CMSC216: Binary, Integers, Arithmetic

Chris Kauffman

Last Updated:
Wed Mar 6 03:13:39 PM EST 2024

Logistics

Reading

- C References
- Bryant/O’Hallaron Ch 2.1-2.3

Assignments

- Project 1: due 20-Feb
- Bug fixes to font_alternate.txt
- Bug fixes to associated Problem 2 tests
- HW04: Review, Quiz due Mon 26-Feb
- Midterm Survey due Tue 27-Feb

Goals

- Integers/characters in binary
- Arithmetic operations
- Negative numbers
- Exam Review

Announcements: CS Job Fair

COMPUTER SCIENCE

Career \& Internship Fair | Spring 2024

Connect with computer science undergraduate and graduate students looking for challenging and rewarding internships, co-ops, and full-time careers that will foster their technical capabilities!

岁 FEBRUARY 26, 2024 (B) 11 AM-6 PM ETSTAMP STUDENT UNIONCSCAREERFAIRS@UMD.EDU
(i) CS.UMD.EDU/CSCAREERFAIR

Exam 1 Logistics

- In-person in class on Thu 22-Feb
- Exam runs lecture period: 75 min
- Expect 2 pages front/back
- Open Resource Exam: examine rules for this posted at bottom of course schedule (beneath slides)

Practice + Review

- Practice Exam 1A will be posted Fri 16-Feb
- Practice Exam 1B and Review in class Tue 20-Feb
- Solutions to practice exam will be posted for students

Unsigned Integers: Decimal and Binary

- Unsigned integers are always positive:

```
    unsigned int i = 12345;
```

- To understand binary, recall how decimal numbers "work"

Decimal: Base 10 Example Each digit adds on a power 10

$$
\begin{array}{rlrl}
80,345=5 & \times 10^{0}+ & 5 \text { ones } & 11001_{2}=1 \times 2^{0}+ \\
4 \times 10^{1}+ & 40 \text { tens } & 0 \times 2^{1}+ & 0 \text { twos } \\
3 & \times 10^{2}+ & 300 \text { hundreds } & 0 \times 2^{2}+ \\
0 \times 10^{3}+ & 0 \text { thousands } & 1 \times 2^{3}+ & 8 \text { fours } \\
8 \times 10^{4} & 80,000 \ldots & 1 \times 2^{4}+ & 16 \text { sixhts } \\
5+40+300+80,000 & & =1+8+16 & =25
\end{array}
$$

Binary: Base 2 Example
Each digit adds on a power 2

So, $11001_{2}=25_{10}$

Exercise: Convert Binary to Decimal

Base 2 Example:

$$
\begin{array}{rlr}
11001= & 1 \times 2^{0}+ & 1 \\
0 & \times 2^{1}+ & 0 \\
0 & \times 2^{2}+ & 0 \\
1 & \times 2^{3}+ & 8 \\
1 \times 2^{4}+ & 16 \\
=1+8+16 & =25
\end{array}
$$

Try With a Neighbor
Convert the following two numbers from base 2 (binary) to base 10 (decimal)

- 111
- 11010
- 01100001

So, $11001_{2}=25_{10}$

Answers: Convert Binary to Decimal

$$
\begin{aligned}
111_{2}= & 1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0} \\
= & 1 \times 4+1 \times 2+1 \times 1 \\
= & 7_{10} \\
11010_{2}= & 1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0} \\
= & 1 \times 16+1 \times 8+0 \times 4+1 \times 2+0 \times 1 \\
= & 26_{10} \\
01100001_{2}= & 0 \times 2^{7}+1 \times 2^{6}+1 \times 2^{5}+0 \times 2^{4} \\
& +0 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0} \\
= & 0 \times 128+\times 64+1 \times 32+0 \times 16 \\
& +0 \times 8+0 \times 4+0 \times 2+1 \times 1 \\
= & 97_{10}
\end{aligned}
$$

Note: last example ignores leading 0's

The Other Direction: Base 10 to Base 2

Converting a number from base 10 to base 2 is easily done using repeated division by 2 ; keep track of remainders
Convert 124 to base 2:

$124 \div 2$	$=62$		rem 0
$62 \div 2$	$=31$		rem 0
$31 \div 2$	$=15$		rem 1
$15 \div 2$	$=7$		rem 1
$7 \div 2$	$=3$		rem 1
$3 \div 2$	$=1$		rem 1
$1 \div 2$	$=0$		rem 1

