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Abstract—In this paper, we describe a receiver based con-
gestion control policy that leverages TCP flow control mech-
anisms to prioritize mixed traffic loads across access links.
We manage queueing at the access link to: (1) improve the
response time of interactive network applications; (2) re-
duce congestion-related packet losses; while (3) maintaining
high throughput for bulk-transfer applications. Our policy
controls queue length by manipulating receive socket buffer
sizes. We have implemented this solution in a dynamically
loadable Linux kernel module, and tested it over low band-
width links. Our approach yields a 7-fold improvement in
packet latency over an unmodified system while maintain-
ing 94% link utilization. In the common case, congestion-
related packet losses at the access link can be eliminated.
Finally, by prioritizing short flows, we show that our system
reduces the time to download a complex web page during a
large background transfer by a factor of two.

I. INTRODUCTION

To handle increasing Internet traffic, network backbones
have been equipped with high speed links and fast routers.
Overprovisioning backbones alleviates congestion within
the network, but also moves it to the edges: the access links
of senders and receivers. Studies have shown that Internet
traffic is asymmetric: most traffic is sent from the server
to the client [1], [2], [3]. Client access links (e.g. modem
or DSL connections) are often the network bottleneck, be-
cause they have relatively low bandwidth in comparison
with the backbone. Managing contention between incom-
ing traffic flows at the receiver’s access link is the focus of
this paper.

Although access links are typically used to perform one
operation at a time today, this will be less true in the fu-
ture. Users naturally want to continue to work during long
latency operations. For example, a user might browse web
pages while listening to real-time streaming audio, down-
load a software package while participating in a chat ses-
sion with a friend, or download attachments from a mail-
box while checking stock quotes. In each of these sce-
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narios, performance suffers because of contention. The
aggressive download behavior of web browsers often de-
grades the quality of the streaming audio by overwhelming
the link. A long running download introduces queueing
delay that may make the chat session less responsive. Fi-
nally, a new web connection may not be able to get a fair
share of bandwidth quickly if a long running transfer has
filled the access link’s queue. We present one aspect of
this contention in Figure 1: the response time of a telnet
session becomes sluggish as a background transfer adds
queueing delay.
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Fig. 1. Effects of queueing delay on the latency of telnet packets
during an ftp transfer over a 28.8 modem. Dotted lines at
left and right represent the start and end of the ftp transfer.
The 4 second delay represents significant buffering at the
access link. Round trip time without queueing delay was
0.16 seconds.

It is in the client’s interest to reduce queueing at the ac-
cess link to solve the problems presented by the scenarios
described above. Furthermore, the client has all the infor-
mation necessary to determine the rate at which packets
should be sent by the server. The bandwidth of the link
is known, because the user typically pays for it. The re-
ceiver also knows the number of connections that are ac-
tive as well as the relative importance of different streams.
When there are several concurrent connections using the
receiver’s access link, it is natural for the receiver to man-
age the resulting congestion, by sharing state between con-
nections as described in [4] and [5]. We believe that a co-
operative congestion control strategy, where the receiver
limits congestion at the access link and the server limits
congestion in the rest of the network, is the most effec-
tive approach. Our receiver based policy manages conges-
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tion by controlling the size of each connection’s advertised
window.

While TCP is the default protocol for implementing net-
work services, it is not well suited for managing contention
at a user’s access link. TCP congestion control schemes
rely entirely on parameters maintained by the sender (gen-
erally the server), which is compelled to infer the network
characteristics (bandwidth, sharing, queue capacity) of the
receiver’s access link. The only signal a TCP sender uses
to infer these characteristics is packet loss. Although TCP
will adjust to the access link after loss detection, it will
overestimate link capacity, filling router buffers (poten-
tially causing loss on unrelated links sharing the router),
and will not prioritize among flows.

We have implemented our receiver based policy in the
context of a standard TCP/IP protocol. Most importantly,
our policy has been implemented entirely within the re-
ceiver’s stack, and requires no protocol changes.

