
An Initial Study of Customer-Reported GUI Defects

Brian Robinson, Penelope Brooks
ABB Corporate Research

Raleigh, NC, USA
{brian.p.robinson, penelope.a.brooks}@us.abb.com

Abstract

End customers increasingly access the delivered

functionality in software systems through a GUI.
Unfortunately, limited data is currently available on how
defects in these systems affect customers. This paper
presents a study of customer-reported GUI defects from
two different industrial software systems developed at
ABB. This study includes data on defect impact, location,
and resolution times. The results show that (1) 65% of
the defects resulted in a loss of some functionality to the
end customer, (2) the majority of the defects found (60%)
were in the GUI, as opposed to the application itself, and
(3) defects in the GUI took longer to fix, on average,
than defects in the underlying application. The results
are now being used to improve testing activities at ABB.

1. Introduction

Most software systems today provide a Graphical
User Interface (GUI) as the main interface to the
delivered functionality for the end customer. While
many developers consider the GUI to be a less critical
part of the system, it is essential to customers, who must
use it whenever they need to interact with the system.
Simple defects in the GUI, such as incorrect values in
GUI properties, can result in the user experiencing a loss
of delivered functionality in the system.

To test a GUI, the test designer develops test cases
that are modeled as a sequence of user events and
executes them on the software via the GUI, either
manually or automatically. These events include clicking
on buttons, selecting menus and menu items, and
interacting with the functionality of the system provided
through the GUI. Events are governed by context, where
some events may not be executed in sequence with other
events, while other events require the execution of one or
more events before they are enabled. Legal event
sequences are defined implicitly as part of the GUI
development. Defects are manifested as failures observed
through the GUI. Some of these failures are due to GUI
defects (e.g., the text-label is incorrect, the OK button is
missing a caption), or application defects (e.g., the result
of the computation is incorrect). A GUI defect, for the
purpose of this paper, is defined as a defect in the GUI
itself, as opposed to application defects that are observed
through the GUI. The GUI includes the code which

makes up the GUI objects and the glue code that connects
those objects to the underlying application. All other
defects in the software are considered application defects.

Effective GUI testing is a difficult problem, as the
large number of valid and invalid actions and states that
exist inside GUIs leads to a combinatorially impractical
number of tests. Since exhaustive testing is infeasible,
many recent GUI testing techniques target functional
defects in the system. These techniques include capture-
replay tools [7], operational profile-[5] or user profile-
based methods [3], structural testing [12][13], and n-way
event testing [8].

Research in GUI testing has focused on university-
developed applications and open source software. Due to
the difficulty in creating test oracles for unfamiliar
applications, the defects detected in evaluative studies
were either seeded into the software or were detected
through an application crash [8][12].

This paper presents a case study of customer-reported
GUI defects on two large, industrial GUI systems that
are used by customers around the world. The study
focuses on defects from the user’s perspective and aims
to capture its impact to the customer, location in the
system, and the duration the customer experienced the
defect before a fix was released.

The contributions of this work include:

• A case study on two large, deployed, industrial
applications

• Measures of the impact that GUI defects have on
customers

• Measures of where in the system these customer
GUI defects are

• Measures of how long customer GUI defects took to
fix

This paper is organized as follows: Section 2 presents

related work in the areas of GUI testing, GUI defects,
and case studies on other types of customer defects.
Section 3 provides detailed examples of three customer
defects in the study. Section 4 describes the research
design for this study, including a description of the
systems used. Section 5 presents the results, and Section
6 presents the discussion and analysis. Conclusions and
future work are presented in Section 7.

IEEE International Conference on Software Testing Verification and Validation Workshops

978-0-7695-3671-2/09 $25.00 © 2009 IEEE

DOI 10.1109/ICSTW.2009.22

267

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 4, 2009 at 10:25 from IEEE Xplore. Restrictions apply.

2. Related Work

To our knowledge, previous research in testing has
not studied the impact of GUI defects on customers.
However, defect studies have been conducted on
customer-reported defects, to assess the impact on
customers; these studies did not report on GUI defects
separately. This section will describe some of this
previous work as it relates to our work.

