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Abstract

This paper investigates the efficacy of Application-
Level Scheduling (AppLeS) [3] for a parallel gene se-
quence library comparison application in production
metacomputing settings. We compare an AppLeS-
enhanced version of the application to an original
implementation designed and tuned to use the na-
tive scheduling mechanisms of Mentat [6] — a meta-
computing software infrastructure. The experimen-
tal data shows that the AppLeS versions outperform
the best Mentat versions over a range of problem
sizes and computational settings.

The structure of the AppLeS we have defined for
this application does not depend on the schedul-
ing algorithms that it uses. Instead, the AppLeS
scheduler considers the uncertainty associated with
the information it uses in its scheduling decisions
to choose between the static placement of compu-
tation, and the dynamic assignment of computation
during execution. We propose that this framework
is general enough to represent the class of metacom-
puting applications that are organized as a master
and set of parallel slaves, in which the master dis-
tributes uncomputed work.

1 Introduction

Recent advances in network technology have made it possi-
ble for parallel applications to use ensembles of distributed
computers to achieve high-performance. Typically, however,
it is difficult or impossible to dedicate large-scale, widely
dispersed resources to a single application at a single time:
applications must be able to execute efficiently using het-
erogeneous sets of resources that are shared by other users
and applications. Since computing in this form involves
the interoperation of complete computer systems (includ-
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ing the resident operating systems, languages and language
libraries, storage devices, etc. on each) it is often termed
metacomputing [4, 8, 15, 3].

To take the fullest advantage of the shared, heteroge-
neous resources of a high-performance metacomputer, a par-
allel application’s components (tasks, inter-task communica-
tion, I/O) must be carefully scheduled. However, because
the resources at hand may be administered by different or-
ganizations (although linked by a network) it is difficult to
institute a single, system wide scheduler that would be capa-
ble of effectively coordinating execution across all domains.
Moreover, since the resources are shared, the fraction of
maximum performance each can deliver to an application
varies over time as a result of contention between compet-
ing applications. Resource heterogeneity adds an additional
complication since the way in which an application uses a
particular resource or resource type dramatically affects the
performance that resource can actually deliver to the appli-
cation.

Application Level Scheduling (AppLeS) [3] is an approach
to metacomputer application scheduling in which each ap-
plication is integrated with a customized scheduler. Us-
ing application-specific performance models and dynami-
cally gathered system information, the AppLeS scheduler
attempts to make the best use of the resources that are
available to its application at the time the application exe-
cutes. Each resource is viewed by the scheduler strictly in
terms of the potential performance it can deliver. Both the
type of the resource and its expected load at the time the
application will use it are considered when a schedule is de-
termined. Together, the application and the scheduler form
a “resource aware” program that seeks to optimize its own
performance using the resources made available to it by the
metacomputing system.

In this paper, we describe an application level sched-
uler designed for a parallel gene sequence library compari-
son application written for the Mentat [6] prototype meta-
computing system. By default, Mentat employs a variant
of workstealing [7], to schedule all applications that exe-
cute within its environment. We contrast the performance
of this system-provided default method with an AppLeS-
determined static schedule derived at runtime, and an Ap-
pLeS hybrid method based on a combination of runtime
scheduling and workstealing. This comparison is impor-
tant for two reasons. First, the sequential tasks that com-
pose most parallel gene sequence comparison applications
have data-dependent execution profiles. Since the duration
of each task varies as a function of its inputs, it is diffi-
cult to predict ahead of time. As a result, workstealing



type dynamic scheduling techniques are typically employed
for such applications. Idle workers “steal” work from busy
ones thereby ensuring good resource utilization. We wished
to compare the AppLeS approach (based on application-
derived information and dynamically generated resource per-
formance forecasts) to the common approach for a parallel
application with hard-to-predict task execution times.

The second goal of this work was to investigate a gen-
eral framework for master/slave computations in which the
master process is responsible for distributing work to a set
of parallel slaves, either on-demand or proactively. We be-
lieve the Mentat implementation we examined (called com-
plib which is described more fully in Section 3) constitutes a
reasonable exemplar in terms of its performance characteris-
tics for this application class. As such, complib was designed
assuming that the default Mentat method would yield the
best performance in a metacomputing setting.

