shown
in Figure 7. Therefore, the signals recorded simultaneously by
these microphones, .8= (l) and .>DC (l), can be formulated as the
following equations. The source sound is - (l) and independent
noise at the two channels are # (l) and # 0(l) at the frequency l .

.8= (l) = - (l)�4=E�BC4=28; + # (l)
.>DC (l) = - (l)� 0

4=E + # 0(l) (2)

If we divide .8= (l) by .>DC (l), it successfully eliminates the
dependency on the source signal. However, the environmental
dependency remains in the form of �4=E

� 0
4=E

.

.8= (l)
.>DC (l)

= �BC4=28;
�4=E

� 0
4=E

+ # 00(l), (3)

Here, # 00(l) ⌧ �BC4=28;
�4=E
� 0
4=E

. This means the stencil calibration
process, or the deep learning module training process has to be
trained for all locations in the target environment to capture the
environmental dependency to make the angle prediction e�ective.
Such a system may be applicable for scenarios where the locations

of the sound sources and the sensing modules are prede�ned. For
instance, when acoustic localization is used to track objects on a
conveyor belt or on a track. However, for most practical scenarios
the location of the sound source is unknown, and it will require
collecting data from virtually every point in the scene and train
the prediction module – leading to an impractical solution. Next,
we explain our technique to eliminate this location dependency.
With this technique Owlet can function with one round of in-lab
calibration of the stencil and does not require collecting any
calibration data at the target environment.

3.3 Eliminating environmental dependency
This �nal stage of the technique is based on the observation that
despite diverse and unpredictable nature of the environmental
channel responses �4=E and � 0

4=E , the ratio of the channels,
�A0C8> = �4=E

� 0
4=E

is bounded when the microphones are closely
placed. This idea can be intuitively understood by �rst analyzing
the reason for diversity in environmental response �4=E . The
sound wave re�ects o� various objects in the environment after
leaving from the source. These re�ections follow paths of varying
lengths to get superimposed at the recording microphone along
with the direct line-of-sight path. The diversity in the path distances
creates time delays in the re�ected components leading to a unique
response of the environment. Therefore, two microphones, even
when recording the same signal, can observe di�erent responses
as the path lengths of the re�ections are di�erent. However, if the
locations of the microphones are close to each other, these path
di�erences of re�ections are bounded and at one extreme when
two microphones are exactly collocated, they will observe same
environmental response. Therefore, �A0C8> = �4=E

� 0
4=E

has a narrow
distribution of values for each frequency in the response when
two microphones are a few centimeters apart from each other. We
obtained the probability distributions from simulated ray tracing
and real-world experiments.

Once the distributions of �A0C8> is known and �BC4=28; is collected
through the calibration stage, we generate a synthetic training
data for �A0C8>�BC4=28; drawing from the distribution and use it for
training the deep learning module. This process can train our angle
prediction module robust to environmental variations at run-time
without requiring real-world sound traces for training. Interestingly,
if the dimension of the target environment and locations of the
major re�ectors are known, the synthetic training data can be
customized to that environment. This customization reduces the
time for convergence during training and improves prediction
accuracy.

The run-time processing now requires to extract �A0C8>�BC4=28;
from the two channels of sound .8= (l) and .>DC (l). We improve
this process by employing a recursive least square (RLS) adaptive
�lter [1] in system identi�cation mode. The adaptive �lter takes
advantage of the uncorrelated Gaussian noise in the recorded
signals to estimate�A0C8>�BC4=28; byminimizing the following error
term with gradient descent.

4 (l) = .8= (l) � .>DC (l)
�4=E�BC4=28;

�4=E0
(4)
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3.4 Synthetic training for deep learning
We use the synthetic channel response mentioned in the previous
section to introduce training diversity to the neural network model.
To this end, we calculate �A0C8>�BC4=28; by simulating di�erent
room environments and diverse placements of the source and
the microphones. We use the distribution of these channel values
to generate additional �A0C8>�BC4=28; data and feed them to deep
learning architecture for training. Vectors of 400 equally separated
frequencies between 0 � 8:�I represent the discrete spectrum of
�A0C8>�BC4=28; for each angle. Instead of using the complex vectors,
we separately calculate the amplitude- and phase-spectrum from
the channel responses for the training data.

