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ABSTRACT
This paper presents the design and implementation of SPiDR,
an ultra-low-power spatial sensing system for miniature mobile
robots. This acoustic sensor produces a cross-sectional map of
the �eld-of-view using only one speaker/microphone pair. While
it is challenging to have enough spatial diversity of signal with
a single omnidirectional source, we leverage sound’s interaction
with small structures to create a 3D-printed passive �lter, called
a stencil, that can project spatially coded signals on a region at a
�ne granularity. The system receives a linear combination of the
re�ections from nearby objects and applies a novel power-aware
depth-map reconstruction algorithm. The algorithm �rst estimates
the approximate locations of the objects in the scene and then
iteratively applies fractional multi-resolution inversion. SPiDR
consumes only 10<, of power to generate a depth-map in
real-world scenario with over 80% structural similarity score with
the scene.

CCS CONCEPTS
• Computer systems organization ! Embedded and cyber-
physical systems; Sensors and actuators.
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1 INTRODUCTION
Miniature mobile robots are emerging with new capabilities and
skills. Insect-sized robots, a few inches in size, can work as �rst
responders to search for survivors in disaster debris [63], perform
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Figure 1: SPiDR, an ultra-low-power acoustic spatial sensing system
for mobile robots. The system uses a carefully designed 3D-printed
micro-structure for projecting spatially coded signals for imaging.

mining or agricultural foraging [34, 125], and can even move heavy
objects to organize [22]. These small robotic systems, when paired
with autonomous navigation, will create new possibilities in a
wide range of applications, including precision farming, disaster
management, and surveillance and monitoring. However, it will
require overcoming a set of challenges to realize this vision and
probably understanding the environment for navigation is the most
crucial of them. Existing techniques are not directly applicable
in small robotic systems for their unique constraints of limited
energy source, small size, limited computational power, and the
requirement of low-cost manufacturing (SWaP-C constraints [74]).
In this paper, we present SPiDR1, an ultra-low-power acoustic
spatial sensing system capable of generating an accurate depth-map
of nearby objects. Figure 1 gives an overview of the system.

Widely adopted methods for scene perception basically scan the
surroundings and generate a depth-map of the scene [76]. Lidar
[20], for example, uses a moving laser source to scan each point
in the surrounding 3D space and �nds the distance to that point
by analyzing the re�ected signal. Radar- or sonar-based systems
[11, 70], on the other hand, eliminate mechanical movements
using a phased array of antenna/transducers that is capable
of electronically focusing the radio frequency or sound signals
to a speci�c direction, called beamforming. Given mechanical
maneuvers are power ine�cient, beamforming would be preferable
for our application. However, in beamforming, a �ne angular
resolution of the beam requires a large number of transducers to
transmit the signal simultaneously. This architecture needs parallel
transmit/receive hardware chains and processing that leads to
higher computational complexity and power budget. Note that,

1SPiDR stands for Structure-assisted Perception, Detection, and Ranging
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Figure 2: The concept of the spatially coded channel sounding
method. The received signal is the weighted linear combination of
the re�ections that bear the direction-speci�c signature.

in micro-robot systems, only 10-30<, of power remains available
for sensing after allocating power to the actuators for locomotion
[18, 49, 51, 61].

In our quest to develop the ultra-low-power sensing system, we
start by exploring the possibility of spending minimum power
on the sensing hardware. We use acoustic signals for their small
wavelength at a low frequency (8.5<< of wavelength at 40:�I).
Small wavelength o�ers �ner resolution for spatial sensing, while
simple low-cost oscillators can produce the frequencies. For active
sensing, where the sensor requires to send a signal and analyze
the received re�ections, it boils down to using at least one channel
for signal generation and one for reception (a time-interleaved
transmit/receive channel leads to similar performance). The single
transmitter/receiver model rules out the possibility of electronic
beamforming for steering the signal. Also, we do not consider
mechanical steering for scanning the scene with one sensor – even
an advanced low-power mechanical steering system consumes
33<, of power [61]. We overcome this issue by using a spatially
coded signal that sends unique patterns of signal in each direction,
as shown in Figure 2. The re�ection of this signal carries the
information of the direction of the re�ecting object and its distance
is known from the signal’s time-of-�ight – the two parameters
needed to know the locations of the obstacles in the scene. Sounding
the channel with spatially diverse signals is still challenging given
we have only one omnidirectional transmitter. Such transmitter
spreads the same signal in all directions failing the purpose of
spatial codes. We solve this problem by controlling the properties
of the multipath channels, a well-studied concept in wireless
communication, using a 3D-printed micro-structure.

Multipath is a natural phenomenon where a signal, after leaving
the transmitter, re�ects o� objects in the environment to create
replicas and the replicas propagate through paths of di�erent delays
before combining at the receiver. The lengths of these individual
paths decide the phase delays of the replicas and therefore their
superimposition leads to a speci�c amplitude and phase of the
received signal. A unique combination of the path lengths can
produce a unique signal similar to a code pattern. Of course, path
lengths in environmental multipath are not de�ned and therefore
do not help in our solution, but we use the concept of multipath
superposition to create signals with direction-speci�c codes.

We design a 3D-printed cover for the speaker, called a stencil, that
divides the speaker’s output into multiple replicas by passing it
through small internal tubes. The lengths of these internal tubes
are carefully calculated to channelize the signal replicas through
di�erent time-delayed paths before releasing them through separate
output sound holes pointed in di�erent spatial directions. These
delayed replicas of the sound signals again interfere with each other
and create complex but predictable patterns at di�erent points of
the scene. It is like sending a speci�c code to a particular 3D point
in the space. Imagine the target space is divided into uniformly
spaced 3D points or voxels. If a voxel is occupied by an object (or a
part of the object), the coded signal will re�ect back to the receiver
with its unique signature. In fact, all the coded re�ections from the
target scene combine at the receiver and can be separated through
processing to convert them to a 3D point cloud of the objects in
the scene. The navigation application, however, requires only a
2D cross-sectional view of the scene, which reduces the required
processing power. Given the stencil is simply a passive structure,
only the transmitter (speaker) and the receiver (microphone) in
this sensor frontend consume energy, which is less than half a
milli-joule.