In Section 2, we describe the problem of comparing bio-
logical sequence libraries. In Section 3, we describe the im-
plementation structure of the complib sequence library com-
parison application. In Section 4, we describe the AppLeS
algorithm we chose for complib, and in Section 5, we present
the performance of the application in different environments
executing with different problem sizes. We conclude in Sec-
tion 6 with an evaluation of the AppLeS methodology, and
a description of future work.

2 Biological Sequence Library Comparison

Determining the structure and function of biological sequences,

like proteins and DNA| is an important problem in molecu-
lar biology. The primary structure of proteins consists of se-
quences of amino acids. Similarly, DNA analysis focuses on
the identification of base-pair sequences within the molecule
itself. Determining these sequences, a process known as se-
quencing, has become efficient enough that it is common-
place for scientists to sequence as a first step toward deter-
mining the structure and function of a protein. Newly dis-
covered sequences can be compared to all known sequences
to find others with potentially similar structure, function,
and origin.

The desire to compare new sequences against large se-
quence databases creates a demand for computational re-
sources. The complib application implements biological se-
quence library comparison in a metacomputing environment.
Individual sequences are compared using the FASTA sequen-
tial algorithm; described below. Many individual sequence
comparisons are executed during library comparison, (de-
scribed in Section 2.2) and since they are independent, the
entire set of comparisons may be done in parallel.

2.1 Sequence Comparison

Sequence comparison is a type of substring matching oper-
ation where sequence similarity is scored based on biolog-
ical criteria. Pairs of sequences that match with a higher
score are considered to be more similar, potentially shar-
ing common function and origin. The score of a sequence
match increases for each matching item, known as an iden-
tity, and decreases when elements are substituted, inserted,
or removed.

The score associated with each substring pair is a func-
tion of biological interaction based on mutation and not nec-
essarily minimal structural difference. For example, without
using knowledge of the English language, the words friend
and fiend would seem quite similar, and the words friend and

friendly less so. Simple rules based on minimum structural
difference would make the comparison of friend and fiend
yield a higher score than friend and friendly. Using rules
based on the semantics of the words, a better scoring is pos-
sible. Such rules exist for comparing proteins. One of these
rules is based on a table called a Point Accepted Mutation
(PAM) matrix. This matrix describes the the likelihood of
substitution of one amino acid by another, and was derived
by examination of the small variations between known re-
lated sequences. This matrix is then used to determine the
scoring penalty for a mismatched element.

It is likely that many of the matching pairs of sequences
share little function or origin, and attempting to separate
these from relevant matches by parameter tuning is gen-
erally worthwhile. FASTA is just one fast heuristic method

used to compare sequences. Others include Smith-Waterman [14],

and BLAST [1]. Choosing a particular algorithm and tuning
its parameters effects the tradeoff between sensitivity (find-
ing distantly related sequences), selectivity (discriminating
unrelated sequences), and speed.

2.2 Library Comparison

Gene sequence library comparison consists of many individ-
ual sequence comparisons. Each sequence of amino acids
or base pairs in a “source” library is compared to every
sequence in the “target” library. We visualize the compu-
tation space in Figure 1. Source and target libraries are
stored as lists of variable-length sequence structures. Result
structures have a statically defined size and contain only the
score of the match. Since each sequence comparison is inde-
pendent, the entire library comparison may be performed in
parallel. Complib, the library-comparison implementation
we discuss in the next section, exploits this parallelism for
performance.

target library of sequences

]
3

Results Array

sourf

Figure 1. Comparison space. Each sequence in the “source” and
“target” arrays must be compared to form a two dimensional array
of results structures.