The rest of the paper is organized as follows. In Sec-
tion II, we present an overview of our approach. Section III
presents our model of network performance, which is used
in Section IV to define a receiver based congestion control
policy. In Section V, we present a summary of observed
performance improvements. In Section VI, we describe
existing solutions that share our goals. Finally, we con-
clude in Section VII.

II. OVERVIEW

The primary goal of our work is to reduce the re-
sponse time of interactive applications contending with
bulk-transfer flows. Response time represents user percep-
tible performance, and contention from background trans-
fers is common. We hope that by reducing response time,
the overall utility of these access links is improved.

To realize this goal, we leverage TCP’s flow control
mechanism to limit the size of the sender’s sliding win-
dow. This window is an abstraction for the maximum num-
ber of bytes a sender is allowed to transmit before getting
an acknowledgment from the receiver. Three parameters
control the size of this window: the congestion window
(cwnd), the sender’s buffer size, and the receiver’s adver-
tised window. At any given time, the smallest of these pa-
rameters defines the size of the window. The cwnd param-
eter reflects the sender’s estimate of the capacity of the net-
work. That is, �

�����
����� is the rate at which the sender believes

the network can absorb traffic. The receiver’s advertised
window is included in each acknowledgment returned to
the sender, and corresponds to the amount of buffer space
available to receive additional data. For all but very high
bandwidth connections, the size of the sliding window is
usually bound by the cwnd parameter. However, a receiver

can limit the size of the window by allocating a small
buffer.

The fundamental idea behind our solution is to control
the receiver’s advertised window of each open socket by
manipulating its receive buffer size. At a high level, we
shrink the receive buffers of long lived transfers to reduce
the queueing delay experienced by interactive applications
and increase the throughput seen by short transfers. Each
flow receives a different allocation based on its round trip
time and relative priority. Our approach is simple and has
several beneficial properties:
Manages queueing delay experienced by incoming

traffic: By reducing the size of buffers allocated to con-
nections, we have the ability to limit the number of pack-
ets queued at the bottleneck link, control the composition
of the queue, and bound queueing delay. This is useful
for the following reasons. First, it allows us to reduce the
response time observed by users of interactive network ap-
plications. Second, controlling the queue enables us to pre-
empt the packet loss that occurs when TCP’s adaptive con-
gestion control algorithm overestimates the capacity of the
network. Third, a short queue delay allows new connec-
tions to progress through connection setup and slow start
quickly and achieve a large share of the link’s bandwidth.
Preserves link utilization: By allocating bulk-transfer

connections buffer sizes equivalent to the bandwidth-delay
product, we have the ability to reduce queueing without
adversely impacting throughput performance.
Adapts to changing workloads: Since we can dynam-

ically adjust buffer sizes and change the size of the ad-
vertised window in each acknowledgment, we can quickly
respond to changes in workloads. In later sections, we de-
scribe the algorithms used to guide buffer allocation deci-
sions.
Deploys easily: We believe our solution has fewer barri-

ers for acceptance because it is terminal, requires no modi-
fications to the network, server or application software and
requires no support from a service provider.

III. MODELING LATENCY AND THROUGHPUT OF LOW

BANDWIDTH LINKS

To control queueing by adjusting receive buffer sizes ef-
fectively, we need to relate a connection’s window size to
the length of the queue at the bottleneck link. This rela-
tionship depends on two factors: the connection’s round
trip time, and its share of throughput. In this section, we
describe a simple, steady-state model that illustrates how
these factors influence buffer size selection. The model
assumes connections are receiver-window limited and that
significant queueing occurs only at the access link. The
effects of loss and variance in network delay are ignored.
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While this model is highly simplified, it is sufficient for
our purposes since we focus on the performance of low-
bandwidth links. More general models of TCP perfor-
mance are presented in [6] and [7].