New architecture for the sensing frontend alone does not
provide su�cient advantage in overall low-power sensing. The
computation of the scene from the received combination of re�ected
codes requires a channel inversion approach, which can be a
computationally expensive operation. As detailed in Section 3.1,
SPiDR adopts the approach of fractional scene reconstruction and
stitching algorithm that signi�cantly reduces the energy cost for
computation. The key idea is to have a coarse-grained probabilistic
estimate of the objects’ locations in the scene and then apply
iterative re�nements using partial inversion of the channel matrix
leading to exponentially less computation than the traditional
approach. SPiDR can also take advantage of the movement of the
robots to stack multiple maps of the same objects in the view
to create a higher resolution representation of the scene. With
optimized computing, the entire scene reconstruction process takes
0.83<� per depth-map for the same 20 cm by 10 cm scene.

Along with past works in mobile sensing and localization, our
work builds on the well-established theories of wireless channel
estimation, multipath propagation of signal, and computational
sensing. The idea of spatial sensing through a single measurement
has been explored in computational photography [33] that applied
“coded aperture” to pass spatial image information through
incoherent functions and combine on a sensor. Coded aperture
for sensing can be similar (in fact, the inverse) idea of using a
3D-printed stencil for projecting probing signals. Some of the recent
works in medical ultrasound and radio-frequency (RF) imaging
have also shown the use of coded aperture to improve image clarity.
Probably the work closest to SPiDR is the compressed ultrasound
imaging technique [75] that mechanically moved a coded aperture
mask to image objects placed in water. However, SPiDR’s technique
for low-power spatial sensing di�ers from the past works in four
fundamental ways to meet the practical constraints of a micro-robot
platform.
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(a) No scanning required: Past works on radar or spatial sensing
with a single sensor relied on movement of the sensor for creating
a synthetic aperture [24] or added mechanical maneuver to the
sensor [91] to introduce diversity in measurements. SPiDR does not
require any mechanical motion and therefore does not need any
power consuming actuator in the design.

(b) No location speci�c information needed: Unlike the past
approaches with echo analysis [29, 64] and location �ngerprinting
[128], SPiDR does not attempt to learn the signal pattern in a
speci�c location. The purpose of our calibration is to learn the ideal
channel in an empty space with an ideal point re�ector. Therefore,
a one-time in-lab calibration is su�cient and the sensor comes with
this channel calibration pre-loaded. Moreover, the design of the
stencil does not use any location speci�c information and therefore
one design works for all locations.

(c) Power-aware hardware/signal: The depth resolution is
inversely proportional to the frequency. However, we restrict
ourselves to relatively lower frequency of ultrasound and use
commercially available 40:�I piezo transducer. These transducers
are inexpensive and low-power oscillators can produce this signal.

(d) Power-aware computing: We exploit the sparsity in
target scene to reduce the number of operations in computing
the depth-map. The computational cost of our iterative scene
reconstruction algorithm is proportional to the fraction of the scene
occupied by objects.

This paper explores a broader vision of leveraging passive structure
toward extremely low-power sensing and perception. As this
research evolves, we envision that the core techniques will serve to
enable applications beyond robotic navigation. Possible applications
include ubiquitous gesture recognition, long-term underwater
monitoring, and soft-tissue imaging with handheld devices. While
several opportunities exist in research and application, this paper
focuses on developing the core capabilities and assessing the limits
of the systems. To this end, we have made the following three
speci�c contributions at the current stage of this project:
• A novel channel sounding method for spatial sensing with a
zero-power passive extension to a single sound source. We
leverage sound’s interaction with small structures to create a
3D-printed passive �lter, called stencil, that can project spatially
coded signals on a region at a �ne granularity.

• An ultra-low-power processing algorithm for depth-map
reconstruction algorithm. The algorithm iteratively re�nes
the initial coarse estimation of the map using our fractional
multi-resolution reconstruction.

• A functional hardware-software prototype of the spatial
perception system. We use this demonstrable implementation of
SPiDR for benchmarking the power pro�le and evaluating the
performance under real-life conditions.

2 CORE INTUITIONS AND PRIMERS
Traditional methods for scene perception rely on scanning the
region with directional beams (either transmit or receive, or both) at
one angle at a time. SPiDR takes a fundamentally di�erent approach
and used the ‘spatially coded channel sounding’ method. The key

Figure 3: Diversity projection with the stencil with the internal
channels to encode unique gains to signals to probe each pixel on
the object plane with a unique signature.

intuition is to send the probing signal in a way such that it bears
unique signatures or codes for every spatial angle. When re�ected
by an object in a certain direction the re�ected signals bear the
code of that speci�c direction. The scene reconstruction method
essentially identi�es the unique codes present in the re�ected
signal and maps them to the direction and distance of the objects.
While the concept is clean in theory, there are several challenges
in leveraging its advantage in a low-power and low-complexity
system. In order to minimize the power consumption and the
complexity of the hardware frontend, we use only one speaker
and one microphone to send and receive the probing signal. We
have shown that a carefully designed and 3D-printed passive
structure can be used to embed directional signatures in the transmit
probing signal without requiring any mechanical or computational
resources. If this spatially coded channel sounding is done well, a
single receiver can use a linear superimposition model to recover
the direction and depth information of the nearby objects from the
re�ected signals. We elaborate on these two key intuitions next.

2.1 Coded signal projection with structures
The superimposition of re�ected components of a signal, known
as the multipath e�ect, alters the waveform of the signal and its
impact can be diverse based on the number of paths and their
complex gains. While the multipath e�ect is considered unwanted
in communication and other acoustic applications, we leverage this
concept to project spatially diverse probing signals on the scene.
However, instead of relying on the ambient re�ections, we use a
carefully designed acoustic structure, we call stencil, to produce
distinct channels for sound propagation with desired delays and
attenuations. Figure 3 shows the design principle of the stencil.

The stencil is a 3D-printed porous cap that covers the speaker and
channelizes the output signal through a number of internal tubes are
connected to the openings pointed at di�erent angular directions,
as shown in Figure 4. The size and length of the tubular paths vary
to control the amplitude and relative phase of the signals at the
opening. Note that the openings of the stencil behave as individual
signal sources that transmit the same signal with a unique delay
and attenuation, i.e., multiplied with a unique complex gain.
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Figure 4: (left) The 3D design of the stencil and (right) the internal
structure showing the tubular helical paths of di�erent lengths.