Sullivan and Chillarege [11] studied the types of
defects found in database management systems (DBMS)
as compared to those found in operating systems (OS).
Their work focused on field defects and their impact, as
reported by the customer and the customer service
representative for two DBMSs and one OS. The study
compared the error type, trigger and defect type for the
two types of systems studied. They found the OS and the
older DBMS had about the same percentage of high-
impact errors, though the errors detected in the DBMS
were marked high-impact by the maintenance
programmers while the errors in the OS were marked
high-impact by the customer. The newer DBMS varied
from the other two systems in high impact errors;
maintenance programmers and customers both rated the
errors as high-impact. Their study also supported the
intuition that younger products have higher defect rates
and that those defects have higher customer impact than
older products.

Gittens et al. [6] performed a study of the
effectiveness of in-house testing by investigating the
breadth of the system and regression testing on factors
such as code coverage, the number of defects detected in-
house, and the number of defects detected in the field
after release. They had several interesting findings. First,
using a test suite with regression testing code coverage in
the range of 61-70% and system test coverage in the
range of 51-60%, very few defects are detected in the
field. Second, the study showed that as in-house testing
increases per module up to 61-70% coverage, the number
of field defects also increases. This is counterintuitive,
but supported by their data. Third, for in-house module
testing that achieves greater than 70% coverage, field
defects decrease. Therefore, their overall findings show
that code coverage of about 70% is very effective at
decreasing field defects. While the study reported here
does not correlate code coverage with customer-reported
defects, the findings from Gittens’ study complement our
findings in showing the importance of testing.

Musa, well-known for his work in software reliability,
developed the Software Reliability-Engineered Testing
(SRET) technique [9], and applied it to the Fone
Follower, a system that implements telephone call
forwarding. His SRET technique classifies a failure in
one of four severity classes based on service impact.
Subsequent regression testing then includes information

on previous failures when planning the failure intensity
objectives for new software.

Adams [1] studied five years of customer-reported
defects for nine products in the hope of determining the
cost-benefit tradeoff between preventive and corrective
service. He found that most failures in the field were
caused by defects found by customers shortly after the
release of software products; these defects would have
taken hundreds to thousands of months to detect if the
product had been tested on a single machine. Therefore,
he concluded that it would be almost impossible to have
prevented many of the defects detected in the field.

The study reported here will further this body of
knowledge by adding data on GUI defects detected in the
field and the impact on customers from an objective
viewpoint.

3. Study Design

Many recent defect studies have been performed on
systems developed at ABB [4][10]. These studies have
been very beneficial to ABB by identifying and
motivating software test improvements throughout the
development cycle. The results of these efforts have
shown measureable improvement in the detection of early
defects and a corresponding decrease in time to develop a
software release.

The study presented in this paper examines
approximately 200 customer-reported defects from two
large, deployed, industrial systems. The applications were
developed by ABB and are Human Machine Interfaces
(HMI) for large industrial control systems. The defects
studied represent four separate HMIs. The systems have
been deployed for over 10 years and are used by
customers around the world to monitor, configure, and
control systems in their businesses. The HMIs are
developed in C++ and run on the Windows operating
system. The GUI objects, such as forms, buttons, and
menus, are developed visually through Visual Studio
templates. The glue code connecting the GUI objects to
the underlying application is developed by hand.

A customer, for the purpose of this paper, is defined
as any external receiver of the final released software.
This includes the end users themselves, as well as any
third party integrators or other ABB units that configure,
sell, and deploy the software to the field.

The goal of this study is to improve the overall
quality of GUI testing by studying customer-reported
GUI defects to assist testers and researchers in creating
and evaluating effective GUI test techniques. Using the
Goal Question Metric (GQM) Paradigm [2] the goal for
this research can be restated as follows:

268

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 4, 2009 at 10:25 from IEEE Xplore. Restrictions apply.

Analyze customer GUI defects
for the purpose of understanding
with respect to GUI systems
from the point of view of the customer / user
in the context of industry developed GUI software.

This research goal is further refined into five research

questions to be answered by this study:

RQ1: How do GUI defects impact the customers’ use

of the software product and its delivered functionality?
RQ2: How do customer GUI defects differ from GUI

defects found in the testing phases?
RQ3: Where are customer-reported GUI defects

found in the software system?
RQ4: How long do customer-reported GUI defects

take to fix?
RQ5: Were these customer-reported GUI defects

released in scheduled releases?

In order to answer these five research questions, this
study is broken down into three areas: defect impact,
defect location, and defect resolution, each of which is
described in the following sections.