3 Complib

Complib is a metacomputer application for comparing bio-
logical sequence libraries using the FASTA algorithm, writ-
ten in Mentat [6, 5]. Mentat is both a run-time system
for metacomputer resource management and a program-
ming language based on C++. Parallel tasks in this object-
oriented system are contained within Mentat objects, and
these Mentat objects are distributed on the different ma-
chines in the metacomputer. Communication is accomplished
in this object oriented system by passing parameters and re-
turn values.

The complib application distributes chunks of the source
and target libraries to different machines in a metacomputer,
so that sequence comparison takes place in parallel. Indi-
vidual machines compare these chunks of the libraries using
the sequential FASTA algorithm.
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3.1 Master-Slave Paradigm

This application is structured using the master-slave paradigm
shown in Figure 2. Metacomputers are well suited to ap-
plications with this structure since its large computation-
to-communication ratio yields performance even with slow
networks. A master process distributes work to slave pro-
cesses which return the results of the computation to the
master.

Work may be placed by the master, as shown by the
downward arrows in the work distribution phase of Figure 2,
or requested by idle slaves, as shown by the upward arrows.
Downward arrows imply placement, where a scheduler has
knowledge of the slave’s performance and can determine an
appropriate piece of work to allocate. Upward arrows imply
workstealing or replacement, where idle slaves request work.
Placement generally incurs lower overhead since it is done
once just after execution begins, while replacement can be
accomplished with very little scheduling complexity.

3.2 Program Architecture

There are three classes of complib object: libraries, workers,
and collectors, shown in Figure 3. Genome library objects
load sequence libraries from disk, then disseminate chunks of
these libraries to the worker objects. There are two library
objects during execution: one for the source library, and
another for the target.

In this object-oriented system, computation takes place
as the result of method invocation. In this case, the worker
objects export a sequence comparison function that accepts
library chunks as parameters and returns a two dimensional
array of result structures. These result structures consist of
the scores generated by the sequence comparison algorithm,
and are forwarded to the collector object. The results are
then sorted according to score by the collector object.

Although there are two genome library objects, only the
target genome library handles the startup of worker objects
and the allocation of sequences. Logically, these two library
objects represent the master process for work distribution,
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Figure 4. Default block distribution of data. Block size is config-
urable and affects application runtime.

and the collector object represents the master for the pur-
pose of result collection.

Worker objects are a type of reqular Mentat object, which
allows the system to determine where and how many ob-
jects will be started. Persistent Mentat objects can reside
on a specified host, and are created one at a time at the
application level. Library and collector objects are both
persistent, since they both store state between method in-
vocations. The collector object stores a partially assembled
array of results between functions, and the library objects
store the genome library to be distributed.

3.3 Mentat System Scheduling Policy

Currently, complib relies on the Mentat scheduler [7]. Chunks
of a parameterizable maximum size are placed on a system-
managed queue. This block-style data distribution is shown
in Figure 4. Effectively, when objects run out of work, they
request a pair of chunks, one from the source library and an-
other from the target from this queue. Since worker objects
are members of a regular Mentat class, the Mentat scheduler
chooses where worker objects will be started, and will start
as many worker objects as necessary.

4 ApplLeS

Application Level Scheduling (AppLeS) combines dynamic
system performance information with application specific
models and user specified parameters in order to produce
better schedules [3]. “Better” is defined by the user, but
in this case will be taken to mean decreased run time. In
this section, we will describe the application model used,
and how the scheduler can improve application performance
during each phase of execution. We also present a frame-
work for scheduling master-slave applications in a shared,
heterogeneous environment.

4.1 Complib Application Model

The complib application model can be split into three over-
lapping phases. First, the workers are started and given gene
sequence library chunks to compare. Second, the workers
compare each sequence in the “source” chunk to each se-
quence in the “target” chunk. Finally, the workers return
results to the collector. These activities are shown in Fig-
ure 5. This model does not assume the block decomposition
shown in Figure 4. Instead, single data chunks are allocated
to each worker, in order to reduce communication overhead.