Freq. spectrum

Phase spectrum

Sound signal

Input
matrix

Conv.
layer

Conv.
layer

Conv.
layer

Fully connected
layer

Predicted 
Angle

Regression
layer

(400 x 2) (394 x 64) (390 x 128) (388 x 256) (1 x 1)

2x7 1x5 1x3

Figure 8: The architecture of the proposed CNN model.

We select a Convolutional Neural Network (CNN)-based regression
model for the DoA estimation. CNN is known to have superior
performance in environmental sound processing [55] and
low-latency operation for its reduced set of parameters. We use
a one-dimensional CNN model with three hidden convolutional
layers followed by a fully connected layer and an output regression
layer. The convolution layers have 64, 128, and 256 �lter maps with
2 ⇥ 7, 1 ⇥ 5, and 1 ⇥ 3 �lter sizes respectively. The regression layer
computes the half-mean-squared-error loss for angle estimation.
We customize the loss function according to the target range
and resolution of the directional angles. In this model, we use
ReLU (Recti�ed Linear Unit) activation function and add batch
normalization layers between the convolution layers to speed up
the training process. We apply stochastic gradient descent as the
optimizer. The model is trained for 100 epochs at a learning rate
of 14�6. The block diagram of the CNN architecture is shown in
Figure 8.

Besides the regression model, we develop a CNN classi�cation
model for evaluation and comparison, as detailed in section §5.8.
For this model, we mostly follow the regression architecture but
design a fully connected layer with length 360, one for each angle,
followed by a Softmax layer and a classi�cation layer.

3.5 Optimizing 3D stencil design
The accuracy of our proposed system depends on the diversity
of the frequency gain pattern for di�erent angles. Our feasibility
study with random hole distribution on the stencil cap shows
reasonable diversity of the gain pattern to distinguish sound
direction with a median error of 7�. The resolution of detected DoA
is not uniform across all angles, meaning the system’s accuracy
to detect signal from certain directions are poor compared to the
other. We trace back this problem to the suboptimal distribution of
holes and microstructures on the stencil that result in similar gain
patterns for multiple directions. We address this problem through

systematic development of the 3D stencil design which is optimized
to guarantee a minimum DoA detection resolution in any direction.

An ideal stencil cap should provide maximum diversity of the
frequency gain pattern for each possible DoA in the recorded
signal. This problem of achieving maximum diversity is analogous
to the information theoretic problem of designing maximally
diverse code sequences. Consider a frequency gain pattern (⌧\ ),
associated to a speci�c angle \ , to be a codeword. We want to
design a set of # codewords which are maximally distant from
each other (e.g., maximum possible Euclidean distance between
all pair of codewords). Here the number # de�nes the DoA
detection resolution, �\ = 2c

# . In an initial attempt, we aim
to design such codewords of lengths equal to a set of discrete
frequencies and then use them as guidelines to generate a set
of desired gain patterns (⌧\ ). The next step is to map ⌧\ to a
pattern of pinholes on the surface of the stencil cap at angle
\ . Given the number of holes in stencil, # , distance between
microphone and holes, A= , distance betweenmicrophone and stencil,
⇡ , and wavelength of the wave, _; Equation 5 gives the resulting
value, D (_), at the microphone. In other words, D (_) is the result
of superposition of all the waves coming from the holes. Note
that for di�erent wavelengths the equation gives overdetermined
systems of equations to solve for the hole patterns. We can derive
an approximate solution to determine the optimal design of the
hole arrangements. Unfortunately, this analytical approach quickly
becomes intractable even for a moderate number of holes (> 10) on
a three-dimensional stencil. The other limitation that renders this
approach unsuccessful is the fundamental di�erence between our
model and the actual wave �eld near small objects. We elaborate
on this wave property before presenting our simulation-based
approach for the optimal stencil design.

D (_) =
#’
==1

⇡

9_A2=
4

92cA=
_ (5)

Behavior of wave �elds near the stencil: In our stencil model
we implicitly assume that the incoming sound wave only passes
through the holes on the side of the cylinder that directly faces
the wavefront. Basically, we approximate the cylinder as a # -gonal
prism, as shown in Figure 2, such that the unique hole locations
on each face can generate a particular frequency gain pattern at
the microphone. This approximation holds for a large object with
a diameter more than 10 times of the signal’s wavelength [72].
However, as we aim to design a miniaturized interference shaping
structure, this wave propagation model di�ers signi�cantly for the
dimension of our stencil cap. Just like at the openings of the holes
on the surface, wave fronts di�ract by the outer surface of the small
stencil and wrap around covering almost the entire cap as shown
in Figure 9.