In the absence of queueing and loss, the window size
(i.e., number of bytes sent without waiting for acknowl-
edgments) necessary to keep a network link busy is equal
to the product of the connection’s bandwidth (

���������
) and

its round trip propagation delay ( 	�

��������� � ). If more
bytes are sent, those additional packets are queued in the
network, typically at the bottleneck link. Restated alge-
braically, the number of packets in the network for each
connection � in steady state is equal to the number of pack-
ets waiting in the queue, plus the bandwidth delay product.

� ������� � ������� � �"! � 

#%$&� � � ��' ������� �)( 	�
*�+�,���-� �

The packets making up the first term increase queueing
delay, while the packets making up the second preserve
throughput.

The queue and link are both shared between all . con-
nections transferring data:

! � 

#/$&� � ��0213024�5 � 6
798 � 8�:

! � 
�#/$&� � � �

������� 5 � ��;=< �>����� 4
�
0@?+4�5 � 6

798 � 8�:
�>�����3�

������� 5 � ��; is the maximum bandwidth of the link and������� 4
�
0@?,4A5 is its delivered throughput. The challenge is

to globally choose all � ������� � ������� � so that
������� 4

�
0@?+4�5CB������� 5 � ��; and

! � 

#%$&� � �,0213024A5DBFE .

A. Reducing Latency

For interactive applications, user response time depends
primarily on the latency experienced by that application’s
packets. This latency is the sum of propagation delay and
queueing delay:

���-� � � 	�

�������-� � 'G! ����HI
�J
The delay associated with queued packets is equal to the
size of those packets divided by the link’s throughput:

! ���,HK
�J �
! � 

#%$&� � �,0213024�5 (ML 

#/$&� � �,���N�������� 5 � ��;

The way to decrease
! ���,HK
�J is by reducing! � 

#%$&� � �,0213024�5 , which is in turn decreased by reducing� �����N� � �,���N� s.

B. Preserving Throughput

The actual throughput delivered by the link is limited by
two factors: the speed of the link,

������� 5 � �O; , and the ratio
of the number of packets in flight to the round trip time of
a connection. The second factor reflects that at most one
window size worth of data can be transferred per round
trip, and that each round trip, when the link is underuti-
lized, experiences no queueing delay.

������� 4
�
0@?,4A5 �QP�R2SUT ������� 5 � ��;�V 6

798 � 8�:
� �����N� � �,���N� �
	W
*�������-� �YX

To make certain that all available bandwidth is con-
sumed, that

������� 4
�
0@?,4A5 � ������� 5 � ��; , it is desirable to

queue a small number of extra packets. Queueing also en-
sures that the link remains busy while the sender operates
with a reduced window size during loss detection and re-
covery.

IV. RECEIVER WINDOW CONTROL STRATEGY

The models described above guide us in improving re-
sponse time on a low-bandwidth link by manipulating an
individual receiver’s advertised window. TCP determines
the advertised window based on the space available in a
socket’s receive buffer, which is allocated by the operating
system. In this section, we describe a policy for setting the
receive buffer sizes of all open connections that prioritizes
short, interactive flows to reduce response time.

Implementing an adaptive buffer allocation policy
presents several challenges. First, we must define how
flows are classified. We classify flows to enable prioriti-
zation of interactive and short-lived flows over long-lived
bulk-transfer flows. Second, we must decide when the pol-
icy makes buffer allocation decisions. Finally, we must de-
termine the amount of buffer space that should be allocated
to flows of each class to reduce response time. We address
each of these issues in the following sections.

We valued application-transparency in our design, and
avoided introducing additional programming interfaces to
support application-specific functionality. Specifically, we
do not consider real-time traffic, which would likely re-
quire an interface for specifying real-time requirements. In
addition, we do not support application dictated priorities,
like those supported by WebTP [8]. Extensions to support
these features are reasonably straightforward.

A. Classifying Flows

Classification allows us to express preferences that in-
fluence how limited link resources are partitioned between
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competing flows. Since the degree of contention for the
link changes as connections are created or destroyed, and
since the characteristics of a flow may vary over time, our
classification scheme is dynamic.