Figure 5 shows that the stencil spreads the signal energy in a wide
region. On the other hand, Figure 6 shows how the stencil diversi�es
the amplitude of the signal in di�erent directions. These signals
again combine with each other before reaching the object plane and
the �nal signal at the object plane is re�ected back to the receiver.
Therefore, the stencil should be designed in a way such that it
creates a speci�c signal pattern at the object plane, representing
unique and diverse codes.

Figure 5: Ultrasound emitted from the speaker without (left) and
with the stencil (right). The stencil spreads the signal energy over
the region of interest.

2.2 Single receiver depth mapping
We discretize the scene to a collection of pixels on a vertical
plane at a certain distance from the sensor. Multiple such planes
placed at di�erent depths cover the region of interest. A horizontal
cross-section of the 3D scene, however, provides su�cient
information about the location of the objects for navigation
purposes. Therefore, we consider one layer of pixels per plane
representing the 2D cross-section of the scene we are interested in
reconstructing. The probing signal only re�ects o� the pixels that
represent an object and combines linearly at the only microphone
used for sensing. The received signal ~A2E can be formulated as
~A2E = �G . Here � is the collection of ideal re�ected signals from
each individual pixel organized in columns. The vector G represents
the re�ectivity status of the pixels indicating the fraction of the
ideal signal re�ected from each pixel. The values of G are higher
when the object at the corresponding location is a good re�ector
of the signal and a zero value indicates the absence of object at
that pixel. In other words, the vector G selects columns of � to
map a scene to the weighted sum of re�ections ~A2E . Our scene
reconstruction algorithm recovers G from the received signal ~A2E .

3 SYSTEM DESIGN
3.1 Low-power scene reconstruction
The cross-sectional scene reconstruction or depth-map estimation
relies on the inversion of the channel matrix � to recover the
pixel occupancy vector G , i.e., G = ��1~. Here, ~ is the received
time-domain signal with length " and G is the 2D pixel matrix

Figure 6: The amplitude of acoustic signal at the cross section of
the image plane when (left) speaker does not have any stencil, and
(right) when it has a stencil. The internal micro-structure of the
stencil diversi�es the signal amplitude as direction codes.

reformatted as a vector of length # . This makes the dimension of
the channel matrix � to be" ⇥ # . Note that, the value of" can
be largely dependent on the time of sampling per measurement
(C<40B ) and the sample rate (5B ). For instance, 5 milliseconds of
measurement at 200:�I sample rate, which is the Nyquist rate
for low-frequency ultrasounds, makes" (= C<40B ⇥ 5B ) to be 1000
samples. On the other hand,# is the total number of pixels covering
the region of interest. Typically navigation of micro-robot requires
scanning a small region due to their size. We scan a 202< ⇥ 102<
region at 12< resolution, leading to # = 200 pixels per map.
Manipulation of a 1000 ⇥ 200 � matrix is trivial on a standard
computing platform, but this can consume a signi�cant fraction
of power and computational latency on a single board computer
in a tiny robot. The power consumption and latency of a matrix
inversion andmultiplication operations increase exponentially with
the dimension of the matrix. Figure 7(a) shows the increase in
power for di�erent column sizes of our channel matrix � for
the reconstruction of each map. A 1000 ⇥ 200 channel matrix
will consume around 400<� of energy. We address this challenge
through our multi-scale scene computation strategy and reduce the
power consumption by 50⇥, without compromising the quality of
the reconstruction. This technique uniquely leverages the linearity
of the signal model and the ‘locality of pixel values’ to reduce
computational latency and power, as elaborated next.
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Figure 7: (a) Energy consumption for di�erent number of columns
in the channel matrix � . (b) The correlation between the signals
at nearby locations. The pixels within 32< have correlation higher
correlation higher than 0.5.

Fractional scene computing: If we divide our region of interest
into a " ⇥ # grid, each block will correspond to a pixel of the
reconstructed scene. Also, each column in the channel matrix
represents the coded channel between a block in the grid and the
sensor. Ideally, the channel for each block should be uncorrelated
with any other blocks in the grid. However, despite our coded
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channel sounding technique, the fundamental di�raction limit of
the low-frequency signals used by our system makes it di�erent
in practice. As shown in Figure 7(b), the channel of a block shows
a certain degree of correlation with nearby blocks with a gradual
reduction over distance. This limitation in channel independence,
which we overcome at a later stage in the processing, o�ers an
opportunity to have a probabilistic measure of the occupancy status
of a grid without directly measuring the channel. In other words,
we can identify a certain block and use the knowledge of the
correlation of channels in nearby grids to assume the presence of an
object at that location with a certain con�dence. With this intuition,
we de�ne meta-pixels that can cover a cluster of pixels based on
correlated channels. Of course, the locations of the meta-pixels
depend on the distribution of correlated channels or rather the
projected signal codes. Given the projected codes are constant,
we can estimate the location and cluster size of the meta-pixels
beforehand. We create a new channel matrix �<4C0 by selecting
rows corresponding to the meta-pixels which are small in number
and therefore drastically reduce the size of the channel matrix. We
use �<4C0 for computing an approximate scene G<4C0 at a fraction
of power of the full reconstruction with � .

The approximate scene G<4C0 lacks usable resolution for perception
but provides the possible locations of the objects along with a
probabilistic score as the con�dence of estimate. We use this
cue to iteratively zoom in to those probable locations. As we
select a smaller region to further reconstruct the scene to improve
resolution, we again work with a smaller subset of the columns of� .
Every such operation reveals a few more pixels in its vicinity that
requires processing for higher resolution mapping. Considering the
size and continuity of rigid objects, we ‘search’ these neighborhoods
of the occupied pixels with this fractional computing method.
Once the iterations do not generate new regions to compute,
the algorithm converges and stitches all the fractional maps to
a complete reconstructed scene. We have evaluated this technique
extensively in section 4.6 & 4.7 that shows the process can cost
100⇥ less power than a single shot reconstruction to produce a map
with similar accuracy and resolution.

Note that theoretically, the fractional scene reconstruction process
can take more power in cases where the scene is extremely dense.
In that case, G<4C0 will indicate all pixels to be potentially occupied
and the iterative zooming will end up processing all the pixels in
turns. Of course, in practice robots, movement pattern ensures that
the �eld of view is not always obstructed by a dense scene. However,
to sidestep such issues we develop a heuristic method based on the
power of the total re�ected signals to identify an overly dense or
rare scene.