3.1 Defect Impact

There are many ways a defect can impact a customer’s
use of delivered software. The defect may cause a loss of
functionality in the delivered system. This functionality
loss may be total, evidenced by a system crash, or partial,
evidenced by the loss of specific functionality. Other
defects may not impact the overall functionality but
instead are nuisances to the customer, such as a button
requiring two clicks to activate or a misspelling of text in
a box.

For this study, functionality loss is categorized as
major, minor, or cosmetic. A major loss of functionality
represents the loss of a core function, such as the ability
to log in or access remote systems. A minor loss of
functionality happens when the customer is unable to
perform a non-critical action, such as printing a specific
screen. Finally, a cosmetic defect is defined as a defect
where no functionality is lost, but the customer
experiences some incorrect behavior, such as an invalid
message box, misspelled word, or an incorrect color on
the screen.

Even if the functionality of the software is impacted, a
workaround may exist to restore that functionality. These
workarounds usually involve a set of actions the user can
employ to restore the lost functionality. In this study,
workarounds are divided into two categories: simple and
complex. Simple workarounds do not require the user to
spend more time accessing the functionality than the
original method requires, such as using the print button
on the toolbar as opposed to selecting ‘File’ and ‘Print’

from the menu system. Complex workarounds, on the
other hand, do require the user to spend more time to
access the original functionality, such as the user having
to open a text file, edit values, and restart the system to
change values instead of selecting the desired value from
a list displayed in the GUI.

The impact of a defect can also be expressed in terms
of the number of customers affected. For the purpose of
this study, defects were annotated to impact either one
customer or many customers. Due to the nature of the
products in this study, customers represent large
companies which may have many sites. Therefore, even
defects marked as affecting one customer may impact
many users at each customer site.

Finally, the impact of a defect discovered by a
customer may vary from the impact of defects discovered
in testing. Studying the difference between the type of
GUI defects detected in-house and those discovered by
customers provides more insight into the defects
themselves, as well as their impact on the customer.

3.2 Defect Location

The location of the customer-found defects in the
software is also examined. For this study, the location of
a defect is categorized into widget, property, glue code, or
application. A GUI widget is a unit of code representing a
user control, such as a dialog box. These widgets can
contain user-configurable property values that customize
its appearance and behavior. Example properties include
values that affect the text, color, size, and functionality of
the widget. Glue code is used to connect the GUI widgets
with the rest of the software application, which
implements all of the underlying functionality.

Understanding the location of the customer-detected
defects gives insight into the areas of the software that are
not properly tested. If the defect caused the system to
crash, that information allows testers to prioritize testing
for those parts of the system. Because GUI code can
make up a large portion of the overall system, it needs to
be thoroughly tested. However, most testing efforts do
not focus on testing the GUI itself, but rather test the
application through the GUI. Our previous work [4]
showed that only 20% of the test cases were designed to
test the GUI, while the remaining 80% of test cases were
designed to test the underlying application through the
GUI.

3.3 Defect Resolution

The length of time a customer experiences a defect is
also examined in this study. To better understand the
impact of a defect on the customer, the total number of
days between reporting the defect and receiving a fixed
version of the software is calculated. The customer’s
ability to work around the defect and the number of
defects which cause the system to crash are also studied.

269

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 4, 2009 at 10:25 from IEEE Xplore. Restrictions apply.

Additionally, the type of release is studied and
reported. Releases can be major, where new functionality
is included in the release, minor, where only bug fixes are
included in the release, or customer specific, where the
release is only sent to a few customers.

3.4 Threats to Validity

Assessing the impact of each defect is somewhat
subjective. We devised the scale discussed in the previous
section to aid in consistently characterizing the defects.
Where applicable, the scale is also consistent with the
Problem Reporting and Correction (PRC) System in use
at ABB.

Defect location can be difficult to pinpoint, even after
examining changes in the source code. In particular,
determining the difference between a defect in the glue
code or in the application was sometimes difficult as
many systems rely heavily on passing data to other
systems.

To assist in consistency across the defects, the authors
met and collaboratively characterized the first 5% of the
defects. In addition, a random sampling of classified
defects was collaboratively reviewed and, if any
disagreements were found, any other defects with a
similar classification were also reviewed.

The defects analyzed for this study are from large,
currently deployed production systems. While they are
applicable to a variety of domains, they are primarily
control and monitoring systems and therefore the results
may not be directly transferrable to systems in other
domains, such as office automation applications.