- Last step got 0 quotient so we're done.
- Binary digits are in remainders in reverse
- Answer: 1111100
- Check:

$$
0+0+2^{2}+2^{3}+2^{4}+2^{5}+2^{6}=4+8+16+32+64=124
$$

Decimal, Hexadecimal, Octal, Binary

- Numbers exist independent of any writing system
- Can write the same number in a variety of bases
- C provides syntax for most common bases used in computing

	Decimal	Binary	Hexadecimal	Octal
Base	10	2	16	8
Mathematical	125	1111101_{2}	$7 \mathrm{D}_{16}$	175_{8}
C Prefix	None	$0 \mathrm{~b} \ldots$	$0 \mathrm{x} .$.	$0 \ldots$
C Example	125	Ob1111101	0x7D	0175

- Hexadecimal often used to express long-ish byte sequences Larger than base 10 so for $10-15$ uses letters A-F
- Examine number_writing.c and table.c for patterns
- Expectation: Gain familiarity with doing conversions between bases as it will be useful in practice

Hexadecimal: Base 16

- Hex: compact way to write bit sequences
- One byte is 8 bits
- Each Hex character represents 4 bits
- Each Byte is 2 Hex Digits

Hex to 4 bit equivalence

Dec	Bits	Hex
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	B
12	1100	C
13	1101	D
14	1110	E
15	1111	F

Exercise: Conversion Tricks for Hex and Octal

Examples shown in this week's HW, What tricks are illustrated?

Answers: Conversion Tricks for Hex and Octal

- Converting between Binary and Hexadecimal is easiest when grouping bits by 4: each 4 bits corresponds to one hexadecimal digit

```
bin: 0101 0111 bin: 1110 0010
hex: 5 7 hex: E=14 2
```

- Converting between Binary and Octal is easiest when grouping bits by 3: each 3 bits corresponds to one octal digit

bin:	01	010	111	bin:	11	100	010
oct:	1	2	7	oct:	3	4	2

Character Coding Conventions

- Would be hard for people to share words if they interpretted bits as letters differently
- ASCII: American Standard Code for Information Interchange An old standard for bit/character correspondence
- 7 bits per character, includes upper, lower case, punctuation

Dec	Hex	Binary	Char	Dec	Hex	Binary	Char
65	41	01000001	A	78	4 E	01001110	N
66	42	01000010	B	79	4 F	01001111	O
67	43	01000011	C	80	50	01010000	P
68	44	01000100	D	81	51	01010001	Q
69	45	01000101	E	82	52	01010010	R
70	46	01000110	F	83	53	01010011	S
71	47	01000111	G	84	54	01010100	T
72	48	01001000	H	85	55	01010101	U
73	49	01001001	I	86	56	01010110	V
74	4A	01001010	J	87	57	01010111	W
75	4B	01001011	K	88	58	01011000	X
76	4C	01001100	L	89	59	01011001	Y
77	4D	01001101	M	90	5 A	01011010	Z
91	5B	01011101	[97	61	01100001	a
92	5C	01011110	I	98	62	01100010	b

Exercise: Characters vs Numbers

Explain the following program and its output

```
1 // char_ints.c:
2 #include <stdio.h>
3 #include <string.h>
4 int main(){
5 ...
6 char nums [64] = {
7 72, 101, 108, 108, 111, 32,
        87, 111, 114, 108, 100, 33,
        0
    };
    printf("%s\n",nums);
    len = strlen(nums);
    for(int i=0; i<len; i++){
        printf("[%2d] %c %3d %02X\n",
    i,nums[i],nums [i],nums [i]);
    }
    return 0;
18 }
```


Answers: Characters vs Numbers

Elements of the Array

```
printf("[%2d] %c %3d %02X\n",
```

 i, nums [i], nums [i] , nums [i]);
 Print a single element of the array as

- \%c: a character (ASCII table lookup for the glyph to draw)
- \%3d : a decimal number (padding to width 3)
- \%02X : as a hexadecimal number (with leading 0's if needed and padded with width 2)

Unicode

- World: Why can't I write 컴퓨터
in my code/web address/email?
- America: ASCII has 128 chars. Deal with it.
- World: Seriously?
- America: We invented computers. 'Merica!
- World:

- America: ... Unicode?
- World: But my language takes more bytes than American.
- America: Deal with it. 'Merica!
- ASCII Uses 7 bits per char, limited to 128 characters
- UTF-8 uses 1-4 bytes per character to represent many more characters (1,112,064 codepoints)
- Uses 8th bit in a byte to indicate extension to more than a single byte
- Requires software to understand coding convention allowing broader language support
- ASCII is a proper subset of UTF-8 making UTF-8 backwards compatible and wildly popular