We veri�ed this phenomenon using a cylindrical shape with a
pinhole on one side (Figure 10(a)) and measured the sound pressure
at the microphone kept at its center. Figure 10(b) shows signi�cantly
high sound pressure even when the hole is more than 90� o�
from the direction of sound source, indicating the bending of
sound waves. Interestingly, it shows a high sound pressure level
diametrically opposite to the incoming direction of sound, a result of
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Figure 9: The behavior of sound �eld at the outer surface of an
obstacle. (a) When the object’s size is much larger compared to the
wavelength of the sound, the obstacle creates a shadow region. (b)
When the object’s size is comparable to thewavelength of the sound,
the wave di�racts around the object creating high-pressure at a
larger region of the surface. It also creates a high-pressure region
directly opposite to the sound’s directions where sound �elds from
the top and bottom sides meet.

merging �elds from two sides of the cylinder. This angular intensity
variation at the surface of the stencil is dependent on the sound
frequency in�uencing the received frequency gain pattern.
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Figure 10: (a) A one-hole stencil tomeasure surface pressure levels.
(b) Sound amplitude at di�erent angles from the sound’s direction
of arrival.

We modify our model and take a forward simulation-based
technique to �nd the optimal design for the stencil cap. Now, instead
of tracing back a hole pattern from a desired frequency gain pattern,
we select the best hole-pattern from a set of random sets. ThisMonte
Carlo simulation-based approach takes repeated random sampling
of the stencil pattern and then analytically simulates frequency-gain
pattern for each of these variations for all directions of the DoA (360
source locations at 1� of separation). We then optimize for diversity
of the gain-patterns for all directions as mentioned in the steps
below. The following process ensures the selected hole-pattern is
close to the global optimal solution given the cap size and other
design parameters.

(1) Random stencil pattern generation:
The diversity of the directional gain-pattern is directly related
to the multipath diversity created by the hole pattern on the
stencil. We �xed the outer and inner diameters and the height
of the cylinder for the simulation. The diameter of the pinholes
is set to 2 mm. Then we generate random patterns of the pinhole
locations on the side of the cylinder. However, uniform sampling
of locations for the pinholes does not ensure minimum separation
between the holes, where separation of half of the maximum
wavelength is necessary to have an individual impact on the
frequency gain-pattern. We introduce this constraint by modifying
the Fast Poisson Disc sampling method [9]. At each iteration, the

Poisson Disc method generates a 2-dimensional location for the
hole, starting from a few existing seed locations, on the �attened
surface of the cylinder. The location of the next hole is chosen
randomly from the region within a circular annulus of radius 3
mm, ensuring the minimum separation. We randomly vary the
width of the annulus at each iteration to introduce diversity in the
hole-pattern.

(2) Estimating frequency gain-patterns:
The algorithm computes the frequency dependent gain-pattern
for each stencil generated in the previous step using Equation 5.
The path di�erences between the holes and the microphone are
calculated considering sound’s di�raction at the outer surface of the
cylinder. We consider 400 equally separated frequencies between
0-8kHz to have a 400-point complex gain-pattern for each of the
360 angles of source location. We apply the amplitude and phase
corrections due to the di�raction of sound waves around the surface
of the cylinder as described earlier (Figure 10). After this step we
have 360 400-point gain-patterns to be used in the next step.

(3) Assessing the diversity of gain-patterns:
Next, we measure the diversity of the gain-patterns using the
all-pair Euclidean distance as the metric, called chord-distance.
Two distinguishable gain-patterns will show higher values for
chord-distance compared to the two similar patterns. We use this
metric for maximin decision criteria in the �nal step.

(4) Stopping criteria and selecting the best stencil:
At each iteration with a new stencil pattern the algorithm records
the minimum of the all-pair chord-distance derived in the previous
step. The stopping criteria of the iterations is reached when the
distribution of the metric �ts a gaussian curve. We then pick the
maximum value of the chord-distance and select the corresponding
stencil design for fabrication. Figure 11 compares the diversity in
the frequency gain-pattern of an optimal and a sub-optimal stencil.

