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ABSTRACT

Private conversations are an attractive target for malicious actors

intending to conduct audio eavesdropping attacks. Previous works

discovered unexpected vectors for these attacks, such as analyzing

high-speed video of objects adjacent to sound sources, or using Wi-

Fi signal information. We propose LidarPhone, a novel side-channel

attack that exploits the lidar sensors in commodity robot vacuum

cleaners to perform acoustic eavesdropping attacks. LidarPhone is

able to detect the minute vibrations induced on objects that are

near audio sources, and extract meaningful signals from inher-

ently noisy raw lidar returns. We evaluate a realistic scenario for

potential victims: recovering privacy-sensitive digits (e.g., credit

card numbers, social security numbers) emitted by computer speak-

ers during teleconferencing calls. We implement LidarPhone on a

Xiaomi Roborock vacuum cleaning robot and perform a comprehen-

sive series of real-world experiments to determine its performance.

LidarPhone achieves up to 91% accuracy for digit classification.

CCS CONCEPTS

· Computer systems organization → Sensors and actuators;

· Security and privacy → Embedded systems security.
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1 INTRODUCTION

Smart sensing devices are increasingly ubiquitous in modern homes,

and have provided many opportunities for acoustic-side channel

attacks on private conversations. Devices containing microphones
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Figure 1: An example of a LidarPhone attack. The adversary

remotely exploits the lidar sensor on a victim’s robot vac-

uum cleaner to recover privacy sensitive information (e.g.,

credit card numbers) during a teleconferencing meeting.

such as smart speakers, baby monitors, and smart security cam-

eras are considered the usual threats to acoustic privacy. However,

recent work also demonstrates that other types of sensors (e.g.,

accelerometers, gyroscopes) may also pose similar threats [5, 8],

enabling more devices to be exploited as microphones. In this work,

we propose LidarPhone [11], a novel acoustic side channel attack

from a seemingly harmless household appliance ś a vacuum clean-

ing robot. LidarPhone repurposes inexpensive Light Detection and

Ranging (lidar) sensors, used aboard newer vacuum robots to de-

termine distances to surrounding obstacles for navigation [1], to

collect acoustic signals from the environment.

Fundamentally, LidarPhone senses vibrations that are known to

be induced on objects close to sound sources [2]. Based on this

concept, Figure 1 demonstrates a potential attack scenario. An

adversary launches a remote software attack on the vacuum cleaner

(recently observed to be possible [4]), and obtains a raw lidar sensor

data stream. The stream is transmitted to the cloud for the remote

adversary to process and reconstruct the source audio.

LidarPhone’s eavesdropping technique appears similar to that of

a laser mic [9]. Laser mics target lasers at highly (i.e., specularly)

reflective surfaces such as windows and mirrors, and process the

focused reflected beam to eavesdrop on audio near the target sur-

face. While designed for a different purpose, lidars possess both

a laser transmitter and receiver, seemingly creating the potential

for them to act as a laser mic. However, an attacker can launch

the LidarPhone attack remotely, which relies on different physical

principles. Specifically, lidars on robot vacuum cleaners are de-

signed to only process signals from diffusely reflecting surfaces

(which spread the reflected light equally in all directions) as most

household objects do not produce specular reflections.

https://doi.org/10.1145/3384419.3430430
https://doi.org/10.1145/3384419.3430430


SenSys ’20, November 16–19, 2020, Virtual Event, Japan S. Sami, S. Tan, Y. Dai, N. Roy, and J. Han

Pre-processing

DC Offset

Interpolation

Normalization

High Pass Filter

Noise Removal

Equalization

Bootstrapping Phase

Attack Phase

Victim’s Speech

Training Data

Training Labels

“One” ... “Ten”

Pre-processing

Pre-processing

Training

Prediction

Predicted Digit

“one”

Figure 2: Figure depicts the design overview of LidarPhone.

The recovered audio signal from LidarPhone is pre-

processed and used to train a model for digit, gender, or

speaker identity inferences.

These diffuse reflections are relatively unfocused and low in

intensity, causing the reflected signals to have an extremely low

signal-to-noise ratio (SNR). Therefore, LidarPhone implements signal

processing techniques to increase the signal’s effective SNR. These

include: noise profiling followed by spectral subtraction to reduce

noise, and equalization to emphasize lower frequency components

since objects tend to attenuate higher frequencies.

Furthermore, lidars commonly rotate at 300 RPM (5 Hz), and can

therefore only sample a given point on a target surface at a 5 Hz

sampling rate. We halt the lidar’s rotation to increase the sampling

rate by a factor of the number of samples per rotation. With robot

vacuum lidars operating at a typical rate of 360 samples per rotation,

LidarPhone achieves a 1.8 kHz (5 Hz × 360) sampling rate, which

is lower than the 5 kHz required to recover an intelligible speech

signal [10]. We evaluate LidarPhone with real-world experiments

and achieve 91% accuracy in identifying digits (e.g., łonež, łtwož)

from LidarPhone-recovered audio.

2 LIDARPHONE ATTACK DESIGN

We present the design of LidarPhone in order to recover (1) sensitive

digit information such as credit card numbers; (2) the gender of

the speaker; or (3) the speaker’s identity. The attacker’s goal is to

successfully conduct a stealthy remote eavesdropping attack using

lidar readings from a victim’s robot vacuum cleaner. The attacker

has the capabilities to remotely control the robot, stop the lidar from

rotating, and obtain raw lidar intensity values. Additionally, the

digit inference attack targets a specific victim (e.g., celebrities), and

the attacker has the capability to train on their recorded speech.

Figure 2 depicts LidarPhone’s design overview. The attacker first

pre-processes the raw signal, removing any DC offset, outliers, and

noise. Since objects primarily attenuate high frequencies, the at-

tacker equalizes the signal to amplify low frequency components.

The attacker then converts each processed time-series signal into a

200 x 200 spectrogram image that is used as input to a convolutional

neural network (CNN) classifier. Spectrograms represent a signal’s

frequency and temporal information compactly as an image, and

CNNs are architectured to achieve high accuracy for image clas-

sification tasks [7]. During the bootstrapping phase, the attacker

trains the CNN classifier with the pre-processed spectrograms and

ground-truth labels. In the attack phase, the attacker tests the cap-

tured signals against the trained model to output a final predicted

digit, gender, or speaker identity.

3 FEASIBILITY STUDY

We implement LidarPhone on a popular robot vacuum cleaner, the

Xiaomi Roborock S5, andmeasure its effectiveness onmultiple tasks.

We play audio of spoken digits (e.g., łonež, łtwož) from a Logitech

Z623 speaker-subwoofer system, near a common household object

(trashcan), which is targeted by the lidar. We vary both environ-

mental and system parameters to obtain more than 19 hours (30K

utterances) of recorded audio. We use the Free Spoken Digit Dataset

as the source audio [6] for digit classification, and TIDIGITS [3] for

gender and speaker classification. LidarPhone achieves 91%, 96%,

and 67% accuracy for the digit, gender and speaker classification

tasks respectively.
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Figure 3: Figure depicts LidarPhone’s overall performance

for each evaluated task.
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