4. Example Customer Defects

To better understand how GUI defects affect the
customer’s use of the software and its functionality, three
example defects from this study are presented in detail.
The three defects described here were actually detected
by a customer while using the system in the field for its
intended purpose.

The first failure occurs when the customer clicks a
GUI button twice, causing numeric values to be changed
in a text input field elsewhere on the page. The values
affected by the extra click cause the software to send
incorrect values out to the running control system, which
could cause the control system to error and stop
production. The underlying defect for this first failure
involves the glue code for the GUI event handler.
Specifically, the double click event is not handled
properly and the second click event gets processed by the
text input field, which sets its value to the screen
coordinates of the mouse.

Another customer failure is observed when the user
changes the default color for a GUI control. The control is
displayed with the correct color until its blink

functionality is triggered. At this point, the control is
supposed to blink between its assigned color and the
inverse of its assigned color. Instead, the control just
blinks the default black and white and, when the blink
functionality is complete, the user specified color is not
restored. This defect exists in the GUI widget itself and
only has a cosmetic impact on the software functionality.

The third customer failure occurs when customers
want to rerun existing reports to repopulate their data.
The initial report is created correctly, but when it is rerun,
the custom formatting for the report is lost. This defect
exists in the glue code for the update report GUI button. It
results in a minor loss of functionality and has a complex
workaround, which involves recreating the report each
time the data changes.

5. Results

Each research question, listed in Section 3, has an
associated set of metrics that were collected to provide
insight into the problem. These metrics, and their
values, are presented here, along with the research
question to which they apply.

5.1 Defect Impact

RQ1: How do GUI defects impact the customers’ use
of the software product and its delivered functionality?

Metrics: Functionality loss, workaround availability,

size of impact, frequency of crash

Table 1. Defect Impact
Impact Percent of Total
Major 22.40%
Minor 43.23%

Cosmetic 34.38%

The defects were classified based on the impact to the

customer’s ability to use the delivered functionality of
the system, which is shown in Table 1. The majority of
the defects resulted in a minor impact on functionality
(43%), while approximately 35% of the defects were
cosmetic in nature and the remaining 22% had a major
impact on the functionality.

Table 2. Workaround Availability for Defects

Workaround Percent of Total
Complex 17.71%
Simple 23.44%
None 58.85%

270

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 4, 2009 at 10:25 from IEEE Xplore. Restrictions apply.

The customer’s ability to work around the defect is
also of concern. Table 2 shows that almost 60% of the
defects did not have a workaround, while 18% had a
complex workaround and the remaining defects (23%)
had a simple workaround.

Table 3. Relating Defect Impact and Workaround
Impact Complex Simple None Total
Major 32.56% 16.28% 51.16% 100%
Minor 19.28% 32.53% 48.19% 100%

For this study, we were also interested in determining

if a correlation exists between the impact of the defect
and the workaround. The data in Table 3 show that
approximately half of the defects, whether a major or
minor impact on the customer, did not have a
workaround. For those defects with a workaround, those
with a major impact had a complex workaround most
often, while those with a minor impact frequently had a
simple workaround.

Table 4. Breakdown of Defect Impact by Crash

System
Crash

Impact Total
Major Minor Cosmetic

Yes 70.83% 25.00% 4.17% 100%
No 15.48% 45.83% 38.69% 100%

Although the impact of the defect was determined

separately from whether or not it caused the system to
crash, the data in Table 4 show that the two are related:
of the defects that caused the system to crash, 71% of
them had major impact on the customer. Note that it is
possible to have a cosmetic defect cause a system crash.
An example of this involves a cosmetic defect where a
GUI dialog box has an incorrect button enabled. This
defect itself results in no loss of functionality, but if the
user clicks on that button, the application crashes.

Table 5. Relating Defect Impact to Number of

Customers Affected
Impact Number of Customer Sites Total

One Many
Major 19.79% 2.60% 22.40%
Minor 33.33% 9.90% 43.23%

Cosmetic 28.65% 5.73% 34.38%

Finally, Table 5 shows that defects with minor impact

on the customer also affected the most customers. 33%
of the defects were minor and affected only one
customer site, while ~10% of the minor defects affected
more than one site. Almost 30% of the defects were
cosmetic and affected only one site, while 6% were
cosmetic and affected more than one. The least number

of customers were affected by the defects with major
impact, where ~20% of the defects affected one
customer and 3% affected many customers.

