
CMSC216: Makefiles, Binary, Integers,
Arithmetic

Chris Kauffman

Last Updated:
Mon Oct 6 05:28:41 PM EDT 2025

1

Logistics
Reading
Bryant/O’Hallaron Ch 2.1-2.3
▶ Number Systems
▶ Binary Encoding of Data
▶ Signed/Unsigned Integers
▶ Character Data
▶ Optional: Ch 2.4 Floats

Makefiles: consult GNU Make
Manual if you want details

Assignments
▶ Lab04/HW04:

Due Sun 28-Sep, relevant to
P1 and Exam 1 review

▶ Project 1:
Due Mon 29-Sep, late
submission with penalties

▶ Exam 1:
▶ Review: Tue 30-Sep
▶ Execute: Thu 02-Oct

Goals
▶ Wrap C discussion
▶ Brief discussion of make and Makefiles
▶ Integers/characters in binary
▶ Arithmetic operations, Negative numbers in binary

2

https://www.gnu.org/software/make/manual/make.html
https://www.gnu.org/software/make/manual/make.html

Announcements
Exam Week Discussions
▶ No new HW or Labs during Week05
▶ Discussion will meet and feature

1. A review activity worth bonus dots
2. Time on Mon/Wed to give students help on P1 / Exam Review

▶ If you want help on P1, go to your discussion section

Discussion Review Activity for Bonus Dots
▶ On Mon/Wed, staff will conduct a short review activity
▶ Students that participate will be eligible for bonus dots
▶ Higher attendance at your discussion section means a

higher potential bonus for everyone in the section:
slightly cooperative

▶ The section that “does the best” will get additional bonus
dots: slightly competitive

3

Exam 1 Logistics

Practice + Review
▶ Practice Exam 1A will be posted Mon 29-Sep
▶ Practice Exam 1B and Review in class Tue 30-Sep
▶ Solutions to practice exam will be posted for students

Exam 1
▶ In-person in class on Thu 02-Oct
▶ Exam runs lecture period: 75min
▶ Expect 2.5 pages front/back
▶ Open Resource Exam: review rules for this posted at

bottom of course schedule (beneath slides)
Questions on Open Resource Exam boundaries?

4

Compilation to Object Files and Executables
▶ Compilation is actually a Series of 7 or 8 Phases we will

discuss over semester including conversion to assembly,
conversion to binary, optimization, etc.

▶ Two phases are important here:
▶ Compilation (proper) converts C code to a lower form
▶ Linking melds many lower forms into an executable

▶ GCC can be instructed to compile ONLY (not Link) using
commands like gcc -c file.c

▶ Results in an Object File1 (file.o) in a binary format
▶ A piece of a program but not yet an executable due to being

incomplete and unlinked
▶ This allows Separate Compilation of C source files; most

compiled languages do likewise (Java, OCaml, Rust, etc.)
which enables...
▶ Generating a function call without the function definition
▶ Programming Libraries of compiled code
▶ More efficient project builds

1https://en.wikipedia.org/wiki/Object_file
5

https://en.wikipedia.org/wiki/Object_file

Sample Session of Separate Compilation

>> gcc -o myexec main_func.c # can't make a program, incomplete
/usr/bin/ld: /tmp/ccQgKONk.o: in function 'main':
main_func.c:(.text+0x10): undefined reference to 'func_01'
collect2: error: ld returned 1 exit status

>> gcc -c main_func.c # create a .o object file
>> file main_func.o
main_func.o: ELF 64-bit LSB relocatable, x86-64, version 1 (SYSV), not stripped

>> ./main_func.o # not an exectuable format
bash: ./main_func.o: cannot execute binary file: Exec format error

>> gcc -c func_01.c # compile missing function
>> gcc -o myexec main_func.o func_01.o # link to produce a program
>> file myexec
myexec: ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, BuildID[sha1]=3441d520069baabf479ad4b96c0a56b67c005ee8, for GNU/Linux 4.4.0, not stripped

>> ./myexec # executable program
Calling function func_01

6

Exercise: Separate Compilation

COMPILATION 1
>> gcc -c func_01.c
>> gcc -c main_func.c
>> gcc -o main_func main_func.o func_01.o

COMPILATION 2
>> gcc -o main_func main_func.c func_01.c

▶ Describe differences between compilations above
▶ What is the result in each case?
▶ How are they different: any artifacts created in one but not

the other?
▶ Any advantages/disadvantages to them?

7

Answers: Separate Compilation
COMPILATION 1
>> gcc -c func_01.c # creates func_01.o
>> gcc -c main_func.c # creates main_func.o
>> gcc -o main_func main_func.o func_01.o # links to create main_func

COMPILATION 2
>> gcc -o main_func main_func.c func_01.c # only creates main_func

Compilation 1: Separate Compilation
▶ Separately compile func_01.c and main_func.c to binary
▶ Results in 2 .o object files
▶ Final step is to link two objects together to create an executable

Compilation 2: “Together” Compilation
▶ Compile all the C files at once to produce an executable
▶ Still does separate compilation BUT .o files are temporary and immediately

deleted after producing the executable

Why bother with separate compilation if it is more typing?