(a) Optimal Hole Pattern

(b) Suboptimal Hole Pattern

0 2000 4000 6000 8000
Frequency (Hz)

-3

-2

-1

0

1

2

3

Ph
as

e

H_ID = 369, Metric = 17.6309

0 deg
20 deg
40 deg
60 deg

0 2000 4000 6000 8000
Frequency (Hz)

-3

-2

-1

0

1

2

3

Ph
as

e

H_ID = 12, Metric = 7.9219

0 deg
20 deg
40 deg
60 deg

0 2000 4000 6000 8000
Frequency (Hz)

0

1

2

3

4

Am
pl

itu
de

H_ID = 369, Metric = 4.1975

0 deg
20 deg
40 deg
60 deg

0 2000 4000 6000 8000
Frequency (Hz)

0

1

2

3

4

Am
pl

itu
de

H_ID = 12, Metric = 2.0411

0 deg
20 deg
40 deg
60 deg

Figure 11: Comparison of diversity in phase and amplitude pat-
terns for an optimal and a sub-optimal design of the stencil.

4 PROTOTYPE DEVELOPMENT
4.1 3D-printing stencil caps
We �rst run our optimization algorithm on Matlab to obtain a
stencil design. Next, we use the Autodesk Fusion 360 Python API
[4, 6] to generate the 3D model of the stencil. The script takes
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the design parameters of the stencil as input, builds the structure
including internal substructures and cavities, and adds the holes
on the surface. Finally, we export the STL model of the stencil and
slice it for 3D printing. We used the Elegoo Mars photocuring 3D
printer[19] to print the stencils. We use an ultraviolet light-curable
resin with 1.195 6/2<3 density that solidi�es when exposed to the
light of 405=< wavelength. Compared with jetting-based printing,
it provides a high resolution and smooth �nish which is ideal for the
tiny sub-structures on the stencil. More importantly, photocuring
method leads to dense surfaces and makes the acoustic behavior of
the stencil predictable [74].

4.2 Calibration and data collection
We �rst generate a wideband calibration signal on Matlab and
export it to an ‘.arb’ �le which is loaded to the Keysight Waveform
Generator [33]. We used two o�-the-shelf speakers along with
a 40, dual channel ampli�er to transmit this signal. We used
an external wired channel to trigger the waveform generator for
precise time synchronization. The stencil was attached to a stepper
motor and an arduino [5]. We rotated the stencil at 1� steps ranging
from 0� to 360� and recorded the calibration signal. We used
omnidirectional ADMP401 MEMS microphones [15] sampled at 16
kHz. The collected data was processed o�ine on a computer.

5 EVALUATION
We aim to assess the performance of our microstructure-guided
spatial sensing technique. To this end, we implement a prototype of
Owlet and perform experiments in several indoor and outdoor
settings and under various acoustic environments. We use
traditional uniform linear microphone arrays (ULA) of various
sizes for the baseline performance comparison and benchmarking
the energy consumption. Next, we elaborate on the experimental
setup, followed by the evaluation results.

Figure 12: The Owlet prototype used in the evaluation experiment
(left) and a 9-element uniform linear microphone array used as
baseline for comparison(right). The array is 122<wide, whereOwlet
is signi�cantly smallermeasuring less than 22< in its largest dimen-
sion.

5.1 Evaluation setup and results summary
In the Owlet prototype, we use a 3D-printed stencil and two
microphones placed on the top of each other facing in opposite
directions. The separation between these microphones is 4<< and
opening of one of these microphones is covered with the stencil.
We also developed a 9-element linear microphone array with 1.3cm
separation between the elements and each of the microphones
are sampled simultaneously using a multi-channel DAQ system
[34]. Figure 12 shows the sensor font-ends of the Owlet and the
ULA. We used omnidirectional ADMP401 MEMS microphones [15]

System Prototype cost Size Error Energy
Owlet $15 1.9cm 3.6� 16.7mJ

9-element array $70 11.4cm 4� 2078mJ
Table 1: Comparison of prototype cost, size, median error,
and energy consumption of Owlet with amicrophone array.

sampled at 16:�I for both Owlet and the ULAs. The collected
data is processed o�ine using Matlab scripts on a computer.
The transmitted sound sources include multi-frequency wideband
sounds, white noise, drone sounds, and car engine noises. Otherwise
mentioned, the sound source is a multi-frequency wideband signal,
the default noise level is 40 dB SPL, the default distance between
sound source and microphones is 35 C , elevation angle is 0�, and
the size of stencil is 1.52< ⇥ 1.32< with internal capillary tubes
and structural resonator cavities. We perform our experiments in
several representative environments, such as indoor laboratory,
lobby, and outdoor, as shown in Figure 13. Note that the recorded
sound source is not in�uenced during our structure-guided DoA
estimation techniques, since the secondary microphone is placed
outside of the stencil and can perfectly record the sound source.