Binary Integer Addition/Subtraction

Adding/subtracting in binary works the same as with decimal EXCEPT that carries occur on values of 2 rather than 10

ADDITION \#1

111	<-carries
0100	$1010=74$
+ 0101	$1001=89$
1010	$0011=163$
ADDITION	\#2
1111	1 <-carries
0110	$1101=109$
+ 0111	$1001=121$

$11100110=230$

SUBTRACTION \#1
? <-carries
$01111001=121$

- $00010011=19$
vvvvvvvvvvvvv vvvvvvvvvvvvv vVvvvvVvvvvvv
x12 <-carries

$$
01110001=119
$$

$$
-00010011=19
$$

$01100110=102$

Two's Complement Integers: Representing Negative Values

- To represent negative integers, must choose a coding system
- Two's complement is the most common for this
- Alternatives exist
- Signed magnitude: leading bit indicates pos (0) or neg (1)
- One's complement: invert bits to go between positive negative
- Great advantage of two's complement: signed and unsigned arithmetic are identical
- Hardware folks only need to make one set of units for both unsigned and signed arithmetic

Summary of Two's Complement

Short explanation: most significant bit is associated with a negative power of two.

UNSIGNED BINARY

76543210 : position ABCD EFGH : 8 bits
A: 0/1 * + (2^7) *POS*
B: 0/1 * + (2^6)
C: 0/1 * +(2^5)
H: 0/1 * + (2~0)
UNSIGNED BINARY
76543210 : position
$10000000=+128$
$10000001=+129$
$10000011=+131$
$11111111=+255$
$00000000=0$
$00000001=+1$
$00000101=+5$
$01111111=+127$

TWO's COMPLEMENT (signed)

76543210 : position
ABCD EFGH : 8-bits
A: 0/1 * - (2^7) *NEG*
B: 0/1 * +(2~6)
C: $0 / 1 *+\left(2^{\wedge} 5\right)$
$\mathrm{H}: 0 / 1 *+\left(2^{\sim} 0\right)$
TWO's COMPLEMENT (signed)
76543210 : position
$10000000=-128$
$10000001=-127=-128+1$
$10000011=-125=-128+1+2$
$11111111=-1=-128+1+2+4+\ldots+64$
$00000000=0 \quad[\quad+127]$
$00000001=+1$
$00000101=+5$
$01111111=+127$

Two's Complement Notes

- Leading 1 indicates negative, 0 indicates positive
- All 0's = Zero
- Positive numbers are identical to unsigned

Conversion Trick
Positive \rightarrow Negative

- Invert bits, Add 1

Negative \rightarrow Positive

- Invert bits, Add 1

Same trick works both ways, implemented in hardware for the unary minus operator as in

```
~ 0110 1000 +104 : negate
```

~ 0110 1000 +104 : negate
M rren 0111 inverted
M rren 0111 inverted
1111 <-carries
1111 <-carries
0110 1000 = +104
0110 1000 = +104

+ 1001 1000 = -104
+ 1001 1000 = -104

x 0000 0000 = zero

```
x 0000 0000 = zero
```


Overflow

- Sums that exceed the representation of the bits associated with the integral type overflow
- Excess significant bits are dropped
- Addition can result in a sum smaller than the summands, even for two positive numbers (!?)
- Integer arithmetic in fixed bits is a mathematical ring
Examples of Overflow in 8 bits
ADDITION \#3 OVERFLOW ADDITION \#4 OVERFLOW

Underflow

- Underflow occurs in unsigned arithmetic when values go below 0 (no longer positive)
- Pretend that there is an extra significant bit to carry out subtraction
- Subtracting a positive integer from a positive integer may result in a larger positive integer (?!?)
- Integer arithmetic in fixed bits is a mathematical ring

Overflow and Underflow In C Programs

- See over_under_flow.c for demonstrations in a C program.
- No runtime errors for under/overflow
- Good for hashing and cryptography
- Bad for most other applications: system critical operations should use checks for over-/under-flow
- See textbook Ariane Rocket Crash which was due to overflow of an integer converted from a floating point value
- At the assembly level, there are condition codes indicating that overflow has occurred but there is not a universal method to check for this in C^{1}

[^0]
Endinaness: Byte ordering in Memory

- Single bytes like ASCII characters lay out sequentially in memory in increasing address
- Multi-byte entities like 4-byte ints require decisions on byte ordering
- We think of a 32-bit int like this

Binary:	0000	0000	0000	0000	0001	1000	1110	1001
	0	0	0	0	1	8	E	9

Hex : 000018E9
Decimal: 6377

- But need to assign memory addresses to each byte
- Little Endian: least significant byte early
- Big Endian: most significant byte early
- Example: Integer starts at address \#1024