Predictive pre-fetching: To further improve the energy e�ciency
of the scene reconstruction algorithm, we pre-compute and store
the inverse of all the coarse-grained and �ne-grained measurement
matrices. During real-time scene reconstruction, we pre-fetch these
inversematrices based on the coarse location of detected objects.We
also minimize the number of pre-fetching operations by predicting
the translation of objects in the scene based on the movement of
the robot.

Tensor parallelization: Recent deep learning innovations have
led to remarkable improvements in hardware accelerations. Several
single board computers now have dedicated GPUs to perform
tensor operations in real-time [2, 4, 43]. These hardware units
can perform multiple �oating-point operations in parallel with
a single instruction which exponentially increases their energy
e�ciency. Unfortunately, traditional techniques have been lacking
these speedups because of the sequential operations in CPUs. We
change our matrix inversion and matrix multiplication operations
from the ground up to take advantage of these intrinsic properties
of the tensor parallelization. In our SPiDR prototype, we leverage
the NEON SIMD unit [27] of the Raspberry Pi 4 and convert our
operations to vector instructions using the MATLAB coder [86].
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Figure 8: Row 1: Comparison of the correlation of the time domain
signals project at di�erent angles with an arbitrary stencil (left) and
an optimized stencil (right). Row 2: Comparison of the location de-
tection performance for a small object (1cm wide) placed at di�erent
angles from the sensor with an arbitrary stencil (left) and an opti-
mized stencil (right).

3.2 Directional code projection
The accuracy of our map reconstruction or spatial sensing depends
on the sensor’s ability to generate a diverse probing signal, such that
re�ections from each location of the scene carry a unique signature
to the receiver. While mechanically rotated directional speakers or
beamforming arrays can send di�erent directional signals, they do
not meet the latency and power requirements. We aim to use only
one common 40:�I ultrasound speaker [55] that consumes around
90 micro-Joule of energy for sending a 5 milli-second of pulse
for our system. To produce a directionally diverse signal, we use a
3D-printed passive microstructure cap for the speaker, called stencil.
We have shown that it is possible to modulate spatially diverse
sounds using a carefully designed zero-power, low-complexity,
low-cost, and miniature acoustic structure. However, an arbitrary
design for the stencil does not produce enough diversity for each
pixel location at the target scene for successful mapping. Figure 8
shows the correlation of the signals projected at di�erent directions
for an arbitrary stencil and an optimized stencil, along with their
scene reconstruction performance. The design of a stencil that
can generate diverse signals for each target pixel starts with an
optimization process, called multipath synthesis.
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Figure 9: Di�erent sizes of stencils used in our experiments.

Multipath synthesis: We consider the openings on the 3D
structure as secondary sound sources and assume a speci�c
combination of the amplitude and phase distributions of these signal
sources can result in the desired signal pattern at the object plane.
We then estimate the signal phases along the paths between all
pair of pixel and the secondary signal sources. Next, we compute
the channels due to superimposition of these estimated signals. For
# secondary sources, the sound at the< � C⌘ location (pixel) is
calculated by super imposing the propagations as follows.

?< = 8
d2:(

2c

#’
==1

0=4
82c 5 C 4

�83<=

3<=
(1)

Here 0= and C are the amplitude and time delay for the = � C⌘
signal source, 5 is the frequency of transmitted signal, 3<= is
the distance between the = � C⌘ source and the < � C⌘ location,
d and 2 are the density and sound speed in the air respectively.
( is the surface area of the re�ecting object and we consider
this to be a constant unit surface. This process is similar to the
well-established Weighted Gerchberg-Saxton (GS) algorithm [28]
used in holographic projection. Figure 9 shows the comparative
sizes of the metamaterial stencils used in our experiments.

We estimate the channel matrix � with the following equation.

� (<,=) = 8 4
�83<=

3<=
(2)

Here is a constant value equal to d2:(
2c . In theory, this assumption

that any arbitrary signal pattern can be projected on the object plane
will require a large projection �lter with in�nitely many openings
on the structure. Limiting the size and openings on the 3D structure
for practical purposes will restrict the achievable diversity on the
object-plane and/or the size of the target pixel. Naturally, the signal
wavelength also impacts the achievable diversity for a given pixel
size. We optimize these parameters with an algorithm that varies
each design parameters in iterations and picks a set of parameters
that provide best overall diversity. We attempt to minimize the
‘F-measures’ with di�erent support vectors that indicates the quality
of the channel matrix � for map reconstruction [44]. A smaller F
value indicates better recovery performance and a value smaller
than 1 ensures the matrix H is robust to small environmental noises.
We vary the maximum lengths of tubes based on the size of 3D
structures to learn the trade-o� between maximum tube length and
imaging performance. We transmitted 40:�I 10-cycle tone-burst
signal. The stencils have 6 tubes with 1.5mm diameter. As shown in
Figure 10(a), the F value becomes smaller with the increasing tube
length. In practice, we �nd a stencil of 7 ⇥ 3 ⇥ 32< is required to
support a 24cm tube length. The size of 16cm, 8cm, and 4cm tubes
are 5 ⇥ 3 ⇥ 32<, 3 ⇥ 3 ⇥ 32<, 1 ⇥ 3 ⇥ 32<, respectively.

The di�raction can also adversely a�ect the diversity of the received
signal. When acoustic signal encounters the edge of the tube with
a diameter smaller than the wavelength of signal, it tends to bend
or de�ect around it limiting overall resolution. In a COMSOL
simulation, we vary the diameter of the tubes with the longest
tube of length 16cm. As shown in Figure 10(b), the F value remains
stable for small variation of the tube diameters.

(a) (b)

Figure 10: F values with (a) di�erent lengths of tubes inside stencil,
(b) di�erent diameters of tubes.
Leveraging frequency diversity: In our measurement model,
~ = �G , the number of columns in the matrix � indicates the
number of unknowns, and the rows are the measurements. More
independent measurements compared to the number of unknowns,
i.e. a tall and skinny � matrix, leads to better estimation of the
unknowns or better reconstruction of the map. Past works in
computational photography with similar formulation attempted
to increase the number of rows by taking multiple measurements
while introducing controlled variations to the scene or mechanically
moving the sensor for diversity. None of these approaches are
feasible for applications with small robots due to power constraints.
However, we overcome this limitation of the passive structure by
leveraging multipath diversity over frequency.

