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Abstract

In this paper we describe the design and im-
plementation of a system called the Network
Weather Service (NWS) that takes periodic mea-
surements of deliverable resource performance
from distributed networked resources, and uses
numerical models to dynamically generate fore-
casts of future performance levels. These perfor-
mance forecasts, along with measures of perfor-
mance fluctuation (e.g. the mean square predic-
tion error) and forecast lifetime that the NWS
generates, are made available to schedulers and
other resource management mechanisms at run-
time so that they may determine the quality-of-
service that will be available from each resource.

We describe the architecture of the NWS
and implementations that we have developed
and are currently deploying for the Legion [11]
and Globus/Nezus [7] metacomputing infrastruc-
tures. We also detail NWS forecasts of re-
source performance using both the Legion and
Globus/Nezus implementations.  Qur results
show that simple forecasting techniques substan-
tially outperform measurements of current con-
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ditions (commonly used to gauge resource avail-
ability and load) in terms of prediction accu-
racy.

1 Introduction

Fast networks have made it possible to connect
distributed, heterogeneous computing resources
to form a high performance computational plat-
form, or metacomputer. While metacomputing
offers tremendous potential performance, effec-
tive application scheduling is critical to realize
that performance. Schedulers make decisions
about which and when resources will be used
by the application and as such, scheduling deci-
sions must be based on predictions of the perfor-
mance each resource will be able to deliver when
it eventually performs the work it has been as-
signed. Since the metacomputer is a shared sys-
tem, contention for system resources will cause
the deliverable performance to vary dynamically.
A scheduler for this environment requires predic-
tions of resource performance that can account
for variability caused by resource contention. We
have designed and implemented a system that
takes periodic measurements of the currently de-
liverable performance (in the presence of con-



tention) from each resource and uses numerical
models to generate forecasts dynamically of fu-
ture performance levels. Forecast data is contin-
ually updated and distributed so that dynamic
schedulers and other run time mechanisms can
use the latest predictions. To the extent that
network performance conditions can be thought
of as the “network weather”, this functionality
is roughly analogous to weather forecasting and
hence we term the system the Network Weather
Service (NWS).

The NWS measures and forecasts performance
deliverable to the application level. As such,
it must be implemented using the same com-
munication and computation mechanisms that
applications use so that forecasts accurately re-
flect the true performance an application can
expect to obtain. Initially, we have developed
separate implementations of the NWS for the
Globus/Nexus [8] and Legion [11] metacom-
puting environments, each of which provides
a software infrastructure that supports high-
performance distributed and parallel computing.
As part of the AppLeS (Application-Level Sched-
ulers) project [2, 1] we are developing scheduling
agents that make decisions based on application-
level performance estimates. The NWS function-
ality is motivated by the requirements of these
agents. In addition, quality-of-service guaran-
tees in shared network environments (e.g. The
Internet) are difficult to achieve. NWS forecasts
provide statistical estimates of available service
quality from each resource, as well as the degree
to which those estimates are likely to be accu-
rate [13].

In this paper, we focus on the architec-
ture and implementation of the Legion' and
Globus/Nexus Network Weather Service ver-
sions. Section 2 describes the high-level archi-
tecture of the system and discusses some of the
details specific to the Legion and Nexus imple-
mentations. In section 3, we present compara-

We developed the implementation of the NWS for
Legion that we describe in this paper using the prototype
Legion environment based on Mentat [10].

tive forecasting results for both implementations
and we conclude with an evaluation of the cur-
rent system and a description of future research
in section 4.

2 Architecture

In this section, we present some high-level de-
sign issues that shaped the architecture of the
Network Weather Service (NWS). The NWS was
designed as a modular system to provide per-
formance information for distributed application
scheduling. Some of its forecasting models (de-
scribed more completely in [13]) require long-
term history information. As such, we have de-
signed the system to be persistent with the in-
tention that it be a continually available service
within the metacomputing environment. Since
workstation users must retain autonomy over
their own machines, and the chances of resource
failure scale with the size of the computing envi-
ronment, the system must be robust with respect
to resource failure. Furthermore, metacomput-
ers are dynamically changing in structure and
composition. Resources may be added, deleted,
or modified (upgraded, reconfigured, etc.) under
the control of their respective owners and man-
agers. The NWS, therefore, must be dynami-
cally reconfigurable to accommodate changes in
the underlying metacomputing system.