Address				
LittleEnd:	\#1027	\#1026	\#1025	\#1024
Binary:	00000000	00000000	00011000	11101001
	00	00	18	E 9
BigEnd:	\#1024	\#1025	\#1026	\#1027
	Address			

Little Endian vs. Big Endian

- Most modern machines use little endian by default
- Processor may actually support big endian
- Both Big and Little Endian have engineering trade-offs
- At one time debated hotly among hardware folks: a la Gulliver's Travels conflicts
- Intel Chips were little endian and have dominated computing for several decades, set the precedent for modern platforms
- Big endian byte order shows up in network programming: sending bytes over the network is done in big endian ordering
- Examine show_endianness.c : uses C code to print bytes in order, reveals whether a machine is Little or Big Endian

Output of show_endianness.c

```
// show_endianness.c: Shows endiannes layout of a binary number in
// memory. Intel machines and some ARM machines (Apple M1) are little
// endian so bytes will print least signficant earlier.
#include <stdio.h>
int main(){
    int bin = 0b00000000000000000001100011101001; // 6377
    // | | | | | | | |
    // 0
    printf("%d\n%08x\n",bin,bin); // show decimal and hex representation of b
    char *ptr = (char *) &bin; // pointer to beginning of bin
    for(int i=0; i<4; i++){ // print bytes of bin from low to high
        printf("%hhx ", ptr[i]); // memory address
    } // '%hhx' : 1-byte char in hex
    printf("\n"); // %hx' : 2-byte short in hex
    return 0; // '%x' : 4-byte int in hex
}
>> gcc show_endianness.c
>> ./a.out
6377
000018e9
e9 18 0 0
```

Notice: num prints with value 18 e 9 but bytes appear in reverse order e9 18 when looking at memory

Integer Ops and Speed

- Along with Addition and Subtraction, Multiplication and Division can also be done in binary
- Algorithms are the same as base 10 but more painful to do by hand
- This pain is reflected in hardware speed of these operations
- The Arithmetic and Logic Unit (ALU) does integer ops in the machine
- A clock ticks in the machine at some rate like 3Ghz (3 billion times per second)
- Under ideal circumstances, typical ALU Op speeds are

Operation	Cycles
Addition	1
Logical	1
Shifts	1
Subtraction	1
Multiplication	3
Division	>30

- Due to disparity, it is worth knowing about relation between multiply/divide and bitwise operations
- Compiler often uses such tricks: shift rather than multiply/divide

Mangling Bits Puts Muscle on Your Bones

Below illustrates difference between logical and bitwise operations.

```
int xl = 12 || 10; // truthy (Logical OR)
int xb = 12 | 10; // 14 (Bitwise OR)
int yl = 12 && 10; // truthy (Logical AND)
int yb = 12 & 10; // 8 (Bitwise AND)
int zb = 12 - 10; // 6 (Bitwise XOR)
int wl = !12; // falsey (Logical NOT)
int wb = ~12; // 3 (Bitwise NOT/INVERT)
```

- Bitwise ops evaluate on a per-bit level
- 32 bits for int, 4 bits shown

Bitwise OR	Bitwise AND	Bitwise XOR	Bitwise NOT
$1100=12$	$1100=12$	$1100=12$	
\| $1010=10$	\& $1010=10$	- $1010=10$	$\sim 1100=12$
$1110=14$	$1000=8$	$0110=6$	$0011=3$

Bitwise Shifts

- Shift operations move bits within a field of bits
- Shift operations are

$$
\begin{aligned}
& \mathrm{x}=\mathrm{y} \ll \mathrm{k} ; / / \text { left shift } \mathrm{y} \text { by } \mathrm{k} \text { bits, store in } \mathrm{x} \\
& \mathrm{x}=\mathrm{y} \gg \mathrm{k} ; / / \text { right shift } \mathrm{y} \text { by } \mathrm{k} \text { bits, store in } \mathrm{x}
\end{aligned}
$$

- All integral types can use shifts: long, int, short, char
- Not applicable to pointers or floating point
- Examples in 8 bits

```
// 76543210
char x = Ob00010111; // 23
char y = x << 2; // left shift by 2
// y = Ob01011100; // 92
// x = 0b00010111; // not changed
char z = x >> 3; // right shift by 3
// z = 0b00000010; // 2
// x = 0b00010111; // not changed
char n = Ob10000000; // -128, signed
char s = n >> 4; // right shift by 4
// s = Ob11111000; // -8, sign extension
// right shift >> is "arithmetic"
```