Figure 13: Various locations for system evaluations: (a) indoor lab-
oratory, (b) indoor lobby, (c) outdoor.

Summary: Figure 14 summarizes the overall performance of
Owlet in comparison to the traditional ULA based DoA estimation
technique. As elaborated later in this section, Owlet outperforms
even a 9-element ULA running the standard multiple signal
classi�cation (MUSIC) algorithm for direction estimation, while
consuming a fraction of the energy required by the array. Table 1
presents a comparison of estimated manufacturing costs of these
prototypes in the lab, their sizes, the median DoA estimation errors,
and the energy requirements.
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Figure 14: Overall performance of the Owlet system compared
to the traditional microphone arrays of various sizes. Owlet re-
quires 100⇥ less energy than the state-of-the-art array systemswhile
achieving better accuracy than a 9-element array.
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Figure 15: Performance under external conditions: (a) The impact of varying types and loudness levels of ambient noise on the median DoA
estimation error. (b) The CDF of errors when the sound source is located at varying distances from the receiver. (c) The CDF plot of estimation
error for di�erent elevation angles or the vertical positions of the sound source. (d) The CDF plots of errors that show the impact of dynamic
movements in the environment.

5.2 Impacts of external conditions
We evaluated the performance of our prototype under various
adversarial conditions. We present the results below.

(a) Ambient noise: The regular noise level at the locations
of experiments is around 40 dB of sound pressure level (SPL).
We introduced four di�erent kinds of noise with distinct
spectral properties: (i) white noise, (ii) tra�c sound, (iii) human
conversation, and (iv) sound of machineries like jackhammer. We
played these noise sounds from three speakers from di�erent
angles and at di�erent levels of loudness near the receiver while
performing the direction estimation. The loudness of the source
sound used for DoA was 60 dB SPL, a loudness comparable to
natural conversions. Figure 15(a) shows the median error of Owlet’s
performance under these experiments remains stable for a wide
range of noise loudness.

(b) Distance from the receiver: We measure the performance
while the sound source is placed at various distances from the
receiver. Figure 15(b) shows the median error for DoA estimation
for these experiments. The error is mainly dominated by the change
in signal-to-noise ratio at the receiver due to increasing distance.
The intensity of the sound source was kept constant despite the
location of the source. When we change the model to maintain a
�xed signal loudness at the receiver, varying distance shows limited
impact.

(c) Elevation angle: Current prototype ofOwlet limits its direction
estimation to the azimuth angles (directions on the horizontal
plane) only. Ideally, azimuth-only DoA estimation system should
not be a�ected by the elevation angle (i.e., vertical location) of
the sound source. However, in practice microphones are not fully
omni-directional and therefore regular microphone-array based
DoA systems perform correctly for a certain limit on the elevation
angle of the source. In addition to themicrophone’s limited response
in the vertical plane, Owlet has pinhole patterns on the stencil that
may be projected di�erently on the microphone. We evaluated the
impacts of elevation angle by increasing the vertical distance of
the sound source, while the horizontal distance is �xed at 150 cm.
Results in Figure 15(c) show Owlet’s performance does not vary
signi�cantly when the vertical location of the source is up to 15 cm
from the center.

(d) Dynamic multipath: Owlet is designed to mitigate the
e�ects of the environmental multipath. We have evaluated this
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Figure 16: The performance of sound tracking while the source
is constantly moving near the sensor. The movement of the source
creates a dynamic multipaths scenario.

feature by changing the test location in previous experiments. We
further evaluate it by moving the sound source during the test
to add additional disturbance to the environment. The median
error remains within 7� for this test. Next, we introduce moving
subjects near the setup so that the multipath environment changes
during the experiment. The median error is close to 9� when three
people keep walking within 3 meters from the sensor. Figure 15(d)
shows the CDF of the error for these experiments along with the
CDF for stable multipath environments. Figure 16 shows Owlet’s
performance for tracking the sound source while the source is
moving near the sensor.