RQ2: How do customer GUI defects differ from GUI

defects found in the testing phases?

Metrics: Classified defects

In our previous work, defects were classified

according to a modified version of the Beizer Defect
Taxonomy. Details of the previous studies as well as the
classification scheme can be found in [4] and [10]. Table
6 shows the difference between in-house defects reported
for three of the system interfaces studied compared to
customer-reported defects. The customer-reported
defects make up ~40% of all reported defects. The
categories shown are those with a difference of over 1%.

The category of Feature Completeness shows the
largest difference in reported defects between in-house
(~3%) and customer-reported (~8%) defects. The next
category of defects with the largest difference between
reporting sources GUI Defects, with a difference of
4.25%. Data Access and Handling showed a difference
of 3.57%.

Table 6. Classification of Defects

Classification

Cust.
Reptd

In-
house

Diff.

22 Feature Incomplete 7.91% 2.76% 5.15%
53 GUI Defect 30.22% 25.97% 4.25%
42 Data Access/Hndlg 10.79% 14.36% 3.57%
81 System Setup 5.76% 8.84% 3.08%
54 Software Doc 1.44% 3.87% 2.43%
24 Domains 2.88% 0.55% 2.33%
61 Internal Interface 4.32% 6.63% 2.31%
23 Case Complete 3.60% 1.66% 1.94%
62 External Interface 1.44% 3.31% 1.88%
25 User Msg/Diagnos 5.04% 3.31% 1.72%
73 Recovery 0.00% 1.66% 1.66%
71 OS 0.72% 2.21% 1.49%
21 Correctness 1.44% 0.00% 1.44%
72 Sw Architecture 3.60% 2.21% 1.39%
63 Config Interface 0.00% 1.10% 1.10%

5.2 Defect Location

RQ3: Where are customer-reported GUI defects

found in the software system?

Metrics: Location of defects in the system, frequency

of crash

271

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 4, 2009 at 10:25 from IEEE Xplore. Restrictions apply.

Table 7. Defect Location
Location Percent of Total

Application 40.22%
Glue Code 32.61%
Property 22.28%
Widget 4.89%

The data in Table 7 show that 40% of the total

defects were detected in the application code itself. The
glue code (33%) and properties of the GUI (22%) each
contained almost as many defects, while only 5% of the
defects were in the widget. In total, the GUI itself
contained approximately 60% of the defects, while the
underlying application contained the remaining 40%.

Table 8. Relating Defect Location to System

Crash
 System Crash

Location Yes No
Application 62.50% 36.88%
Glue Code 16.67% 35.00%
Property 16.67% 23.13%
Widget 4.17% 5.00%

Table 8 shows the relationship between defect

location and system crashes. The majority of the defects
in the application code also caused the system to crash
(63%), while defects in the glue code and properties only
caused crashes approximately 17% of the time and
widget defects cause crashes in less than 5% of the cases.

5.3 Defect Resolution

RQ4: How long do customer-reported GUI defects

take to fix?

Metrics: Time to fix, frequency of crash, workaround

availability

Table 9. Relating Impact and Fix Time
Impact Avg Days to Fix
Major 244
Minor 156

Cosmetic 139
Total Average: 170

Next, the average number of days to fix each type of

defect (based on impact, location, crash and workaround)
was computed by comparing the date the defect was
reported and the date changed code was checked in to
the code repository. The date of the actual release for the
majority of these defects was preplanned, so the total
elapsed time for the customer is less interesting. The

defects with major impact took the most time to fix; on
average, 244 days, compared to 156 days for minor
impact defects and 139 days for cosmetic defects. Table
9 shows the data.

Table 10. Relating Location and Fix Time
Location Avg Days to Fix

Application 114
Glue Code 239
Property 147
Widget 301

Total Average: 172

Table 10 breaks down the time to fix based on the
location of the defect. The widget defects took the most
time to fix – 301 days on average. Glue code defects
took 239 days to fix, while defects located in property
and application code took an average of 147 and 114
days, respectively.

Table 11. Relating System Crash and Fix Time

Crash Avg Days to Fix
Yes 175
No 169

Total Average: 170

Data was also gathered on whether crash-causing
defects take more or less time to fix. The average amount
of time to fix any defect was 170 days. Table 11 shows
that crash-causing defects took 175 days to fix on
average, while non-crashing defects took 169 days to fix.
There is no real difference between the time needed to
fix crash-causing and non-crashing defects.