Shifty Arithmetic Tricks

- Shifts with add/subtract can be used instead of multiplication and division
- Turn on optimization: gcc -03 code.c
- Compiler automatically does this if it thinks it will save cycles
- Sometimes programmers should do this but better to convince compiler to do it for you, comment if doing manually

Multiplication

```
// 76543210
char x = 0b00001010; // 10
char x2 = x << 1; // 10*2
// x2 = Ob00010100; // 20
char x4 = x << 2; // 10*4
// x4 = 0b00101000; // 40
char x7 = (x << 3)-x; // 10*7
// x7 = (x * 8)-x; // 10*7
// x7 = 0b01000110; // 70
// 76543210
```

Division
// 76543210
char $\mathrm{y}=0 \mathrm{~b} 01101110$; // 110
char y 2 = y >> 1; // 110/2
// y2 = 0b00110111; // 55
char y4 = y >> 2; // 110/4
// y4 = 0b00011011; // 27
char $z=0 b 10101100 ; ~ / / ~-84$
char $z 2$ = z >> 2; // -84/4
// z2 = 0b11101011; // -21
// right shift sign extension

Exercise: Checking / Setting Bits

Use a combination of bit shift / bitwise logic operations to \cdots

1. Check if bit i of int x is set (has value 1)
2. Clear bit i (set bit at index i to value 0)

Show C code for this
\{
int $x=\ldots$;
int $i=\ldots$;
if (???) \{ // ith bit of x is set printf("set!\n");
\}
i = ...;
???;
printf("ith bith of x now cleared to O\n");
\}

Answers: Checking / Setting Bits

1. Check if bit i of int x is set (has value 1)
```
int x = ...;
int mask = 1; // or 0b0001 or 0x01
int shifted = mask << i; // shifted 0b00...010..00
if(x & shifted){ // x & Ob10...010..01
} l. // -------------------
```

2. Clear bit i (set bit at index i to value 0)
```
int x = ...;
int mask = 1; // or 0b0001 or 0x01 ...
int shifted = mask << i; // shifted 0b00...010..00
int inverted = ~shifted; // inverted 0b11...101..11
x = x & inverted; // x & 0b10...010..01
    ...
    //
    // Ob10...000..01
```


Showing Bits

- printf() capabilities:
\%d as Decimal
\%x as Hexadecimal
\% a Octal
\%c as Character
- No specifier for binary
- Can construct such with bitwise operations
- Code pack contains two codes to do this
- printbits.c: single args printed as 32 bits
- showbits.c: multiple args printed in binary, hex, decimal
- Showing bits usually involves shifting and bitwise AND \&
- Example from showbits.c

```
#define INT_BITS 32
```

```
// print bits for x to screen
```

// print bits for x to screen
void showbits(int x){
void showbits(int x){
for(int i=INT_BITS-1; i>=0; i--){
for(int i=INT_BITS-1; i>=0; i--){
int mask = 1 << i;
int mask = 1 << i;
if(mask \& x){
if(mask \& x){
printf("1");
printf("1");
} else {
} else {
printf("O");
printf("O");
}
}
}
}
}

```
}
```


Bit Masking

- Semi-common for functions to accept bit patterns which indicate true/false options
- Frequently makes use of bit masks which are constants associated with specific bits
- Example from earlier: Unix permissions might be...

```
#define S_IRUSR Ob100000000 // User Read
#define S_IWUSR Ob010000000 // User Write
#define S_IXUSR Ob001000000 // User Execute
#define S_IRGRP Ob000100000 // Group Read
```

\#define S_IWOTH Ob000000010 // Others Write
\#define S_IXOTH Ob000000001 // Others Execute

- Use them to create options to C functions like int permissions = S_IRUSR|S_IWUSR|S_RGRP; chmod("/home/kauffman/solution.zip", permissions);

Unix Permissions with Octal

- Octal arises associated with Unix file permissions
- Every file has 3 permissions for 3 entities
- Permissions are true/false so a single bit will suffice
- ls -l: long list files, shows permissions
- chmod 665 somefile.txt:

binary	octal	
110110101	$=665$	
rw-rw-r-x	somefile.txt	
U	G	O
S	R	T
E	0	
R	U	
	P	
	P	R

- chmod also honors letter versions like r and w
- chmod u+x script.sh \# make file executable

[^0]: ${ }^{1}$ Many compilers like GCC can generate assembly instructions that will detect overflow and abort programs. See the demo program overflow_detect.c and GCCs -ftrapv option.