Each of the AppLeS scheduled worker objects is a Men-
tat persistent object. We use persistent objects because,
in Mentat!, persistent objects are the only way to allow
application-controlled placement. Persistent Mentat objects,
however, can only be started one at a time. This creates sig-
nificant startup overhead which the AppLeS must consider.

lLegion, the successor to Mentat unavailable when our AppLeS
was being constructed, fixes this problem.
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Figure 5. Basic complib application model. Black areas show
startup overhead. Arrows indicate data flow.
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Figure 6. Distribution of execution performance. Shown on the
left is a histogram of average execution performance for one of
the Sun HPC servers, measured in sequence pairs compared per
millisecond. Superimposed on the histogram is the bell curve of a
normal distribution with the same mean and standard deviation. On
the right is the same information shown as a cumulative distribution.

Note that since regular objects are not application schedu-
lable, the AppLeS approach must be able to improve execu-
tion enough to recover the additional overhead (imposed by
Mentat) associated with using persistent objects.

The startup behavior of persistent objects is shown in
Figure 5. At time tg, workerl is started. The black area
is a combination of the time to load the worker’s binary
code from an NFS mounted file system, and the time to
receive genome library chunks. As soon as workerl begins
actual execution, at time t1, worker?2 is started. This pattern
continues through ¢4, when all the workers are executing.

The time to compare source and library chunks is mod-
eled using two parameters:

e a benchmark execution time of a worker task on each
possible host in dedicated mode, and

e a predicted measure of percentage CPU availability
generated by the Network Weather Service.

By dividing the expected execution time of a worker task on
a dedicated host by the expected percentage of the time the
task will be able to occupy the host’s CPU, we can obtain
an expected execution time for the task that accounts for
CPU contention. We obtain the benchmark information by
using operating system provided CPU-time accounting in-
formation. This provides an estimate of the dedicated time
required to compare a pair of sequences on each host. In
Figure 6, we show a histogram and cumulative distribution
of execution times for the FASTA implementation within
complib over a sample from the GenBank data. As shown in
Figure 6, while the histogram does not appear to be mod-
eled well by a normal distribution, note that the cumulative
distribution tracks the normal well above the 70th quantile.
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Figure 7. Histogram of CPU availability values on a single work-
station provided by the Network Weather Service. This distribution
is multimodal. Availability refers to the fraction of the CPU a new
application to be executed can expect to receive.

The scheduling algorithm we describe in Section 4.3.1 relies
on the ability to determine a dependability threshold on ex-
ecution time prediction. Based on the relationship between
the observed data and the normal quantiles, we chose to
use a normal distribution to model the dedicated execution
time of FASTA. Expected CPU availability, however, is not
normally distributed [9] as shown in Figure 7.

To predict the percentage of available CPU occupancy
that will be possible for each worker task, we use the Net-
work Weather Service (NWS) [17, 18]. The NWS is a dis-
tributed performance monitoring and forecasting facility de-
signed to provide schedulers with predictions of the deliv-
erable performance of resources to applications. Currently,
the NWS provides CPU availability forecasts, and available
network bandwidth and latency predictions to the sched-
uler. For this application, we are most concerned with the
fraction of the CPU that the NWS predicts will be available
at the time the application will execute.

The following formula is used to model the execution
time of a worker process in the implementation of complib:

Source chunk size * Target chunk size
Benchmark seq. pairs/ms * NWS CPU Avail

Tcompa'r €

After comparison, workers pass their results to the collec-
tor object. The size of a result structure scales in proportion
to the product of source chunk size and target chunk size,
and can reach 10 megabytes. Transfer time for result struc-
tures of this size is significant, and takes place sequentially.

Although further performance improvements may be gained
by scheduling the I/O and collection phases of the program,
we chose to focus on the computational phase first as it con-
stitutes the largest fraction of overall execution time. More-
over, substantial structural changes to the existing complib
application would be necessary to allow such scheduling. In
this work, we wished to investigate the effect of AppLeS
scheduling techniques in comparison with the existing Men-
tat scheduling method (which was conjectured to be the
“best” methodology for the application as it was written).
As such, we did not wish to change the structure of the
implementation in a way which might favor AppLeS.