5.3 Performance in di�erent environments
We evaluated Owlet in several represented indoor environments,
such as indoor laboratory, lobby, and open-air outdoor places
as shown in Figure 13. To make our model robust in diverse
environments, we train the deep learning model using synthetic
room impulse responses as mentioned in Section §3.4. Figure 17(a)
shows the DoA estimation performance in multiple locations
of these environments. The median error is within 4� and 90C⌘
percentile error of less than 10�. This result shows Owlet’s ability
to function in unknown environments with a one-time calibration
during the development of the prototype.

5.4 Impact of di�erent sound sources
In this experiment we evaluate the system’s DoA estimation
performance for parallel frequency signal and other types of signal
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sources. We evaluate the system’s DoA estimation performance
for di�erent types of sounds. These signals are di�erent in their
active bandwidths, frequency spectrums, and loudness. Figure 17(b)
shows comparable performance across di�erent sounds.
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Figure 17: The CDF of median error for (a) di�erent environments
and (b) di�erent types of sound sources.

5.5 Performance in known environment
Owlet’s synthetic training data generation process can be
customized if the geometry of the target location is known. We
evaluate this feature by generating training data according to
the test location. Figure 18 shows Owlet’s overall performance
for estimating signals’ direction of arrival. In this experiment we
transmitted signals from a speaker placing it at various angles with
respect to the Owlet system. The ground truth DoAs of the signal
covered the 0�180� angles in front of the receiver with 1� separation
between locations. Note that, unlike microphone arrays, Owlet does
not have any ‘mirror location’ (or front-back) ambiguity in DoA
estimation by design. The confusion matrix in Figure 18(a) visually
presents the spread of error for every ground truth angle. Figure
18(b) shows the empirical cumulative distribution of the error.Owlet
exhibits a median error less than 3.3� and 90C⌘ percentile error of
less than 10� in this scenario.
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Figure 18: The performance for DoA estimation with known room
size: (a) The confusion matrix and (b) the CDF of error in degrees of
angle.

5.6 Localization Performance
Owlet primarily focuses on the DoA estimation of the sound.
However, combining information from multiple such units can
localize a sound source using triangulation. We created a setup
for localization using two speakers continuously playing 50<B
of parallel frequency pulses. We placed the Owlet receiver at
various places within a grid in front of the speakers. Owlet system
estimated DoA of both the speakers and estimated the location
using triangulation method. Figure 19(a) shows the heatmap of the
localization error and Figure 19(b) shows the corresponding CDF
plot. The median localization error is 10 cm.
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Figure 19: The localization error as (a) heatmap and (b) empirical
CDF.

5.7 Comparison with traditional methods
Figure 20 compares performance of Owlet with traditional
array-based DoA estimation techniques. We implement three
popular and fundamentally di�erent array-based methods –
beamscan, minimum variance distortionless response (MVDR), and
MUSIC algorithm. We apply these techniques on the microphone
arrays having di�erent number of elements. Results in Figure 20(a)
show that Owlet signi�cantly outperforms the other algorithms
under similar conditions and signal SNR, while using only two
microphones. Owlet’s median error is even slightly better than
the MUSIC algorithm with 9-microphone array. For an estimate
of the DoA resolution, we compare the spatial spectrum of each
of the traditional algorithms with Owlet. Given Owlet uses a
regression-based method, it does not directly produce a spatial
spectrum, we rather plot the distribution of con�dence score for
all angles. Figure 20(b) shows the spatial spectrums for the signal
coming at 20�. Owlet exhibits narrowest beamwidth comparable to
MUSIC.
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Figure 20: Performance comparison of Owlet with the implemen-
tation of beamscan, MVDR, and MUSIC algorithms: (a) The CDF of
median errors, (b) The spatial spectrum for an incoming signal from
20� angle.

5.8 Comparison between learning models
In Figure 21, we compare the performance of di�erent deep learning
models and algorithms. The regression model performs slightly
better than the classi�cation algorithm in certain scenarios. We
also compare di�erent architectures of the regressionmodel. Instead
of using 64, 128, and 256 �lters for three convolution layers, we
�rst reduce the �lter sizes to half and got a median error of
5.6�. We also apply only the �rst two convolution layers and
reduced size �lters, which leads to a median error of 5.8�. When
we use two convolution layers with �lters 64 and 128, the median
error is 7.8�. These results show the opportunity to customize the
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model for resource-constrained computational environment while
maintaining the target DoA performance.
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Figure 21: Performance comparison of Owlet with di�erent deep
learning models and architectures.