We categorize flows into four priority classes:

i) Interactive flows are sensitive to latency performance,
but are insensitive to throughput (e.g. a chat session).
ii) Short-lived bulk-transfer flows are sensitive to both
latency and throughput performance (e.g., a HTTP con-
nection downloading a small web page.)
iii) Long-lived bulk-transfer flows are throughput-
intensive (e.g., an ftp download of a large image file)
iv) Idle connections neither send nor receive data.

Connections are initially classified by port number and
then by their observed behavior. This quickly separates
well known applications, like ftp and telnet, into long-lived
bulk-transfer and interactive classes, respectively.

The policy classifies flows dynamically by maintaining
modest additional connection state. When an unknown
connection is opened, it is considered interactive. By keep-
ing track of the number of bytes received by a connec-
tion since its last sent packet, we identify bulk-transfer
flows. Once a connection receives at least � # ����� 1��30 , cur-
rently 2KB, it is classified as a short-lived bulk-transfer
flow. When the amount of data received exceeds � # � 5 1 �	� ,
currently 8KB, the connection becomes a long-lived bulk-
transfer flow. Idle connections are discovered by monitor-
ing the time elapsed since a packet was last received. This
threshold is currently 30 seconds.

B. Scheduling Buffer Allocation Decisions

When a connection is established, destroyed or re-
classified, receive buffer sizes for all active sockets are re-
calculated.

Buffer allocation changes are applied conservatively to
promote stability. Shrinking the buffer on an unsuspect-
ing connection might confuse the sender by reducing the
window size. The Linux implementation of TCP correctly
closes the window slowly as new packets fill it. That is, it
does not move the right edge of the sliding window to the
left, as specified in [9].

Increasing the buffer size quickly could enable a sender
to inject several packets simultaneously, compromising the
stability of ack pacing, and reducing the ability of the pol-
icy to reduce the buffer size again when conditions change.
Our policy increases the buffer size by one packet on re-
ceipt of each packet until the target size is reached, similar
to slow start.

C. Dynamic Buffer Allocation

The size of the receive buffer allocated to a connection
depends on the flow’s priority and the degree of contention
between existing flows. Interactive flows have the highest
priority. Short-lived bulk-transfer flows are next, followed
by long-lived bulk-transfer flows. We give idle flows the
least priority. This prioritization scheme is influenced by
process scheduling algorithms in operating systems that
improve response time by favoring short jobs over long
running processes. To avoid starvation, each connection is
guaranteed a minimum buffer size equivalent to one MTU
(i.e., one packet). In this section, we describe how the
policy determines buffer size allocations for flows in each
class, in order of increasing priority.

There are two goals that guide decisions of buffer allo-
cations. First, we control the length of the queue at the
upstream router. Second, we allocate bandwidth by giving
larger buffers to short lived flows.

There are two target queue lengths our policy attempts
to maintain at the access link. First is

!�
 �/�
� ������� 5 4�� ,
which represents the queueing delay the user is willing to
tolerate to preserve throughput. When there are interactive
flows, this value limits the queue length. An empty queue
makes it harder for the long lived flow to achieve the full
throughput of the link, and this target value allows the user
to control the balance between latency and throughput pri-
oritization.

If there are no interactive flows, or if
!�
 �/�
� ������� 5 4��

is larger, the queue length is limited by the second target
queue length,

!�
 �/�
� ����� 1 ��� . This is the target length to
avoid queue overflow and loss at the access link. In the for-
mulas presented in this section, the applicable target queue
length is presented as

!�
 �/�
� ��� � 4�� � � 0 .
C.1 Idle Connections

Idle connections receive one-packet buffers. This small
buffer size is allocated to avoid unpredictable behavior in
case the connection’s classification changes. If the con-
nection becomes active, the policy can increase the adver-
tised window to the appropriate size within one round trip
time, while the connection is still in slow-start. By detect-
ing connections that become idle, we can redistribute link
resources to other flows and improve their performance.