4.2 Startup Phase & Resource Selection

Given the behavior of persistent objects in Mentat, it is nec-
essary to limit the number of processors used, and choose
the best processors available. Not all resources are useful
because of the large startup delay. Note, however, that Ap-
pLeS can consider the delay associated with different object-
to-host mappings, and choose only those resources (and the
time at which they should be used) so that the execution



time of the program is optimized. To decide on a schedule,
the AppLeS employs a time-balancing heuristic [3] which
attempts to make all worker tasks finish simultaneously. In
this work, we extend time-balancing to include the notion of
start-up delay so that the AppLeS scheduler may consider
the start-up cost associated with Mentat persistent objects.

4.2.1 Library and Collector Placement

Library placement is the process of determining where the
library objects will reside. These hosts should be close to
both data storage and the processors where workers will be
run. The term “close” in this context refers to the relative
bandwidth performance of the network linking two compu-
tational sites. Two hosts are close if the relative bandwidth
linking them is high. Potential library locations are scored
based on the sum of the products of processor power and
bandwidth to each host.

Library Placement Score = X(Pyrocessor ¥ BWioprocessor)

The host with the highest score is allocated the target li-
brary, and the second highest score is allocated the source
library and collector object. Library objects are placed on
different hosts to promote even memory consumption, while
the collector object can reside on the same host with the
source library since these objects are active during different
phases of the execution of the application.

4.2.2 Worker Placement

To select an appropriate subset of resources to use, the
scheduler starts by sorting the available hosts by their rela-
tive abilities to run the FASTA algorithm on a representative
problem size (processor power).

Pyrocessor = NWS CPU Avail * Benchmark

Since the processors are sorted by power, the most powerful
processor will be started first, thus maximizing our use of
the best processor resources that are available.

The next step is to determine the maximum number of
processors that should be used to decrease the overall run-
time. Startup cost is modeled as a static 1.5 seconds plus
a communication cost, which was a reasonable approxima-
tion in our environment. This communication portion of the
startup cost is calculated using the following formula:

PartitionSize * AvgSeqLength

BandwidthPrediction
+3 % LatencyPrediction

tmfer =

The latency prediction is multiplied by three, as an esti-
mate of the number of message transfers between libraries
and worker at startup.? PartitionSize * AvgSeqLength
represents the size of the partition being transferred. Since
the lengths of sequences in a chunk are not known until the
chunk is assembled, a representative measure of sequence
length must be used, in this case, we chose an average.
The AvgSeqLength from the GenBank protein database de-
scribed in Section 2 was 243 bytes. A similar formula is used
to estimate the communication cost involved in transferring
the result structures back to the collector, which is not as
important at this phase. The scheduler chooses the num-
ber of processors that yields the lowest expected execution
time by considering successively larger subsets of the sorted
processor set in sorted order.

2Due to the object-oriented macro data flow model used in Men-
tat, the number of actual message transactions is hidden from the
application.

Figure 8. Single worker object’s partitions. At time ¢, work on
the second half-partition begins. Time ¢, is the boundary between
placement and replacement, as the worker begins using some dy-
namic technique such as GSS or workstealing. At time ¢, the
worker executes a second dynamically determined partition.

4.3 Comparison Phase & Hybrid Vigor

The performance improvements gained using a static place-
ment strategy (determined at runtime just before execution
begins) depend on the quality of the information used. In-
correct benchmarks or poor performance predictions from
the Network Weather Service can cause the scheduler to
make the wrong decisions. These wrong decisions result in
costly load imbalance. There are many factors, both oper-
ating system and algorithm dependent, that influence the
time it will take to compare sequences. In the general case,
even the most refined benchmarks and best predictions of
available performance will have an associated uncertainty,
and this uncertainty equates to a variance in execution time
of the worker processes.