We have separated the Network Weather Ser-
vice functionality into three modules:

e a sensory subsystem that monitors system-
wide resource performance levels,

e a forecasting subsystem that predicts future
conditions and passes this information to

e a reporting subsystem that disseminates the
forecast information in various formats.

Figure 1 depicts this logical organization.
Measurement data is collected independently
from the resource sensors and stored in a phys-
ically distributed database by the sensory sub-
system. Forecasting models are applied to mea-
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Figure 1: The Logical Structure of the Network
Weather Service.

surement histories (which may be treated as time
series) to generate predictions. The forecasting
subsystem tracks prediction error and maintains
accuracy information for each prediction. Ex-
ternal programs, such as user applications, sys-
tem schedulers, or quality-of-service mechanisms
can access forecast information generated by the
NWS through the public interface exported by
the reporting subsystem.

2.1 Sensory Subsystem

The information given to a scheduler should
represent deliverable performance that resources
can provide to an application. For this reason,
measurements of resource performance are taken
at the application level, using the facilities pro-
vided by the underlying resource management
system. By using the same facilities that are
available to an application, NWS measurements
are subject to the overheads imposed by the re-
source management system. Lower level moni-
toring tools may not capture the effect of such

memory sensor

overheads at the application-level, particularly
with respect to contention.

The Network Weather Service distinguishes
between passive sensors and active sensors. A
passive sensor, such as the CPU availability sen-
sor, exercises an external system utility and
scans the utility’s output to obtain information
describing a number of resources. For exam-
ple, memory usage and CPU availability can be
tracked by executing the Unix utilities vmstat
and uptime on each machine and processing the
output.

An active sensor, on the other hand, must ex-
plicitly measure the availability of the resource
it is monitoring. To test a resource, an active
sensor will conduct a performance erperiment.
For example, a sensor may access a resource in a
representative way and monitor the elapsed time
required to complete the access.

2.1.1 Sensing the Network

The NWS currently monitors both process-to-
process latency and throughput throughout the
system. Figure 2 details the performance exper-
iment conducted by NWS network sensors. Net-
work latency is the minimum transit delay when
transmitting a message. The NWS approximates
the one-way message latency as one-half of the
round-trip time for an arbitrarily small message.

Network throughput is defined to be the ef-
fective rate at which bits can be sent from one
process to another.

To perform a throughput experiment, a mes-
sage of significant size is sent between processes
and the time required to complete the transfer
and receive an acknowledgement is recorded on
the sending side. The length of this message is
parameterizable, depending on the speed of the
connection, the physical proximity of the ma-
chines, and the degree of intrusiveness a par-
ticular connection can support. In the current
implementations, this size is set by the NWS ad-
ministrator, although we are considering ways in
which it can be determined automatically by the
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NWS itself. Throughput is calculated as

effective throughput =
data size

data transfer time - predicted round-trip time

where the predicted round-trip time comes from
the forecast for latency between the two pro-
cesses.

Note that simultaneous experiments over the
same network may adversely affect both network
performance and the quality of the measure-
ments made. If performance experiments collide,
the resulting measurements reflect the load in-
troduced by contention between the experiments
themselves. It is therefore necessary to employ
a distributed method for ensuring mutual exclu-
sion so that performance experiments do not in-
terfere. In the current implementations, we use a
token passing scheme to entitle a particular sen-
sor to perform a network experiment. When a
sensor receives a token, it is entitled to conduct a
single network performance experiment and then
to pass the token on to a successor. Token rout-
ing is configured statically into the system.

In a controlled, local area environment with
well synchronized clocks, and well behaved net-
works, it would be possible to distribute network
experiments based on a time-slicing approach,

where each pair of hosts is assigned a particu-
lar fraction of a minute with which to perform
a network experiment. However, even assum-
ing that the added complexity of implementing
distributed synchronized clocks and using these
clocks to control network performance experi-
ments avoided contention during normal oper-
ation, as soon as packets are dropped and the
expected lifetime of an experiment is exceeded,
contention results. By passing a token, however,
the system is self-clocking and stable. If the to-
ken cannot be passed to a host, that host is au-
tomatically configured out of the system until
its continued functionality can be verified. If a
system crashes while holding the token, a pre-
elected “master” detects token-death via a time-
out. The token master can be switched dynami-
cally between hosts should the master, itself, fail.