Table 12. Relating Workaround and Fix Time
Workaround Avg Days to Fix

Complex 151
Simple 196
None 166

Total Average: 170

The average number of days to fix the defect, as it
relates to workaround difficulty, was studied and the
results are shown in Table 12. Defects with complex
workarounds were fixed the fastest (average of 151
days), while the defects with simple workarounds took
45 days longer on average (196 days to fix). Those
defects with no workaround took 166 days to fix.

RQ5: Were these customer-reported GUI defects
released in scheduled releases?

Metrics: Previously known or not, type of release

272

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 4, 2009 at 10:25 from IEEE Xplore. Restrictions apply.

In most cases, defects were corrected in the next

major release of the product (88%). Table 13 also shows
that 10% of the defects warranted a customer-specific
release, while only 2% were fixed in a minor release.

Table 13. Type of Release to correct defects
Type of Release Percent of Total

Major 88.02%
Minor 2.08%

Customer-specific 9.90%

6. Discussion and Analysis

The results presented in the previous section provide
details of the defects that were studied, including impact
of the defect from the perspective of the customer, defect
location, and the resolution of the defect. The following
sections provide further analysis of these results.

6.1 Defect Impact

Defects were examined on the basis of loss of
functionality for the customer as well as available
workarounds. Studying the combined impact and
workaround of the defects (Table 3) revealed that
approximately half of all major and minor impact defects
have no workaround. This means that customers who
experience functionality loss due to GUI defects often
have no way to restore that functionality until a fix is
released. Combining that with the fact that major defects
take an average of 244 days to fix (Table 9) and are often
released in scheduled yearly major releases (table 13),
customers are often impacted by this functionality loss
for between 8 and 12 months. Also, many ABB
customers do not upgrade more than once per year
anyway, since upgrades often require a shutdown of
production.

Furthermore, relating defect impact to system crashes
(Table 4), it can be seen that 71% of the defects that
caused a crash had a major impact on the customer.
However, the overall percentage of defects that were
major and also crashed the system was fairly small, only
9% of the total defects.

Studying the number of customers affected (Table 5)
shows an interesting phenomenon. Due to the nature of
the software studied, the customer base is much more
limited than that of other commercial software, such as
office automation software. Previously, it was our
assumption that the software is used in approximately
the same manner at each site. However, the results in
Table 5 disagree and show that less than 20% of all
defects are observed at more than one customer site.

Finally, this study showed that the classified defects
varied only slightly between those found in-house and
those found by customers in the field. This shows that
in-house testing is finding the same types of defects as
customers find, therefore with an increase of targeted
testing efforts, perhaps even more defects will be found
in-house.

6.2 Defect Location

Examining defect location gave a good indication of
how many defects observed through the GUI are actually
defects in the underlying code. For the systems studied,
the difference between application code, glue code, and
property code is not statistically significant; however,
these results show that 60% of the defects are located in
the GUI while the remaining 40% are found in the
underlying application. These results support previous
findings that GUI testing reveals underlying application
defects, as well as the intuition that defects in the glue
code can be difficult to test for directly and can only be
found by testing through the GUI. Furthermore, of the
defects that caused the system to crash, almost 63% of
them are due to errors in the application code. This
supports the intuition that uncaught application defects
can have a major impact on the reliability of the
deployed application.

6.3 Defect Resolution

Due to ABB’s software release schedule, the majority
of the defects were not resolved for almost 6 months,
and up to 8 months in some cases. Defects that are high
in priority are scheduled for faster, customer specific
releases. The products studied release a large percentage
of bug fixes in scheduled major and minor releases. In
three of the four interfaces studied, almost 90% of the
defects were released in scheduled major product
releases each year (Table 13).

Tables 9-12 show the impact to the customer, with
several interesting findings. First, defects with major
impact to the customer take the longest to fix (Table 9).
Since higher priority defects are intended to release
faster, this may be due to the difficulty of the resolution.
Second, defects located in the widget and in the glue
code take the most days to fix (Table 10). These two
points suggest that either the defects in the glue code and
widgets are not perceived to be as important by the
developers or those defects are harder to pinpoint and,
therefore, fix. Further examination of defect resolution
start (instead of defect reported date) and end dates is
needed to make any further conclusions. Third, it
appears that defects with a simple workaround are also
fixed slightly slower; Table 12 shows these defects take

273

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 4, 2009 at 10:25 from IEEE Xplore. Restrictions apply.

an average of 196 days to fix, compared to the average
time of 170 days. This was expected, as defects with
simple workarounds are prioritized lower.