The goal of the scheduler, then is to avoid load imbal-
ance while still enjoying the advantages of static placement.
To do so, the scheduling model can be separated into two
phases: placement and replacement. Placement is the pro-
cess of allocating work to processors once, before execu-
tion begins, using the best performance estimates that are
available. Replacement is the allocation of the remaining
work using a dynamic technique, in this case, Guided Self-
Scheduling (GSS) [12]. This strategy is shown in Figure 8
for comparison with Figures 5 and ??. GSS allocates succes-
sively smaller chunks of the computation in order to avoid
overhead early on, while still providing parameterizably even
finishing time.

It is the scheduler’s job to choose the demarkation point
between static placement and dynamic allocation so that
the load imbalance that might result from a bad placement
is mitigated by the dynamic technique. Simultaneously, the
scheduler must try and make the statically placed tasks as
large as possible to reduce execution time overhead associ-
ated with dynamic scheduling. Note that this scheduling
model is general enough to include most master/slave im-
plementations in which the master can dole out the work on
demand. To determine the demarkation point the scheduler
must consider the uncertainty associated with each execu-
tion time estimate. If the estimates are relatively accurate,
the scheduler can profitably assign more work using static
placement and less work using a dynamic technique. If the
uncertainties are high, the reverse is true.

The algorithms used for placement and replacement, how-
ever, are not specified by the model. Much work, for ex-
ample, has been done to improve dynamic scheduling tech-
niques [11, 2, 12, 10]. The scheduler need only be able to
consider the non-amortizable overhead cost of each in order
to determine its benefit relative to a given placement algo-
rithm. Similarly, a variety of static placement algorithms
such as time-balancing or recursive bisection may be em-
ployed. In this work, we chose time-balancing and GSS to
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Figure 9. Dependable and Expected CPU Availability. In this case,
the Network Weather Service predicts that 75% of the processor
will be available with a mean percentage error (A) of 1.3%.

instantiate the model as both have demonstrated their abil-
ity to achieve high-performance levels in a variety of set-
tings. We combine the time-balancing algorithm for place-
ment, with a weighted adaptation of GSS to allocate the
remaining computation.

4.3.1 Boundary Placement

In order to take the best advantage of the low overhead of
placement, the boundary should be chosen so that place-
ment is used for as much of the data as possible. We es-
timate how much of the work can be placed by estimating
the variance in execution time as a function of the variance
in CPU availability. Execution time also varies as a func-
tion of the sequences being compared. The distribution of
CPU time required per sequence compared (averaged over
chunks of at least 1000 sequence comparisons) is shown in
Figure 6. The boundary is chosen on a per-object basis so
that a maximal portion of the work that can dependably be
completed is placed. After an object’s dependable portion
of the work is complete, it requests additional work as part
of the replacement phase.

Since the distribution of CPU availability values is often
multimodal, (see Figure 7) we do not assume normality, but
rather use an estimate of variance provided by the NWS
prediction modules [16]. The NWS tracks the error associ-
ated with each of the predictions of resource performance
it supplies. We incorporate that information into the cal-
culation of the placement/replacement boundary by using
a multiple of the mean percent prediction error as a confi-
dence interval about the prediction. Empirically, 3 times the
mean percent prediction error generated an appropriate in-
terval. That is, the scheduler assumes that the performance
that the application will eventually receive will fall reliably
within the interval provided by the NWS. It can therefore
count on receiving at least as much resource performance as
indicated by the leading edge of the interval. The calcula-
tion of dependable CPU performance is shown graphically
in Figure 9, and as an equation below.

EzxpectedPerf = NWS CPU Avail * Benchmark
DependableC PU NWS CPU Avail —
3% NWS CPU A
DependablePerf = DependableCPU x Benchmark

The number of sequences proportional to the fraction

EzxpectedPerf — Dependable Per f
EzxpectedPerf

is held in reserve for replacement. This calculation takes
place for each machine, so that machines with high load
variance are allocated a smaller portion of the problem and
contribute more to the replacement work pool.