Note that the spatial multipath patterns per pixel created by the
stencil depend on the length of its internal tubes. However, the
phase introduced by these paths depends on the frequency of the
signal. This means the stencil that creates a speci�c spatial pattern
for a certain frequency, can create components of completely
di�erent phases for another frequency leading to a di�erent spatial
code.We build on this intuition to optimize the stencil design jointly
for a set of discrete frequencies, such that the projected signals are
maximally di�erent at any two locations and also for any two
frequencies. We leverage this frequency diversity during scene
reconstruction by �ltering individual frequencies from the received
signal and considering them as individual measurements. We stack
these measurements on top of each other to get a newmeasurement
signal ~ and similarly we stack the channel matrix for di�erent
frequencies before proceeding to our scene reconstruction process.
Figure 11 shows the reconstruction performance for di�erent
individual frequencies and for combined reconstruction.

3.3 Optimal microstructure design
Once the required phase delays are determined through the
optimization algorithm, we make a 3D model for the stencil. To
achieve mentioned phase delays, we use an automated CAD script
to design non-overlapping tubular paths inside the 3D structure.
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Figure 11: Confusion matrix of imaging accuracy for di�erent
frequencies and after combining all frequencies together.

The path lengths of these tubes determine the phase di�erence
of secondary sources, i.e., the sound signals at the output holes
of the stencil. The shape of the tubes impacts the propagation
of the sound waves through them due to the capillary e�ects and
resonance of the sound column. We experimented with a number of
shapes for the tubes and converge on concentric helical paths for the
microstructure. Figure 6 shows the improvement of signal diversity
distribution on a cross-sectional plane in front of a transducer with
the stencil.

Next, we export the design as an STL �le and slice it for 3D
printing. We used the Elegoo Mars photocuring 3D printer [38]
to print the stencils. We use an ultraviolet light-curable resin
with 1.1956/2<3 density that solidi�es when exposed to the light
of 405=< wavelength. Compared with jetting-based printing, it
provides a high resolution and smooth �nish which is ideal for the
tiny sub-structures on the stencil. More importantly, photocuring
method leads to dense surfaces and makes the acoustic behavior of
the stencil predictable [139].

3.4 Motion stacking
So far in our processing, we did not consider the movement of
the robot that provides an opportunity for further improving the
quality of the generated map. Perception in mobile robots requires
continuous mapping of the scene during navigation. Therefore, it
provides multiple snapshots where certain parts of the scene are
common. It is possible to reorient the snapshots and superimpose
them to generate a robust and high-resolution reconstruction of the
scene. The concept of superimposition or stacking maps is a popular
approach in robotic navigation as well as in photography and
imaging. Some common techniques include linear and non-linear
�ltering [50, 101], optical �ow [82], and deep fusion [127]. However,
to remain within the power budget, we borrow the technique
of mean and median stacking, which runs at O(n) and O(log(n))
complexity without signi�cantly compromising accuracy. SPiDR is
capable of producing snapshots of the scene at a maximum speed
of 170 frames per second, but depending on the speed of movement
of the robot even a slow frame rate (e.g., 30 frames per second)
provides an opportunity for stacking. We implemented and tested a
motion-based stacking algorithm on the cross-sectional depth-maps
generated by SPiDR. We use the knowledge about the robot’s
movement to compensate for the translational changes between
consecutive maps before superimposition. Empirical results show
that median stacking is capable of �ne-grained map generated

along with improvements in outlier removal. Figure 12 shows the
performance of stacking for �ve frames.

Frame 1
Frame 2

Frame 3
Frame 4

Frame 5

After motion stackingMaps constructed during motion

Figure 12: Stacking multiple frames suppresses spurious objects in
the scene. Above we show the result of motion stacking of 5 frames
taken as the robot moves.

4 EVALUATION
To this end, we implement a prototype of SPiDR and perform
experiments with di�erent scenes. We use lidar [59] and ultrasound
distance sensor [56] for the baseline performance comparison and
benchmarking the energy consumption. Next, we elaborate on the
experimental setup, followed by the evaluation benchmarks.

4.1 Metrics
We evaluate the performance of SPiDR using the following metrics:
• Structural similarity (SSIM) index [131] ((�" =
; (G,~)2 (G,~)B (G,~), where ; (G,~), 2 (G,~), and B (G,~) are
respectively the luminance term, the contrast term, and the
structural term calculated based on the local means, standard
deviations, and cross-covariance for estimated image G and
ground truth image ~.

• RMSE error A =
Õ#
8=1

q
(?8�?̂8 )2

# , where N is the total number of
pixels in the ground truth, ?̂8 is the binary score (0 or 1) of the
pixel, and ?8 is the binary score of the ground truth. A score 0
means no object at the pixel, and vice versa.

4.2 Overall performance
In the SPiDR prototype, we embed an ultrasound speaker in a
3D-printed stencil and a microphone placed on the top of the stencil.
We also compare the performance and the power consumption with
lidar and ultrasound distance sensor. The collected data is processed
o�ine using Matlab scripts on a computer. The sound sources are
ultrasound 10-cycle tone burst signals with frequencies 38� 42:�I
with 1:�I apart, with signal strength 40 dB SPL. The size of the
stencil is 5 ⇥ 3 ⇥ 22< with internal tubes. We show the images of 3
representative scenes in Figure 13. The real-world scenes are shown
in the �rst row, and the estimated scenes are shown in the second
row. We observe that the scenes can be detected with SPiDR when
up to 70% of the scene is occupied, where the width of the scene is
202<.

Figure 14 summarizes the overall accuracy (SSIM) and energy
consumption compared with lidar and ultrasound distance sensor.
SPiDR can produce similar accuracy as lidar but with 400⇥ less
power consumption. To compare the power consumption with
Radar, we refer to an existing work [30] that achieves similar
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Figure 13: Depth-map reconstruction using SPiDR for various real-
world scenes.

resolution for imaging using a 64-microphone array and 40:�I
ultrasound speaker. With 64 microphones, the power consumption
is up to 15.7<� , 19⇥ higher than our work. As shown in existing
work [40], a depth camera for short-range scanning, named
Primesense Carmine, has 7⇥ less power consumption than Kinect
V2, and it still consumes 75<� energy for one image, 90⇥ higher
than SPiDR.
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Figure 14: Overall performance of the SPiDR compared to Intel
Realsense lidar and ultrasound distance sensor mounted on a servo
motor. SPiDR consumes a fraction of power compared to Lidar and
motor based systems while delivering high accuracy in depth-map
reconstruction.

