Integrating Acting, Planning, and Learning in Hierarchical Operational Models

Sunandita Patra¹, James Mason¹, Amit Kumar¹, Malik Ghallab², Paolo Traverso³, Dana Nau¹ ¹University of Maryland, USA, ²LAAS-CNRS, France, ³FBK-ICT, Italy.

Planning

- Prediction + search
- To reach a goal or accomplish a task

Acting

- Performing tasks and actions in the real world
- Adapt to context, react to events
- Dynamic, partially observable environment
- Wrong move can lead to failures and dead ends
- Needs online help from planner

Descriptive Models What the actions

eg. PDDL actions action: action-identifier pre: test effects: effect, effect, ..., effect

Operational Models

do?

How to perform the task on actor's execution platform?

rescue(p)

method-name(arg₁, ..., arg_k) task: task-identifier pre: test

body: computer program to generate commands and more tasks

Problem: The two models may not be consistent

- Can't verify or manage plans
- Acting suffers

Acting Algorithm: RAE

RAE = Refinement Acting Engine loop:

for every new task

Candidates <- {applicable method instances}

choose m from Candidates create a refinement stack

like a program execution stack initially with just task and m

add the stack to Agenda for each stack in Agenda

Progress(stack)

Use UPOM to make an informed choice

Possible choices

rescue-method1(p, r) task: rescue(p) pre: status(r) = Free and loc(p) = Unknownbody: for I in LOCATIONS: move(r, I) sense(I)

if loc(p) = I: help(r, p) return output("cannot find" p)

rescue-method2(p,l)

else fail

task: rescue(p) $loc(p) = I \text{ and } I \neq Unknown$ pre: body: r <- free robot nearest to p if r != NONE: move(r, I) help(r, p)

Our Contributions:

- Planner UPOM that uses the actor's operational models for planning
- Learning strategies integrated with actor and planner

Planning Procedure: UPOM

Idea: Execute the applicable refinement methods in a simulated environment

- Do several Monte Carlo rollouts

- Estimate the expected utility for every choice

- Choose the method with highest expected utility

UPOM handles one rollout

- A UCT-like procedure
- Balances exploration vs exploitation

Utility: User-defined function (e.g., cost, probability of success)

Learning Strategies: Learnπ and LearnH

Learnπ:

To choose a refinement method for a task

LearnH:

To estimate a heuristic for **UPOM**

- Gather training data from acting and planning traces of RAE and UPOM
- Train classifiers (multi-layered perceptrons)

Experimental Evaluation

Measured efficiency (reciprocal of cost) and success ratio in four simulated domains with different properties,

Rollout 2

Conclusions

- Using same model for both acting and planning is useful
- Key idea: Use operational models for planning instead of descriptive models
- Avoids inconsistency between actor and planner
- RAE with UPOM / Learnπ / LearnH shows improved performance compared to purely reactive RAE in four simulated domains

Contact:

Sunandita Patra patras@umd.edu University of Maryland, College Park https://sunanditapatra.wixsite.com/camp