8

Exercise: Separate Compilation Time

▶ Mack is building a large application
▶ Has a main_func.c and func_01.c, func_02.c ... that

define application, up to func_20.c
▶ During build process notices that it takes about 10s for to

compile each C file and 20s to link the C files
▶ Mack frequently edits func_08.c to add features then

compiles the project with the command
>> gcc -o main_func *.c

▶ Estimate his typical build time in seconds
▶ Suggest a way that he might reduce his build time if he has

edited only a small number of files

9

Answers: Separate Compilation Time

Total Build Time gcc -o main_func *.c

Item Example Build Tot
Library C files func_01.c 20 x 10s 200s
Main C file main_func.c 1 x 10s 10s
Linking all .o files 1 x 20s 20s
Total Time ~ 4min 22 steps 230s

▶ Explicitly recompiling all C files to object code despite many
not changing

▶ Spends valuable human time waiting to redo the same task as
has been done many before

10

Answers: Separate Compilation Time
Exploit Separate Compilation
▶ Assume already compiled all files, have func_01.o,

func_02.o
▶ Edit func_08.c to add a new feature
▶ Don’t recompile C files that haven’t changed
▶ Compile like this

> gcc -c func_08.c
> gcc -o main_func *.o

Item Example Build Time
Library .o files func_01.o 19 x 0s 0s
Main .o file main_func.o 1 x 0s 0s
Changed .c files func_08.c 1 x 10s 10s
Linking all .o files 1 x 20s 20s
Total Time ~ 30 seconds 2 steps 30s

11

Build Systems Exploit Separate Compilation
▶ Build Systems like make exploit separate compilation
▶ Establishes a dependency structure via a Makefile

▶ Targets are usually files to create
▶ Dependencies are files/targets used to create a given target
▶ Commands are executed to create a Target from

Dependencies after all Depndencies are created
▶ Only rebuild a Target if a Dependency changes

Typical Makefile gives targets, dependencies,
commands to create target using dependencies
TARGET : DEPENDENCIES
COMMANDS / ACTIONS

main_func : main_func.o func_01.o func_02.o
gcc -o main_funcs main_func.o func_01.o func_02.o

main_func.o : main_func.c
gcc -c main_funcs.c

func_01.o : func_01.c
gcc -c funcs_01.c

12

Example Builds from big-compile/
>> make clean
rm -f *.o main_func

first compiles, no object files built, build everything
>> make main_func
gcc -c main_func.c
gcc -c func_01.c
gcc -c func_02.c
...
gcc -c func_20.c
gcc -o main_func main_func.o func_01.o func_02.o...

check primary target
>> file main_func
main_func: ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV)

edit func_08.c

1 file changed, recompile it and re-link
>> make main_func
gcc -c func_08.c # ONLY NEED TO RECOMPILE THIS
gcc -o main_func main_func.o func_01.o func_02.o...

no edits, no need to rebuild
>> make main_func
make: Nothing to be done for 'main_func'.

13

Makefile Format Notes
▶ make is a program, typing make will by default use data in Makefile
▶ Makefiles are comprised of Rules: Target/Dependencies/Commands
▶ Targets are always required for a Rule; only one of Dependencies or Commands

need be present
▶ Commands require a Tab indentation to work (not spaces); historically a source

of errors and oft repeated lessons in software dev
▶ The first Target in Makefile is the default but any target can be named on the

command line:
>> make # build the default target
>> make func_01.o # build this specific target
>> make func_02.o main_func # build these targets

▶ Makefiles have many conventions that commonly appear BUT must be written
by the author
>> make all # build everything
>> make clean # remove some compiled artifacts
>> make install # install compiled software on system

▶ Makefiles have LOADS of tricks like built-in variables, user-defined variables,
conditions, functions of a sort, etc.; see Makefile-shortcuts in codepack and
inspect Makefile provided in Projects and Labs

▶ make / Makefiles are NOT just for C: allow compilation and automation of
whatever commands you want (this slide was posted via make push)

▶ make is among the oldest Build System still in use but younger systems like
CMake, Maven, Ant, Cargo, Dune, Gradle, Ninja, Leiningen and dozens
of other are popular with the youths...