4.3 Impact of the environment
Environmental noise: In this experiment, we evaluate the
system’s performance under di�erent ambient noise. We played
sound clips of noises from various indoor (regular household, mall,
and library) and outdoor scenarios (tra�c noise). As shown in
Figure 15(a), natural ambient noise does not have impact on the
performances, with almost constant RMSE error less than 0.2 and
SSIM value more than 0.6. It is obvious as audible sounds do not
impact the 40 �I ultrasound band SPiDR operates in. Next, we
test the system with increasingly higher ultrasound noise at the
40:�I band so that Signal-to-Noise ratio (SNR) of the received
signal degrades. As shown in Figure 15(b), the system is robust
when the SNR is at 60dB. Note that naturally ultrasound noise level
in the environment is extremely low and even with an inexpensive
speaker with internal noise the SNR is higher than 823⌫.

Di�erent locations: We evaluated SPiDR in three di�erent
locations – indoor laboratory, lobby, and open-air outdoor places. In
these experiments, we calibrated only once in the lab environment.
Figure 16 shows that the performances in these environments are
similar, with an RMS error below 0.2 and SSIM higher than 0.6. This
result indicates that the system requires only a one-time calibration
to function in arbitrary locations.

(a) (b)

Figure 15: Impact of varying (a) types and (b) levels of noises on
depth-map reconstruction.

Figure 16: SPiDR’s performance in di�erent environments.

4.4 Impact of system parameters
We evaluated the performance of our prototype under various
conditions. We present the results below.

Cross-sectional depth-map: The width of the scene is 202< and
the depth is 6 � 152<. We place the di�erent sizes of blocks and
their combinations in di�erent locations of the scene. 5 scenes are
collected for each of the sparsity levels. As shown in Figure 17,
the RMS error becomes lower and the IoU is higher when the
sparsity is larger. The estimated scene is calculated by checking
if the coe�cient is larger than a threshold 0.3. The pixel with a
smaller con�dence score than the threshold indicates no object from
the corresponding position. The coe�cient equals to 1 indicates
perfect matching. This means the sparser the scene, the better the
performance. The performance of SPiDR does not vary signi�cantly
when the sparsity of the scene is within 60%. The RMS error is
within 0.5cm.
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Figure 17: Cross-sectional depth-map reconstruction performance
in terms of (a) RMS error and (b) structural similarity, as a function
of sparsity of the scene.

Horizontal location: Instead of imaging the 2D scene (width and
depth) as 2D imaging, we treat the depth as a constant value and
only image the scene in the dimension of width. We show the result
of 1D imaging when the distance between the stencil and the object
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layer is 102<. 10 scenes are collected for 1D imaging with vary
number of objects and object sizes. The object sizes are within
1-6cm and there are up to three objects. As shown in Figure 18, all
the RMS errors for sparsity 70 � 95% are smaller than 0.6cm, and
the SSIM is larger than 0.6 when the sparsity level is above 84%.
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Figure 18: Horizontal localization performance in terms of (a) RMS
error and (b) structural similarity, as a function of sparsity of the
scene.
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Figure 19: CDF plot of (a) RMS error and (b)structural similarity
for depth-map reconstruction at varying resolutions.

Resolution:To test the resolution of SPiDR, we calibrate our system
in 12< and 5<< resolutions, respectively, and compare the scene
reconstruction accuracy. We imaged 25 scenes with sparsity from
60 � 95% for both resolutions, and show the CDF of the RMS error
and SSIM in Figure 19. For both 12< and 5<< resolutions, all the
RMS errors are within 0.5cm and 50% of the scenes have SSIM larger
than 0.75. As a visual example shown in Figure 20, the performances
of these two resolutions are similar, meaning our system is able to
detect 5mm-wide tiny objects.

Figure 20: Scene reconstruction results at 1cmand 0.5cm resolutions.
We modify the number of columns in the channel matrix to have a
higher resolution.

4.5 Impact of scene parameters
Materials/Re�ectivity: The performance may vary with di�erent
types of materials since the re�ection rates of sound are di�erent.
We calibrate our system with 3D-printed resin blocks and test the
performance with objects made of cardboard, wood, and resin. We
image 5 scenes with a sparsity 70% � 95% for each kind of material.
As shown in Figure 21(a), the RMS errors for all the materials are

below 0.3cm, which indicates SPiDR is robust to common types of
materials.

(a) (b)
Figure 21: The depth-map reconstruction performance for (a) dif-
ferent materials and (b) di�erent proximity between two objects.

Proximity: In this experiment, we evaluate the system’s
performance when the distance between two objects varies. From
the experiment with an ultrasound distance sensor, we �nd the
distance sensor cannot detect the disconnection of two objects when
the distance between them is within 32<. We test the system when
the distances between two objects are 0,2,4,6cm, respectively. We
show the quantitative scene reconstruction accuracy in Figure 21(b).
Figure 22 shows the output depth-map for varying gaps. Results
indicate that SPiDR can detect open spaces as narrow as 22<.

Figure 22: Depth-map reconstruction outputs for varying proximity
between objects.

Depth: To evaluate the performance when the object is at
di�erent depths, we put a 3cm width object in depths 6,9,11,13cm,
respectively. The �rst line of Figure 23 includes the ground truth of
the scenes, and the second line shows the estimated images. The
image becomes blurredwhen the distance is farther. But the location
of the object is still accurate. As the system moves closer to the
object, the image becomes clearer. The distance of the object from
the sensor decreases the re�ected signal strength which impacts the
overall accuracy. The quantitative result of scene reconstruction
accuracy with di�erent depths is shown in Figure 24. The RMS
error for all the depths is within 0.6cm and the SSIM is larger than
0.6 when the distance is within 11cm.

Figure 23: Depth-map reconstruction outputs of di�erent depths
of the objects.



MobiSys ’22, June 25–July 1, 2022, Portland, OR, USA Yang Bai, Nakul Garg, and Nirupam Roy

Figure 24: Performance of depth-map reconstruction with di�erent
depths of the objects.