5.9 Energy consumption
In this section, we evaluate and compare the energy e�ciency
of Owlet with the traditional array-based systems. We measure
the power consumption of each submodule, including hardware
frontend, analog to digital conversion (ADC), and DoA computation.
While we monitor the frontend and ADC directly, the setup for the
computation part requires porting the runtime codes to a Raspberry
Pi 4 module and monitoring the overall power variation of the
module. We used a Keysight E6313A power supply and monitoring
unit [35] for precise and high-resolution tracking. The setup is
shown in Figure 22.

Figure 22: The setup for evaluating energy consumption. The setup
tracks the energy requirements of Owlet and baseline microphone
arrays under various conditions using a Keysight E6313A power
supply and monitor.

Computation: We write the codes in Matlab and use Matlab
Coder [44] to generate executable C �les for the Raspberry Pi 4.
We use Mathworks Raspbian image optimized for deep learning
applications and cross compile the code for ARMv7 architecture
with Neon Acceleration. This acceleration uses special registers
for parallel operations which is an advantage for neural network
systems over traditional techniques. We deploy the executable code
and run it on o�ine data for 10,000 iterations. We collect the voltage
and current readings from the power meter.

We also record the total time taken to complete the estimations. We
learn that although the instantaneous power of Owlet is 1.92,0CCB ,

which is approximately twice of traditional algorithms 1.05,0CCB ,
but the time taken to complete the estimation is exponentially low,
8.3<B for Owlet compared to 2050<B for traditional algorithm. This
contrast is because of the highly paralleled operations of the neural
network, which is not possible in sequential traditional algorithms.

ADC: Figure 23 reports the energy consumed by the ADC of an
MSP430 ($3 microcontroller) [31] and a Keysight Data Acquisition
System ($2500 DAQ) [34]. We use the low-power 12-bit ADC
of the MSP430FR5969 and vary its sampling rate to emulate the
multiplexing of multiple microphones. For the Keysight DAQ, we
use the 12-bit parallel channel ADC in single-shot data acquisition
mode and vary the number of channels. We record the power
consumption for both the devices from the power supply and we do
not connect the microphones to remove the e�ect of microphones
and their ampli�ers.
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Figure 23: Energy consumption of (a) MSP430FR5969 low-power
ADC [31] for di�erent sampling rates and (b) Keysight Data Acqui-
sition System [34] for di�erent number of microphones.

Microphone frontend: We record the power consumption of the
ADMP401 MEMS microphones [15]. To optimize the total energy
consumption of the system, we only consider the time duration
of 50<B , a typical time duration to collect 800 samples at 16:�I.
We multiply this time with the average power consumed by the
microphones to obtain the total energy consumed in Joules.

The evaluation summary in Section §5.1 presented a comparison
of power consumption and accuracy for Owlet and traditional
arrays. Figure 14 in Section §5.1 presents the energy consumption
of Owlet and other state-of-the-art arrays and compares the median
errors in DoA estimation. Here we show the energy consumption of
each submodule, i.e., computation, ADC, and microphone frontend,
separately in Figure 24. Owlet consumes less than a 100C⌘ of
the power required by the traditional arrays for similar angular
resolution and accuracy.
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9-mic Array

Owlet (2-mic)

Microphone
ADC
Computation

Figure 24: Overall energy consumption of array-based systems and
Owlet.
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6 LIMITATIONS AND DISCUSSION
Needless to say, current version of Owlet is an exploratory �rst
realization of the concept and there is room for improvements and
further work. We discuss a few points here.

• Multiple sound sources: We tested our prototype in various
acoustic environments, with various noise sources and for di�erent
types of target sounds. At this stage, we assume one signal source
for DoA estimation. When multiple sources overlap, the system
attempts to analyze the strongest signal for direction estimation and
considers other sources as noise. While considering one signi�cant
sound source is deemed practical for many applications, we believe
multiple DoA estimation will be possible with Owlet system.
Probably the most viable method would be adapting statistical
separation source signals and then seek for an optimal match with
the signatures for DoA detection. We leave this topic to future work.

• Theoretical bounds on capacity: Array signal processing
has been studied deeply over the past three decades. As a result,
it is possible to accurately estimate the theoretical bounds on
the achievable spatial resolution under various limiting factors
and array formation. Such information is crucial for array design
and simulations. The concept of Owlet di�ers signi�cantly from
the array processing techniques for spatial information retrieval.
However, we can analyze the bounds of its performance through
information-theoretic treatment of the entropy of the available
directional gain patterns. The shape and size of the stencil along
with the frequency of the sound include additional constraints on
Owlet’s capacity to produce diverse gain-patterns. Such a theoretical
assessment is likely to bene�t the understanding of the system and
guide improvement e�orts.