C.2 Long-Lived Bulk-Transfer Flows

There are two cases to consider when selecting buffer
sizes for long lived flows. When there are no higher prior-
ity flows, link resources are divided equally. When higher
priority flows exist, buffer allocation is limited to improve
the response time of the higher priority flows. These cases
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are presented in more detail below.

Case 1: No Short-lived Connections. In the absence of
short-lived flows, the policy’s goal is to ensure that long-
lived flows use the full bandwidth of the link, while bound-
ing the queue length to

! 
 ���
� ��� � 4�� � � 0 . The buffer size
allocated to each long-lived connection � is then defined
as:

� ����� �����,���N� ��� (1)�>����� 5 � �O; ( 	�
*�+�,���-� � ' ! 
 �/�
� ��� � 4�� � � 0
.��I?,5 ;

where .	�I?,5 ; corresponds to the number of bulk-transfer
flows in the system. This allocation approximates an equal
share of the throughput and buffer space of the link, for
connections of varying 	�

��������� . In Section IV-D we
describe how parameter values in this equation are deter-
mined.

Case 2: Contention with Short-lived Flows. To increase the
bandwidth available to short-lived flows, we choose to sac-
rifice the throughput of long-lived flows. Each long-lived
flow gets the minimum buffer allocation of one packet.
Although this may severely impact the throughput of the
long-lived connection, it is not throttled for long: the short-
lived connection will either terminate or be quickly de-
moted as it receives additional data.

C.3 Short-lived bulk-transfer flows

When there are no interactive flows contending with
short-lived flows, each connection’s buffer size is de-
termined using equation 1 with

! 
 �/�
� ��� � 4�� � � 0 �
! 
 �/�
� ��� � 1 ��� . When interactive flows are intro-
duced, the policy reduces buffer sizes further, using! 
 ���
� ��� � 4�� � � 0 �"! 
 �/�
� ��� ��� 5 4�� .
C.4 Interactive flows

Interactive flows typically receive a few small packets at
a time and therefore do not consume much bandwidth. For
this reason, the size of the buffer allocated to this type of
flow has less importance. To guard against the case where
an interactive flow becomes a bulk-transfer flow, we allo-
cate the same buffer size as other bulk-transfer flows, using
equation 1 above.

D. Determining Parameters

Values for parameters used by the policy are generally
supplied by the user, but could easily be determined dy-
namically. In this subsection, we describe how we cur-
rently set these parameters and strategies that could be
used to estimate them dynamically.

�>����� 5 � �O; , the bandwidth of the access link, is currently
a user-specified parameter. Several tools are available for
dynamically measuring link throughput ([10], [11]), or the
receiver could simply observe the rate at which packets are
received.!�
 ���
� ��� � 1 ��� is set to one half the size of the queue
of buffers available at the access link. We estimate the
available queue length by noting how many consecutively
sent UDP packets are received from a host on the Internet
close to the access link. A useful estimate could be derived
passively from the pattern of loss during TCP slow start.
Tools like those described in [12], [13] could also be used.! 
 �/�
� ��� ��� 5 4�� is defined by a user-supplied value.
This value expresses the maximum increase in latency the
user is willing to tolerate due to packets queued at the ac-
cess link. We have configured this length to correspond to
a 0.4 second delay. A reasonable value for this parameter
may decrease with increased link speed.
.	�I?,5 ; , the total number of bulk-transfer flows, is a

counter maintained by the policy.
� # � � � 1�� 0 and � # � 5 1 �	� are set to 2KB and 8 KB, respec-

tively, but could increase with
������� 5 � ��; .

Getting an accurate value for 	W
*�������-� � is difficult be-
cause round trip time measurements maintained by TCP
variables are aggregated into a smoothed round trip time
estimate, srtt, which includes queueing delay. Our policy
estimates propagation delay using the minimum round trip
time observed. This is the same approach used in TCP
Vegas [14].