7. Conclusions and Future Work

Previous work has shown that GUI testing is
important. The purpose of this study was to examine the
impact of GUI defects on the customer. We found that
the majority of customer-reported GUI defects had major
impact on their day-to-day operations, but were not fixed
until the next major release. On average, customers
waited 170 days (almost 6 months) for these defects to
be fixed. Further, previous research also shows that
many defects of the underlying application can manifest
themselves in the GUI. The findings of this study further
support these previous studies, since 40% of the defects
observed in the GUI were actually defects in the
underlying application code.

These findings provide more detailed information on
customer defects than was previously available. In the
future, testers in ABB can leverage this information
when planning the overall testing strategy of a product
release. For example, learning that less than 20% of the
defects are seen at more than one customer site shows
that it is more important to tie in customer profiles as
testing efforts are planned. By testing the system as it is
used by several customers, even fewer defects will
present themselves at multiple sites.

ABB’s software development teams are in the
process of making major changes, specifically in the
quality assurance area. One of these changes may
include a more frequent release schedule to address
customer-reported defects sooner. After incorporating
the findings of this study into the testing strategy at each
development organization, the impact of defects on the
customer can be studied again.

References

[1] Adams, E. N. Optimizing preventive service of software
products. IBM Journal of Research, 28(1), January 1984.
[2] Basili, V. R. Software Modeling and Measurement: the
Goal/Question/Metric Paradigm. Technical Report. University
of Maryland at College Park, 1992.
[3] Brooks, P. A. and Memon, A. M. 2007. Automated GUI
Testing Guided By Usage Profiles. In Proc. of the 22nd
IEEE/ACM Int’l Conference on Automated Software
Engineering, Atlanta, Georgia, USA, pp. 333-342, Nov 2007.
[4] Brooks, P., Robinson, B., and Memon, A. M. An Initial
Characterization of Industrial Graphical User Interface
Systems. To appear in Proc. of the IEEE Int’l Conf on Software
Testing, Verification, and Validation, Apr 2009.
[5] Clarke, J. M. Automated test generation from a behavioral
model. In Proc. of 11th Int’l Software Quality Week, May
1998.

[6] Gittens, M., Lutfiyya, H., Bauer, M., Godwin, D., Kim, Y.
W., and Gupta, P. An Empirical Evaluation Of System And
Regression Testing. In Proc. of the Conf of the Centre For
Advanced Studies on Collaborative Research, pp. 3-15, 2002.
[7] Memon, A. M., Banerjee, I., and Nagarajan, A. GUI
Ripping: Reverse Engineering of Graphical User Interfaces for
Testing. In Proc of 10th Working Conf. on Reverse Eng, pp
260-269, 2003.
[8] Memon, A. M. and Xie, Q. Studying the fault-detection
effectiveness of GUI Test Cases for Rapidly Evolving Software.
IEEE Transactions on Software Engineering, 31(10):884–896,
2005.
[9] Musa, J. D., Software Reliability-Engineered Testing,
IEEE Computer , vol.29, no.11, pp.61-68, Nov 1996.
[10] Robinson, B., Francis, P., and Ekdahl, F. A Defect-Driven
Process for Software Quality Improvement. In Proc. of the Int’l
Symposium on Empirical Software Eng and Measurement,
Kaiserslautern, Germany, pp 333-335, Oct 2008.
[11] Sullivan, M. and Chillarege, R., A Comparison of
Software Defects in Database Management Systems and
Operating Systems, In Proc. of Int’l Symposium on Fault-
tolerant Computing, pp. 475-484, July 1992.
[12] Xie, Q. and Memon, A. M. Designing and comparing
automated test oracles for GUI-based software applications.
ACM Transactions on Software Engineering Methodology,
16(1):4, 2007.
[13] Yuan, X. and Memon, A. M. Using GUI run-time state as
feedback to generate test cases. In Proc. of the 29th Int’l Conf
on Software Eng, pp. 396-405, May 23–25, 2007.

274

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 4, 2009 at 10:25 from IEEE Xplore. Restrictions apply.