•Mobility: The Doppler frequency shift due to fast motion may
a�ect the frequency gain-patterns that Owlet uses as directional
cues. Our prototype operates at the low-frequency audible signal
range, which is less a�ected by the mobility of the sound source
or the receiver. Moreover, the DoA estimation with the parallel
frequency signal provides a certain degree of robustness against
Doppler frequency shift. Therefore, we sidestepped the analysis of
the system for mobility. However, Owlet can potentially operate at
higher frequency signals, and it will require design considerations
to detect and compensate for the frequency shifts.

• Inaudibility of sound signal: In this paper, we have considered
audible sound frequencies for system calibration and source
signals. Long wavelength of the low-frequency signals likely to
show less diversity in the frequency gain-pattern which a�ects
the achievable angular resolution. We deliberately selected this
operational frequency to show system performance at the lower
end of the spectrum, where higher frequency can show better
performance in terms of both the spatial resolution and reducing
the stencil size. We plan to explore inaudible near-ultrasound
(17 � 24:�I) and ultrasound (> 24:�I) ranges for subsequent
versions of the system.

7 RELATEDWORK
The literature is rich in techniques for spatial analysis of sound.
Seminal work in direction of arrival estimation using microphone

arrays [7, 47, 48, 50], array signal processing for beamforming [20,
36, 57], and subspace-based super-resolution algorithms [53, 65]
have signi�cantly advanced this �eld of study. In the recent past,
new innovations in ubiquitous spatial acoustic sensing [13, 26, 41,
42, 49, 60–62, 67, 68] have opened up new opportunities. We sample
below two topics closely related to Owlet.

• Acoustic structures: The study of the impact of structures
on sound �elds has a long lineage. The usage of large building
structures to amplify sound or reduce noise is found in many
ancient architectures. Architectural acoustics is also scienti�cally
explored and implemented in modern houses and auditoriums
for reverberation control and sound isolation. Research relevant
to Owlet include designing 3D-printed acoustic metamaterials to
absorb speci�c frequency bands [11] and developing meta-surfaces
to generate di�raction-limited acoustic �elds [46]. The study of
acoustic structures in sensing applications is relatively new. Li
et al. [39] construct acoustic �lters using additive manufacturing
that controls the impedance of discrete frequencies. In [30],
authors create physical notches on a surface to make acoustic
barcodes. Some recent works [38, 63] make tangible user interfaces
by 3D printing tiny acoustic structures. These works vary the
structure shapes to create distinguishable frequency responses and
use smartphone microphones to collect the signal and perform
classi�cation.

• Monaural DoA: Existing studies [47, 48, 50, 67] explored the
usage of microphone array for DoA estimation. Lately, several
papers have emerged that focus on reducing resources in directional
acoustic sensing. For instance, [16] keeps a single microphone in a
known room and makes use of the re�ections and scattering from
the walls of the room to localize the sound source. In [64], a small
vertical wall of varying shape is placed next to a microphone which
changes the frequency response for di�erent directions of sound.
A few recent works [17, 18] place small structures like legos and
cubes around a microphone to produce scattering. These works on
monaural localization either keep a dictionary of possible source
models or predict the source model before estimating the DoA. The
structures used in these works are big which add diversity but are
unsuitable mobile sensor systems. Similarly, [28] learns the spectral
features of a sound signal to detect the distance of the speaker but
only in controlled indoor environments.

8 CONCLUSION
This paper presents Owlet, a practical system for low-power
acoustic DoA estimation and source localization using acoustic
structures. The core idea is to shape the directional impulse
response of a microphone by covering it with a carefully designed
stencil. Sound di�racted by this stencil carries a direction-speci�c
signature, an indicator of the directional information of the recorded
sound. Owlet develops a robust DoA estimation technique using
this concept and creates a prototype for demonstration [25] and
evaluation. The prototype exhibits a similar angular resolution of a
large aperturemicrophone array, while using only twomicrophones
in a compact form-factor. The core idea opens up new applications
in ubiquitous acoustic sensing and new possibilities of sensing
architecture using 3D-printed passive structures. This paper is the
�rst step towards this broader vision.
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