Although there are several important parameters used by
the policy, they are reasonably easy to derive. Those pa-
rameters that reflect link characteristics can be determined
dynamically using simple tools. The effectiveness of the
system does not seem to be sensitive to the higher-level
parameters like

! 
 �/�
� ��� ��� 5 4�� and � # � ��� 1�� 0 . Automati-
cally determining appropriate values for these parameters
is the subject of future work.

V. RESULTS

In this section, we evaluate the effectiveness of our ap-
proach. Each of these performance measurements demon-
strates an aspect of our goal to improve response time
while maintaining high throughput. Specifically, we show
that:


the latency of an interactive application (telnet) compet-
ing with a background transfer over a modem can be re-
duced from over 4 seconds to 0.6 seconds, with only a 4%
sacrifice in bulk transfer throughput;


latency can be controlled even when transferring from a
distant host over a variable network, which demonstrates
our ability to adapt to changing workloads;
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the time to download a web page while running a large

background transfer can be reduced by a factor of two;

in the common case, congestion related packet losses at

the access link can be eliminated.
We present detailed performance measurements from

individual executions that are typical of the behavior of
the system.

A. Experimental Setup

In each experiment, our client machine was a Pentium
running a stable version of the Linux operating system
(2.2.7). The system was modified to include a kernel mod-
ule with an implementation of our congestion control pol-
icy. For the first three experiments we present, this ma-
chine is connected to the Internet via a 28.8 Kbps modem
to the University of Washington dial-in modem pool. For
the last two, a similar machine is connected through Dum-
mynet [15] to simulate links of varying speed.

In almost all experiments, we execute ftp transfers from
the computer science department’s anonymous ftp server.
For the distant host scenario, we transfer from an ftp server
in Australia.

The modem’s PPP software was configured to use an
MTU of 576 bytes. This is smaller than the default MTU,
and was chosen based on initial experiments and a recom-
mendation presented in [16]. We also used this smaller
MTU for the otherwise unmodified system.

B. The Classic Scenario

The scenario that served as our early motivation con-
sists of a telnet session running simultaneously with a sin-
gle ftp download. An Expect script simulates a user typ-
ing commands in the telnet session. We use this scenario
to show that: (1) the default policy for assigning receive
buffer sizes provides poor latency performance to interac-
tive applications; and (2) a smaller window is sufficient
to saturate the link, with much less queueing. To demon-
strate this, we run the experiment using both the OS default
buffer size and our congestion control policy. The telnet
latency for each case is graphed in Figure 2.

For this scenario, the Linux default receive buffer
(32KB) is far too large, and the connection is actually send
buffer limited to 16KB. With a more modest receive buffer
of 8KB, the default for Windows 98 and NT [17], the la-
tency in Figure 2(a) could be expected to drop to around 2
seconds from 4.

We notice in Figure 2(b) that telnet latency is reduced
to 0.6 seconds (

!�
 ���
� ������� 5 4�� ' 	�
*�+�,���-� ) from four
seconds by restricting the size of the buffer allocated to the
ftp data connection. Ftp throughput is not affected signif-
icantly, confirming that the excess receiver buffer size ac-
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(a) unmodified system
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Fig. 2. Latency for telnet packets sent during an FTP down-
load of 240KB download. In (a), the duration of the transfer
was 73 seconds, for a throughput of 3.3KB/s. For (b), 76
seconds, for a throughput of 3.1KB/s. The larger number of
points in the lower graph is due to Nagle’s algorithm.

tually does not improve throughput performance, but only
adds queueing delay.

An interesting observation is that Figure 2(a) has fewer
data points than Figure 2(b). This is an effect of Nagle’s
algorithm [18]. Nagle’s algorithm restricts the number
of small, unacknowledged packets in the network for any
connection to one, to prevent connections from sending a
large number of very small packets in succession (as would
telnet for every keystroke). Because of this restriction, a
new telnet packet enters the network only when its prede-
cessor has been acknowledged.
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Fig. 3. Latency for telnet packets during one FTP download
from Australia. The 106KB download took (a) 38.6 sec-
onds, (b) 38.8 seconds to complete, at an average throughput
of (a) 2.7 KB/s (b) 2.7 KB/s.