This method for ensuring non-interference be-
tween experiments does not scale. We are cur-
rently investigating ways in which a number of
NWS instances may be organized hierarchically
to provide scalability. For example token pass-
ing instances (called cliques in our terminology)
can be organized as a tree where each level in the
tree forms a clique. The leaves of the tree rep-
resent individual machines. In each clique (cor-
responding to a level in the tree), an individual
representative node is designated to also partic-
ipate in the clique above it (at the next lower
level). Data up to the nearest common ancestral
clique between two hosts need only be consid-
ered when estimating the network performance
between them.

2.1.2 Sensing the Machines

To measure the availability of a machine, the
Network Weather Service uses a passive sensor
module. Currently, the CPU sensor starts the
Unix vmstat system utility as a background pro-
cess and periodically scans the output. The vm-
stat output is parsed to pick out the number of
running processes, and the percentage of the to-
tal time the system is spending in user and super-
visor state respectively. The Network Weather
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runnable processes. Tyser = 0.36, of which half
(0.18) would be usable to a second process. Tige
= 0.46, all of which is available for computation.
Tsystem = 0.18, of which 0.03 can be shared. The
total availableCPU = 0.67.

Service computes the “percentage of the proces-
sor” available to each running process as

availableCPU = Tige + (Tuser/TD)
+ (Tuser * Tsystem/Tp)

where
Tiqe = percentage of time cpu is idle
Tyuser = percentage of time cpu is execut-

ing user code
Tsystem = percentage of time cpu is execut-
ing executing system code

rp = runnable processes

The resulting value can be used to compute
the CPU slowdown a process will experience due
to contention. The rationale for this formula is
that a new job (running with standard priority)
should be entitled to all of the idle time, and a
fair share of the available user state time. Our
experience has been that system cycles (repre-
sented Tsystem in the equation) are shared fairly
in proportion to the amount of time the system,
as a whole, spends executing in user state. While
this empirically derived formula has worked well
for some applications [3], the NWS can easily ac-
commodate more sophisticated techniques such
as those described in [5].

2.2 Forecasting Subsystem

The Network Weather Service uses a number
of predictive algorithms to anticipate perfor-
mance fluctuations. Sensory data is ordered by

time stamp so that the forecasting models may
treat each prediction history as a time series.
In [12, 13] we detail the specific algorithms that
are part of the current NWS implementations.
From the perspective of the forecasting subsys-
tem’s implementation, each forecasting model is
an independent module that imports and exports
a common interface. When a forecast is required,
the NWS evaluates a set of different forecast-
ing models and then automatically chooses be-
tween them based on the accuracy history of each
model. In Section 3 we describe the forecast-
ing methods that we consider in this paper more
completely.

2.3 Reporting Subsystem

Network Weather predictions are accessible via
an exported reporting interface. The intru-
siveness of the interface (i.e. the network and
computational resources required to disseminate
forecast information) is a key concern in its de-
sign. Stored data is distributed across the sys-
tem. Each host maintains a copy of the current
state of the network, which is exchanged dur-
ing communication experiments to amortize the
overhead of state exchange. The data stored in
the host object on each host is shown in Fig-
ure 4. Storing a global image of the current and
predicted state of the network on each host al-
lows clients to access this data without the need
to assemble a snapshot of the global state of the
network by communicating with a set of hosts
before making a scheduling decision. Time se-
ries history information is stored by individual
host objects, and is transferred only by the re-
quest of an interested client. This form of on-
demand transfer minimizes the amount of data
stored on each host, while still providing detailed
time series information to clients. Access to both
remote and local data is provided through the
communication primitives of the underlying re-
source management system.

Users can easily view NWS weather reports us-
ing the World Wide Web. The Network Weather
Service on each machine continuously generates
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Figure 4: Data stored on each host.

a publicly accessible HTML file containing a
“snapshot” of the most recent forecasts. With
their web browers, users can watch current and
predicted network conditions fluctuate as the
Network Weather Service monitors the network.