4.6 Computation techniques
Frequency and Motion stacking: As introduced in Section
3, frequency stacking and motion stacking can increase the
performance accuracy of scene reconstruction. Figure 25 shows an
example of the stacking operations. The ground truth is a 3cm wide
object located in the front middle of the scene. Before stacking,
the object is recognized as two 1cm objects, and the �gure has
some other pixels mistakenly detected as 1cm-wide objects. After
frequency stacking or motion stacking, only one object at the same
location is detected, but the size is 1cm smaller or larger. If with both
stacking approaches, the size and location of the object are exactly
the same as the ground truth. Moreover, no points are mistakenly
imaged.

Figure 25: Scene reconstruction of a horizontal barwith andwithout
frequency or motion stacking. (a) Ground truth, (b) Raw output, (c)
Only motion stacked, (d) Only frequency stacked, (e) Both motion
and frequency stacked.

Fractional scene observation: We propose fractional scene
observation to achieve low-power scene reconstruction, as well as
achieving comparable scene reconstruction accuracy. In Figure 26,
we show two examples of scene reconstruction with one or multiple
projects. We observe that the results of with and without fractional
computing are comparable to each other. At the same time, we can
reduce energy by 85%, as elaborated in the evaluation of the power
consumption. We also evaluate the performance with di�erent
fraction rates, as shown in Figure 27. Naturally, the accuracy
decreases with the increase of the fraction rate. In our experiments,
usually a 3cm region shows a higher similarity between the signals.
When the fractions become smaller, it fails to properly represent the
whole scene with the H matrix after integration. This can causes
error in the detection of the “region of interest”.

4.7 Power consumption
In this section, we develop the ultra-low-power prototype of
SPiDR and benchmark its power consumption. Figure 28 shows
the prototype of the setup used for evaluation. We compare its
performance and energy e�ciency with Intel Realsense lidar [60]

Figure 26: The scene reconstruction with and without the fractional
computing method. (a) Ground truth, and the scene reconstruction
(a) without and (b) with fractional computing.

Figure 27: Performance with di�erent sizes of �<4C0 .
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Figure 28: SPiDR prototype for power evaluation.

and an ultrasound distance sensor [56]. We measure the power
consumption of each sub-module in our system, including hardware
frontend, analog-to-digital conversion, and image computation.
Table 1 shows the breakdown of power consumption for di�erent
hardware and software sub-modules. SPiDR consumes a total
9.9<, of power and runs at a rate of 12 depth-maps per second.
This results in 0.83<� of energy per depth-map, which means our
system can continuously run for 3 days on a common 3E>;CB CR2032
coin cell battery [65].

Submodule Energy consumed
Transducer (Hardware) 0.035<�

ADC (Hardware) 0.024<�
Microphone (Hardware) 0.245<�
Computation (Software) 0.526<�

Total 0.83<�
Table 1: Breakdown of energy consumption for the hardware and
software submodules.
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Ultra-low-power implementation: Hardware is a bottleneck
for energy consumption in most of the depth imaging techniques,
like lidar and distance sensors mounted on motors. Our focus is to
reduce the power consumption of the hardware front-end without
losing out the accuracy. We develop SPiDR using TI-MSP430FR5969
MCU [58], an o�-the-shelf 40 �I ultrasound transducer [55],
and the ADMP401 microphone [1]. We use a piezo-crystal based
ultrasound transducer which has a narrow resonating bandwidth
at 38 � 42:�I. We eliminate the need for a Digital-to-analog
converter (DAC) by transmitting a square wave to the transducer.
The impedance matching at the resonance frequency acts like a
bandpass �lter which converts the signal to a narrowband sinusoid.
The transducer has extremely high e�ciency when transmitting
and receiving at the resonance frequency. We use ultra-low-power
sigma-delta ADC of the MSP430 MCU to sample the received
signal. The power consumption during sampling and computation
is shown in Figure 29. We noted that the energy consumed by the
ADMP401 microphone was 49<, so we power up the microphone
only for the duration of sampling of signal, which reduces the
average power per frame to 0.245<� . We believe that better
engineered and low-power pre-ampli�ers [57] can further reduce
the power consumption of the system. Here we have reported
the prototype power consumption from commercially available
components.
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Figure 29: Power consumption during sampling and computation.

Computational optimization: To measure the power
consumption of the computation module with di�erent fractional
computing optimizations we implement the system on the MSP430
with varying sizes of �<4C0 and record the power consumption
using the Texas Instruments EnergyTrace++ tool [126]. We run
the system to compute scenes using di�erent prefetched matrices
of di�erent sizes and record the energy consumed using the
Energytrace tool. Figure 30 shows the average energy consumed
per scene reconstruction for four di�erent fractional computing
ratios. We see that the energy drops exponentially with the
decrease in size of �<4C0 . We �nd that 4 ⇥ 6 is the best size
based on the trade-o� between SSIM score (shown in Fig 27) and
energy consumed. To compare the power consumption of the
prefetching and fractional optimization we port the codes to a
Raspberry Pi 4 [43] and record the voltage and current traces
using a Keysight E6313A programmable DC power supply [71].
We write the software for SPiDR in Matlab and cross-compile it

Computation Energy Gain
optimization overhead

None 388.65<� 1⇥
Only Fractional 9<� 40⇥
Only Prefetching 1.42<� 270⇥

Both 0.28<� 1380⇥
Table 2: Comparison of di�erent computation optimizations show-
ing the total energy consumed per scene reconstruction. Prototype
on Raspberry Pi 4.

for a Raspberry pi 4 using Matlab Coder [86]. We use the NEON
SIMD unit [27] of the Raspberry Pi 4 and export an executable C
�le. We run the �le for 10,000 iterations and record the voltage and
current traces using the power supply. We calculate the overhead
of the computation module by subtracting the idle CPU power
consumption. Table 2 shows the energy overhead with di�erent
computation optimizations.
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Figure 30: Comparison of power consumption with di�erent sizes
of �<4C0 . Prototype on MSP430FR5969.