Sequences allocated through placement are shown in Fig-
ures 10 and 11. In Figure 10, the difference between expected
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Figure 10. Conceptual view of expected and dependable perfor-
mance. Sequences are placed based on the dependable performance
of a processor. Sequences to be compared are held in reserve based
on the difference between expected and deliverable performance.
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Figure 11. Implementation view of expected and dependable per-
formance. Sequences are allocated in contiguous blocks. Work
kept in reserve can be allocated to any worker object that requests
more work, and is not tied to any individual machine.

and dependable performance is shown. Regions shaded in
black represent the difference between these, to be held in
reserve. In actual implementation, sequences are allocated
contiguously, and the reserved work actually represents the
last set of sequences, as shown in Figure 11.

5 Results

In this section, we compare the execution time of the original
Mentat implementation of complib with that of an AppLeS-
enhanced version. In all experiments, we execute both ver-
sions back-to-back multiple times on non-dedicated machines
and networks, and report the range of execution times along
with the average. Since the overheads are not invariant with
respect to problem size, we compare executions using three
different representative sequence libraries: one small, one
medium, and one large. Similarly, we wish to reflect differ-
ent possible metacomputing settings, so we use clusters of
resources representing small, medium, and large levels of ge-
ographic dispersion, the largest of which employs resources
located on opposite coasts of the United States.

Since application run-times for the original complib de-
pend upon the size of the library chunk-size, we attempted
to determine the best chunk size for each cluster empirically.
That is, we conducted several hundred runs of the Mentat
complib on each cluster, using different blocking factors. In
all of the experiments shown below, we report the perfor-
mance of the original Mentat complib using the chunk-size
we observed to perform best on each cluster size. In contrast,
the AppLeS-enhanced version chooses its own partitioning
automatically based on performance forecasts.

5.1 Heterogeneous Platforms

We chose three different platforms so that scheduling method
ologies could be compared in different environments. The
small cluster is intended to show machines on a local area
network, the medium adds machines in another building re-
flecting metacomputing at an organizational or enterprise-
scale, and the large adds a machine across the country. All
resources in each cluster, during each run, were operating



in a non-dedicated production computing mode. Each com-
plib execution had to compete with potentially contending
applications and had to use shared networks.

UCSD-PCL

SDSC SAIC

B small Cluster

I Medium Cluster
[ ] Large Cluster

(] Single Processor

Shared Memory
Multi processor
T (four processors)

Figure 12. Cluster sizes chosen. Workstations and servers from
UCSD’s Parallel Computation Lab (PCL), the San Diego Super-
computer Center (SDSC), and Science Applications International
Corporation (SAIC) in Virginia were used.

The small cluster consists of five machines, all located
at the San Diego Supercomputer Center. These include two
four processor Sun HPC servers, two two-processor Sun Ul-
tra workstations, and one Sun Sparc-4 workstation, to total
eleven processors. The network configuration is also hetero-
geneous: the HPC servers are connected to each other by
fast (100 megabit) ethernet, other machines are connected
by 10 megabit ethernet, and the processors within each mul-
tiprocessor machine communicate via shared memory.

The medium cluster adds four single processor machines
from the Parallel Computation Lab (PCL) at UCSD. There
are two Sun Ultra workstations, one Sun Sparc-5 and one
Sun Sparc-10. These four machines are connected by a slow
ethernet serving the rest of the PCL resources, and over the
shared campus backbone to SDSC, a total of fifteen proces-
sors. The large cluster adds a 12 processor Sun CS-6400
at SAIC in Virginia, connected via a national ATM inter-
net, and two additional multiprocessor Sun HPC servers at
SDSC, a total of 47 processors.

We also compare two different AppLeS scheduling tech-
niques to the Mentat-scheduled version of complib in each
setting, for each problem size. The first uses an AppLeS
to determine a static placement only of the computations.
The placement is determined at run-time just before execu-
tion begins, all sequence comparisons are assigned, and no
replacement phase is executed. The second AppLeS uses a
hybrid combination of static, run-time placement and dy-
namic replacement based on Guided Self-Scheduling. The
boundary between these two phases is determined by the
prediction accuracy reported for each resource by the NWS
as a quantitative measure of that prediction’s quality. Use
of such Quality of Information or QolIn metrics is the sub-
ject of other, on-going research efforts within the AppLeS
research group at UCSD [13].