3 Results

To forecast resource performance, the NWS
treats periodic measurements taken from a par-
ticular sensor as a time series, and then uses
different statistical models to predict the next
value in the series. In this section, we report
the performance of the forecasting system (in
terms of prediction accuracy) for several dif-
ferent resources. We also compare measure-
ments and forecasts made using the Legion and
Globus/Nexus systems to consider the effect of
the underlying resource management system on
performance forecasting.

3.1 Process-to-Process Throughput

We monitored the effective throughput using the
Legion version of the NWS between two adja-
cent sun workstations on an ethernet segment in

Throughput (mbitsis)

Throughput (mbits/s)

the Parallel Computation Lab (PCL) at UCSD.
Once every sixty seconds over a 24 hour pe-
riod (starting at midnight on Tuesday, Febru-
ary 4, 1997), the NWS moved a 64 kilobyte ar-
ray via a Mentat? method invocation between
the two hosts and timed the transfer. Fig-
ure 5(a) shows the time series of measurements
and Figure 5(b) shows the corresponding pre-
dictions made by the NWS. The units of mea-
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Figure 5: Legion Throughput Measurements (a) and
Predictions (b) in the PCL

surement are megabits per second and the mean
absolute error (MAE) for the prediction is 0.18.

?The Mentat Programming Language is an object-
oriented language based on C++ supported by Le-
gion [10].



H Predictor ‘ MAE H

LAST 0.28
RUN_AVG 0.23
SW_AVG 0.23
MEDIAN 0.18

Table 1: Forecasting Error for PCL Throughput us-
ing Legion

That is, during the measurement period, at each
time step the prediction of a measurement dif-
fered from the actual measurement it was pre-
dicting by an average of 0.18 megabits per sec-
ond. Table 1 summarizes the predictive perfor-
mance of several different forecasting methods.
The NWS currently supports a variety of fore-
casting techniques, the details of which are more
completely described in [12, 13]. In the inter-
est of brevity, we demonstrate its functionality
using only forecasters that are based on com-
mon summary statistics. The LAST predictor
uses the last measurement as a prediction of the
next measurement. RUN _AV G keeps a running
tabulation of the average measurement and uses
that as a prediction at each time step. SW_AV G
uses the average of the current measurement and
the previous 20 measurements (a sliding window
of 21 measurements) as a predictor of the next
value and MEDIAN uses the median over the
same sliding window as a predictor. By tracking
the prediction error made by each predictor, the
NWS was able to identify M EDIAN as the most
accurate (yielding the lowest average error).
Note that LAST, by comparison, is not a
good predictor yielding a prediction error that
is an average of 0.1 greater than that generated
by MEDIAN. In general, our experience has
been that the last measurement is a poor predic-
tor of future network performance. Often, per-
formance monitoring systems use current mea-
surement data as an estimate of the available
throughput. In this case, the use of the cur-
rent measurement yields a prediction that is 55%
less accurate than the one chosen by the NWS.
Clearly, even for a predictable network like the

one shown in Figure 5, simple probes measuring
current conditions are poor indicators of the per-
formance that will be available in the next time
step.

In Figure 6 we show throughput measure-
ments and predictions generated using Nexus
remote service requests between processes run-
ning on workstations in the UCSD PCL and at
the San Diego Supercomputer Center (SDSC).
As in the previous experiment, the NWS moved
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Figure 6: Nexus Throughput Measurements (a) and
Predictions (b) from the PCL to SDSC

64 kilobytes of data every 60 seconds and timed
the transfer. The resulting throughput between
the PCL and SDSC was recorded in units of
megabits per second. Figure 6(b) shows the pre-



Using Nexus Using Legion
Predictor ‘ MAE Predictor ‘ MAE
LAST 0.46 LAST 1.40
RUN_AVG 0.49 RUN_AVG 1.40
SW_AVG 0.39 SW_AVG 1.30
MEDIAN 0.38 MEDIAN 1.30

Table 2: Forecasting Error for PCL to SDSC
Throughput

dictions made by the NWS and Table 2 sum-
marizes the accuracy of each predictor in terms
of mean absolute error. In this case, the aver-
age absolute error in megabits per second gen-
erated by MEDIAN is 0.08 (21%) lower than
LAST and 0.11 (29%) lower than RUN_AVG.
The forecasts shown in Figure 6(b) are a combi-
nation of SW_AV G and MEDIAN as the NWS
switched back and forth between them depend-
ing on which yielded the lowest MAE at any
given point in time. This combinational forecast
also yielded a mean absolute prediction error of
0.38.