C. Large RTT

Connections with a large round trip time are handled
gracefully by our system. To demonstrate this, we sim-
ulate a telnet session in contention with an ftp down-
load. The background ftp transfer in this case was from
ftp.cc.monash.edu.au with a 	�
*�+�,���-� of 560 ms (370ms
across the Internet, and around 190 ms from the modem).
Figure 3 compares latency and throughput measurements
obtained from an unmodified system and a system running
the receiver based policy.
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Fig. 4. Web download in contention with a long running ftp.
The dotted lines represent the start and end of the web down-
load, and the square represents the completion of the main
page. The web transfer completed in (a) 121 seconds, (b)
40 seconds. The 970KB background transfer, shown in the
lower graphs, completed in (a) 5 minutes, 21 seconds, (b) 5
minutes 32 seconds.

D. The Web

Prioritization of short-lived bulk transfer flows enables
a reduction in web access response time.

We conducted an experiment to test the improve-
ment in response time downloading complex web
pages. While downloading a large (970 KB) file,
we loaded a locally mirrored copy of the contents of
http://www.amazon.com/ using Netscape Commu-
nicator 4.5. The browser cache was empty, and we do not
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consider the time taken for name lookups. The server ran
Microsoft IIS on Windows NT 4.0. The throughput ob-
served by the background transfer, along with a cumula-
tive representation of the number of objects from the web
page downloaded over time, are shown in Figure 4.

The web request on the system governed by our policy
is able to consume more instantaneous bandwidth. In the
lower graphs of Figure 4, we show the number of bytes
transferred by ftp. The graph only shows the first 130 sec-
onds of the 970KB transfer. Notice that the ftp client under
our policy sacrifices more bandwidth while the web trans-
fer completes. This difference in performance is typical
when there is limited queue space at the access link.

E. Congestion Related Losses

In this section, we demonstrate the performance of the
congestion avoidance policy in the absence of interactive
traffic. The experimental setup consists of an ADSL link
simulated using the Dummynet package for FreeBSD. The
downlink bandwidth is 512Kbits/s, and the simulated la-
tency of the link is 22ms. The maximum queue capac-
ity was set to 10, 536 byte packets. We set

! 
 �/�
� ��� � 1 ���
in the policy to 6 packets. For this experiment, we run
two concurrent file transfers, the second of which is started
50ms after the first. This separation gives the first a little
time to get started, but not enough time to fill the queue. In
the unmodified system, the second transfer would starve if
it started when there was a full queue because of synchro-
nization effects [19].

In Figure 5, we show the cumulative number of bytes
transferred and the queue length at the simulated ADSL
link over time for both the default system and a sys-
tem managed by our policy, respectively. Beneath the
queue length graph, diamond symbols indicate losses due
to queue overflow.

Three things are apparent in Figure 5b. First, the num-
ber of packets queued remains stable at around 6, demon-
strating that the connections are receiver window limited
by our policy. The variation is likely the effect of de-
layed acknowledgments. Second, there are no congestion
related losses, even before the connections reach stabil-
ity. Third, the transfers have reasonably fair throughput.
Each of these represents potential performance improve-
ment. Although the time to download both files is similar,
server performance is improved because resources are not
wasted on the retransmission of lost packets.

VI. RELATED WORK

There is extensive literature on managing network
queueing. We present those with similar goals: to reduce
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Fig. 5. Top: Cumulative bytes transferred by two ftp’s under the
default (congestion limited) system. Bottom: Queue length
at the bottleneck link. Diamonds beneath the graph repre-
sent congestion losses. There were no congestion losses for
the receiver managed system.

queueing and prioritize flows. We separate these queueing
strategies by the goals they address.