5.2 Complib Execution Performance

The largest performance improvement provided by applica-
tion level scheduling of complib was seen on the medium
problem size on the medium sized cluster (Figure 14). Ap-
pLeS run-time static scheduling ran an average of 59.7%
(63.8 s) faster than Mentat complib. Using the hybrid ap-
proach increased that performance gain to 69% (74.0 s).
The largest difference between the two AppLeS approaches
(AppLeS run-time static and the hybrid combination of place-
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Figure 13. Execution times for small cluster. Bar height is the
average of 30 execution times. Error bars cover the range.

ment and replacement strategies) was seen at the small clus-
ter size and large data size (Figure 13). The hybrid was
34.4% (9.3 s) faster than the run-time static. The reason
for this performance difference is that that the accuracy of
the run-time static prediction degrades over time. A pre-
diction made at the beginning of a short execution run is
more accurate for the duration of the run, than for a long
execution run. The hybrid approach considers the effect of
this inaccuracy and compensates for it by using dynamic
Guided Self-Scheduling when prediction inaccuracy would
cause a load imbalance.

Our hybrid approach provided the worst performance on
the small cluster with the medium data size (Figure 14).
The hybrid actually ran 1.1% slower than static partition-
ing alone. It is likely that this is a result of very little con-
tention on the machines at the time these were executed:
workstealing simply was not necessary to provide balanced
load. We had hoped that the AppLeS would automatically
recognize this condition and use only static placement in re-
sponse. Since the performance penalty was small, however,
we did not attempt to tune the AppLeS further to eliminate
this discrepancy.

In general, however, the AppLeS improvement over the
original Mentat scheduling method increases with both prob-
lem size and cluster size. Similarly, the improvement of hy-
brid placement and replacement over run-time static AppLeS
scales with problem and cluster size. As metacomputing be-
comes more prevalent, we believe that these AppLeS based
techniques will offer even greater performance advantages.

6 Conclusion

The goal of this work was to investigate the comparison
of application-level scheduling techniques with a commonly
used dynamic scheduling method (dynamic workstealing)
using an application that was designed and tuned to work
with this common method. In addition, we wished to de-
fine a general framework for scheduling master-slave paral-
lel applications with data dependent execution profiles in a
shared, heterogeneous environment.

To do so, we chose a biological sequence comparison ap-
plication based on the FASTA algorithm implemented for
Mentat called complib. The implementation of complib was
specifically designed to work with the native Mentat work-
stealing scheduler. We attempted to fit this implementa-
tion with an AppLeS (application-level scheduler) without
rewriting it to favor and the implementation of the the Ap-
pLeS. That is, we wished to compare the best possible Men-
tat implementation with a simple application of the AppLeS
techniques, favoring the Mentat implementation whenever
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Figure 14. Execution times for medium cluster. Bar height is the
average of 30 execution times. Error bars cover the range.

possible.

In the experiments we conducted, the AppLeS-enhanced
version of complib outperformed the original Mentat ver-
sion in production metacomputing settings by as much as
69%. Moreover, the relative performance improvements of
the AppLeS-enhanced versions scale with problem size and
the size of the metacomputing resource pool leading us to
believe that AppLeS will become an even more effective ap-
proach as metacomputing matures.

The most effective technique we have demonstrated com-
bines static, run-time determined placement of some fraction
of the work with dynamic replacement of the uncomputed
fraction to ensure load balance. Controlling the balance
between placement and replacement requires the AppLeS
scheduler to evaluate the Quality of Information associated
with each prediction. The function of the AppLeS itself
does not depend on a specific placement or replacement al-
gorithm. In the experiments, we used time-balancing and
Guided Self-Scheduling, but other static and dynamic tech-
niques could be used instead. As such, we believe that this
technique represents a general framework for master/slave
parallel metacomputing computations in which the master
distributes uncomputed work to the slaves. As part of our
future research efforts, we plan to investigate different appli-
cations from this application class as well as different static
placement and dynamic replacement algorithms within the
context of this framework.
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