In Figure 7 we show throughput measure-
ments and prediction for the same PCL-to-SDSC
communication link using Legion. = Compared
to the equivalent set of Nexus measurements
shown in Figure 6a, the Legion measurements
vary through a wider range. A scatter plot of
the Legion measurement data (shown in Fig-
ure 7c) reveals a multimodal distribution of
measurements. We attribute this multimodal-
ity to the use of UDP as Legion’s underlying
messaging protocol. The timeout value for a
lost packet (due to gateway congestion) is one
second in the current Legion/Mentat prototype
implementation® causing a substantial loss of
throughput when a packet is lost. At present,
the NWS is unable to predict in which mode
a successive measurement will fall at any given
moment. Neither a periodogram [9] nor a state-
transition analysis [4] yield exploitable predictive

3Legion is currently being reimplemented. In the next
release of the system, it is our understanding that more
robust communication protocols will be available.
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Figure 7: Legion Throughput Measurements (a),
and Predictions (b), and a Scatter Plot of the Mea-
surements (c) from the PCL to SDSC




information. Consequently, the forecast errors
for Legion throughput measurements, shown in
Table 2, are higher than for Nexus. Note that the
NWS distributes its quantification of forecast-
ing error so that schedulers and quality-of-service
mechanisms, such as those proposed in [6], can
consider the performance predictability of a re-
source. If, for example, both the Nexus and Le-
gion messaging systems were available to an ap-
plication communicating between the PCL and
SDSC, a scheduler might choose to use Nexus
for the communication due to its greater pre-
dictability. Conversely, in a local area setting
where packet loss is rare, Legion’s messaging sys-
tem might be more appropriate.

4 Conclusions and Future

Work

In a metacomputing environment, scheduling
and quality-of-service mechanisms must have ac-
cess to predictions of deliverable resource per-
formance to mitigate the effects of contention.
We have implemented a system called the Net-
work Weather Service that collects periodic per-
formance measurements and generates statisti-
cal forecasts, dynamically, based on time-series
analysis techniques. The system is intended
to be a ubiquitous service within a metacom-
puter, providing forecast information to all in-
terested schedulers, quality-of-service facilities,
and users.

To provide accurate performance forecasts, the
measurements required to parameterize the fore-
casting models must be as non-intrusive as pos-
sible. Performance experiments that sense the
available performance at any given time must
not interfere with each other, or inaccurate read-
ings will be incorporated into the generated
forecasts. Furthermore, since forecast informa-
tion may be used dynamically (i.e. to support
dynamic scheduling), the interface to the sys-
tem also must be lightweight and non-intrusive.
These requirements motivate the design of the
NWS architecture, and the implementations we

have constructed for the Globus/Nexus and Le-
gion metacomputing environments.

To make forecasts, the NWS automati-
cally identifies and combines different predic-
tive strategies from a set of potentially useful
models. It chooses those models that, at any
given time, have accumulated the lowest aggre-
gate prediction error. Qur experience with the
Legion and Globus/Nexus implementations in-
dicates that this dynamic method of forecasting
model selection works well. Moreover, using sim-
ple forecasting techniques like those outlined in
Section 3 yields more accurate predictions than
those generated from measurements of current
conditions alone. Both forecast data and accu-
racy measures are made available to NWS clients
so that the predictability of a resource may be
considered.

Our future work will focus on developing new
sensory mechanisms and new forecasting tech-
niques. Predicting the time a job will wait in
a batch queue is especially important in large-
scale computational settings, for example. To
make such predictions, we need to incorporate
more sophisticated sensors and forecasting mod-
els. We are also planning to develop a scalable
version of the system that can be deployed over
large numbers of resources, based on a hierarchi-
cal organization of NWS resource clusters.
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