5 RELATEDWORK
Computational sensing has been an active �eld of research for over
a decade now and is rich in foundational works [32] that paved the
ways for applications like autonomous navigation [120], contactless
perception and monitoring [80], human-machine interaction [84],
and precision measurements [5]. Recent works explore acoustic
sensing in the context of ubiquitous computing [21, 93, 106–110,
119, 137]. SPiDR, while building on the advancements in this �eld,
takes a systems approach to develop a method for low-power
acoustic perception leveraging sound’s interaction with passive
microstructures. We discuss the ideas closely related to our work.

• Scene perception and object avoidance: Seminal work in
object detection using image processing [83, 132, 142], Radar [3,
6, 14, 140], lidar [12, 113, 129], and ultrasound [8, 42, 47, 67, 81,
136] have signi�cantly advanced the �eld of study. Since the
dominant physical e�ects change as scale reduces, conventional
object avoidance techniques such as electromagnetic motors and
robot navigation algorithms cannot be applied on microrobots.
Recent works [10, 133] use magnetic particle imaging to detect
objects in front of a microrobot in phantom. Another underwater
snake robot detects obstacles using a camera and computer vision
algorithm [69].
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• Low-power sensing: Low-power sensing has been applied on
many emerging applications, such as monitoring human body
motions [23, 130], chemical sensing [39, 96, 122], and health
monitoring [17, 77, 98, 100]. Many signal processing techniques are
designed for low-power sensing [62, 92]. Low-power long-range
RFID technologies [48, 104] are developed to improve pervasive
sensing. Low-power RF energy harvesting transceiver [72] is also
designed for various sensing applications.

• Acoustic structures for sensing: The art of using structure
to manipulate sound waves is known for a very long time and its
application is seen on many ancient architectures [138]. However,
the study of 3D-printed acoustic microstructures in ubiquitous
sensing applications is relatively new. Li et al. [79] build acoustic
�lters to control the impedance of discrete frequencies. Some
other works [114, 135] develop physical user interfaces by 3D
printing acoustic structures. These methods change the structure
shapes to create unique frequency responses and use smartphone
microphones for data collection and classi�cation.
Our previous work, called Owlet [45, 46], shows the possibility
of using acoustic microstructure to embed directional clues to
the signal recorded by a microphone, targeting applications like
sound’s direction-of-arrival estimation and localization. Owlet and
SPiDR share the same high-level idea that a carefully designed
passive structure can induce spatial diversity to sound. However,
these two systems fundamentally develop di�erent principles. First,
Owlet introduces structural-assisted diversity to the received signal,
where SPiDR uses it for projecting a modulated output signal.
Owlet detects the angle of arrival of incoming sounds, while SPiDR
produce a depth image of the scene.

• Sensing with limited sensors: Several works attempt to �nd
alternative ways for spatial sensing without using a sensor array.
A few recent works [31, 36, 37, 115] use structures like walls,
legos, and cubes around a microphone to produce scattering.
Similarly, [117] leverages the re�ections from nearby walls to �nd
the direction-of-arrivals of sounds and localize them. SPiDR, on
the other hand, explores the transmitter diversity and spatially
coded probing signals and uses statistical algorithms to �nd
the directionality of the re�ected signals. Coded apertures are
designed by [19, 85, 99] to entail di�erent light directions or
di�erent frequency bands for di�erent locations in the scene.
Several studies [15, 75, 90, 134] generated coded aperture to
generate prede�ned acoustic �elds that provide unique ultrasound
measurements for each location in the scene. However, these
works require MHz level frequency for imaging. To achieve
diversity in the microphone responses, past works aggregated
microphone techniques [87–89] use a directional microphone
and mode beamforming techniques [112, 141] use vector sensors
embedded in a larger object with known modes of vibration.
Micromachined Ultrasound Transducers (MUT) provide ways to
develop compact spatial sensors for high-frequency (several MHz)
sounds [25, 35, 102]. Some other works leverage ambient channel
responses [105, 118], frequency patterns of the sound [116], array
interpolation [54, 66, 68], compressive sensing [41, 53, 95], and
repurposing of acoustic vector sensor [78, 94, 124].

6 DISCUSSION
We mention below a few points of discussion regarding the
technique and scopes for improvements.

• Speed of the robot. Speed of the movement can have a trade-o�
with the imaging latency. While motion stacking gives us a chance
to produce more accurate depth-map, it also adds a limitation
on the robot’s speed. With 1cm resolution, our motion stacking
algorithm expects the robot to move less than 1cm per frame for
best performance. Since our current prototype can produce 170
depth-maps per second, it allows the robot to move at a maximum
speed of 170cm/s (6.12km/h) without any signi�cant impact on
depth-maps recovery.

•Applicable micro robots. Existing micro-robots [49, 51, 61, 111]
have power budget of 10�30<, for sensing and computation. Due
the limited options of sensors available in this power budget, most
micro-robots use proximity sensors (IR-based and ultrasonic-based)
for their navigation. Proximity sensors can only detect the objects in
front without motor for rotation. Vision based sensors [7, 26] have
low power consumption for hardware, but they are computationally
expensive, requiring many orders of power than the available
budget. These micro-robots can utilize SPiDR for low-power and
smarter navigation. Physical form factor is another consideration.
Since the size of stencil is within 5cm and can be as small as
2cm, all the robots in cm-level [9, 16, 52, 121] and larger than
that [13, 73, 97, 103, 123] can apply SPiDR on them. Since SPiDR
is ultrasound-based, it can be applied in harsh environments,
including low illumination, smoke, and opaque obstructions.

• Interference from out of the region. We de�ned the region of
interest by carefully considering the properties of the signal. The
frequency of the sound signal and its attenuation in the medium
works as a natural �lter for interference. We �nd that the signal
strength of the re�ected signal from out of the region is negligible.
However, in theory, since we use at least 3.5ms of time series data for
image recovery, unwanted re�ections within 60cm of distance can
interfere with the system. Time gating can be a potential solution.
However, since our system depends on superimposition of signals
for performance, it is di�cult to separate the signal re�ected from
in and out of the region simply by time gating. We keep this as a
future work.

7 CONCLUSION
This paper presents SPiDR, a low-power spatial sensing system
for micro-robot navigation. We use only one ultrasound
speaker/microphone pair and a 3D-printed passive structure to
project diversity in the scene. SPiDR consumes only 10<, of
power to produce precise depth-map at a rate of 12 frames per
second. The core idea of structure-assisted acoustic sensing opens
up new possibilities of low-power perception, obstacle detection,
and navigation.
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