A. Queue Reduction

Random Early Detection (RED) gateways reduce
queueing by monitoring the average queue length and ran-
domly selecting packets to be dropped before the queue
becomes full [19]. Packet losses signal the sender to de-
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crease the send rate. This reduces queue occupancy, and
thus delay. Although clever, RED is not enabled on many
routers at access links.

TCP Vegas senders reduce queueing by monitoring the
rate at which packets are accepted by the sender, and use
a congestion window sized slightly larger than the band-
width delay product [14]. Unfortunately, Vegas is a server-
side solution, so its advantages can only be realized at the
access link if it is deployed on all servers. Our solution is
similar in spirit, but receiver based for explicit control over
the access link.

B. Prioritized Flows

In Weighted Fair Queueing [20] (WFQ) and related
queue management schemes, packets from each flow are
queued separately. Each queue is given a weight, corre-
sponding to the share of bandwidth the router will allo-
cate to it. Interactive flows experience less contention. Al-
though WFQ would solve most of the issues raised in this
paper, it is not widely deployed because of implementation
complexity.

We also share motivation with Packeteer, which seeks
to “condition” incoming traffic by delaying acknowledge-
ments returned to servers [21]. Packeteer targets a business
environment where several users share a medium band-
width (T1 or T3) link, and uses specialized hardware.

WebTP is an alternative protocol to TCP specifically
designed for web traffic [8]. WebTP shares our goal of
supporting the prioritization of incoming traffic. WebTP
achieves this by giving the browser application explicit
control over which packets to download, and the oppor-
tunity to accept out of order data delivery. WebTP is de-
signed specifically for web traffic and would require mod-
ification both to clients and servers or widespread deploy-
ment of WebTP proxies.

C. Buffer Tuning for Performance

Semke, Mahdavi, and Mathis developed a mechanism
that tunes sender buffer sizes to improve throughput on
high bandwidth networks [22]. Allocating a send buffer
that is too small underutilizes a link, while allocating one
too large consumes valuable server memory which can ul-
timately impact the throughput when several connections
are active. Our work is complementary to theirs: while
they manage contention between outgoing flows for shared
memory buffers, we manage contention between incoming
flows for shared queue space at the access link.

Kalampoukas, Varma, and Ramakrishnan simulate lim-
iting the receiver’s window to reduce queueing and syn-
chronization effects, and show performance improvements

even when the access router uses intelligent discard poli-
cies like RED [23]. Although they employ the same mech-
anism, their goals are fairness and throughput, while our
goals include prioritization and reduced delay. We be-
lieve our work demonstrates that their congestion avoid-
ance scheme works in practice, and that their simulations
demonstrate the robustness of congestion avoidance using
the receiver’s advertised window.

D. Summary

Although well developed and studied, these strategies
are not widely deployed and available for use today. Our
receiver based solution can be installed by the client and
provides the relevant benefits without relying on ISP’s or
web servers.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that there is potential
to reduce interactive delay in the presence of contention
on a dedicated, low-bandwidth link. We have developed
a mechanism and policy for manipulating receive buffer
sizes to improve performance, and shown that it can be
applied in a variety of scenarios, including web browsing.

Our work is preliminary, in that it does not address ap-
plication level priority control or real time constraints. It
would be simple to allow an application to dictate the pri-
ority class of each of its connections, so that the system
could leverage application specific knowledge. We pro-
vide a form of real-time latency guarantee, in the form of!�
 �/�
� ������� 5 4�� , but our system was not designed to ad-
dress general real-time issues.

Finally, when the access link is a shared medium, such
as a cable modem, contention from traffic received by
other users is significant. Since our system adopts some
of the strategies of TCP Vegas, it is likely that similar un-
fairness will result, and aggressive receivers will tend to
obtain an unfair share of bandwidth. Isolating receivers,
either by queueing each receiver’s packet separately or re-
ducing the degree of sharing on a segment, would both
help individual receivers in the presence of contention and
enable receiver based prioritization.
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