14

https://retrocomputing.stackexchange.com/questions/20292/why-does-make-only-accept-tab-indentation

Makefiles Create a Directed Acyclic Graph (DAG)

▶ DAGs are a useful data structure for representing
dependencies, associated with Topological Sorting

▶ More complex than Trees: “multiple parents” (shown), edges
may cut across layers (not shown)

DAG representing some targets in a typical Project 1 Makefile

In some later projects, students will need to create some or all of
Lab/Project Makefiles so take Lab04 as practice

15

Unsigned Integers: Decimal and Binary
▶ Unsigned integers are always positive:

unsigned int i = 12345;
▶ To understand their binary encoding, first recall how decimal

numbers “work” to encode quantities

Decimal: Base 10 Example
Each digit adds on a power 10

80, 345 =5 × 100+ 5 ones
4 × 101+ 40 tens
3 × 102+ 300 hundreds
0 × 103+ 0 thousands
8 × 104 80 tens of thousands

5 + 40+300 + 80, 000

Binary: Base 2 Example
Each digit adds on a power 2

110012 =1 × 20+ 1 ones
0 × 21+ 0 twos
0 × 22+ 0 fours
1 × 23+ 8 eights
1 × 24+ 16 sixteens

=1 + 8 + 16 = 25

So, 110012 = 2510
16

Exercise: Convert Binary to Decimal

Base 2 Example:

11001 =1 × 20+ 1
0 × 21+ 0
0 × 22+ 0
1 × 23+ 8
1 × 24+ 16

=1 + 8 + 16 = 25

So, 110012 = 2510

Try With a Neighbor
Convert the following two
numbers from base 2 (binary) to
base 10 (decimal)
▶ 111
▶ 11010
▶ 01100001

17

Answers: Convert Binary to Decimal

1112 =1 × 22 + 1 × 21 + 1 × 20

=1 × 4 + 1 × 2 + 1 × 1
=710

110102 =1 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 0 × 20

=1 × 16 + 1 × 8 + 0 × 4 + 1 × 2 + 0 × 1
=2610

011000012 =0 × 27 + 1 × 26 + 1 × 25 + 0 × 24

+ 0 × 23 + 0 × 22 + 0 × 21 + 1 × 20

=0 × 128 + ×64 + 1 × 32 + 0 × 16
+ 0 × 8 + 0 × 4 + 0 × 2 + 1 × 1

=9710

Note: last example ignores leading 0’s
18

The Other Direction: Decimal to Binary
Converting a number from base 10 to base 2 is easily done using
repeated division by 2; keep track of remainders
Convert 124 to base 2:

124 ÷ 2 = 62 rem 0
62 ÷ 2 = 31 rem 0
31 ÷ 2 = 15 rem 1
15 ÷ 2 = 7 rem 1
7 ÷ 2 = 3 rem 1
3 ÷ 2 = 1 rem 1
1 ÷ 2 = 0 rem 1

▶ Last step got 0 quotient so we’re done.
▶ Binary digits are in remainders in reverse
▶ Answer: 1111100
▶ Check:

0 + 0 + 22 + 23 + 24 + 25 + 26 = 4 + 8 + 16 + 32 + 64 = 124 19

Decimal, Hexadecimal, Octal, Binary Notation
▶ Numbers exist independent of any writing system
▶ Can write the same number in a variety of bases
▶ C provides syntax for most common bases used in computing

Decimal Binary Hex Octal
Base 10 2 16 8
Mathematical 125 11111012 7D16 1758
C Prefix None 0b... 0x.. 0...
C Example 125 0b1111101 0x7D 0175
printf() "%d" N/A "%x" "%o"

▶ Hexadecimal often used to express long-ish byte sequences
Larger than base 10 so for 10-15 uses letters A-F

▶ Examine number_writing.c and table.c for patterns
▶ Expectation: Gain familiarity with doing conversions between

bases as it will be useful in practice
20

Hexadecimal: Base 16
▶ Hex: compact way to write

bit sequences
▶ One byte is 8 bits
▶ Each Hex character

represents 4 bits
▶ Each Byte is 2 Hex Digits

|-----------+----------------+-----|
| Byte | Hex | Dec |
|-----------+----------------+-----|
0101 0111	57 = 5*16 + 7	87
5 7		
0011 1100	3C = 3*16 + 12	60
3 C=12		
1110 0010	E2 = 14*16 + 2	226
E=14 2		
-----------+----------------+-----		

Hex to 4 bit equivalence

Dec Bits Hex
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

21

Exercise: Conversion Tricks for Hex and Octal
Examples shown in this week’s HW, What tricks are illustrated?
|---------+--------------+-----------------+-----------------------|
| Decimal | Byte = 8bits | Byte by 4 | Hexadecimal |
|---------+--------------+-----------------+-----------------------|
87	01010111	bin: 0101 0111	57 = 5*16 + 7
		hex: 5 7	hex dec
60	00111100	bin: 0011 1100	3C = 3*16 + 12
		hex: 3 C=12	hex dec
226	11100010	bin: 1110 0010	E2 = 14*16 + 2
		hex: E=14 2	hex dec
---------+--------------+-----------------+-----------------------			
Decimal	Byte = 8bits	Byte by 3	Octal
---------+--------------+-----------------+-----------------------			
87	01010111	bin: 01 010 111	127 = 1*8^2 + 2*8 + 7
		oct: 1 2 7	oct dec
60	00111100	bin: 00 111 100	074 = 0*8^2 + 7*8 + 4
		oct: 0 7 4	oct dec
226	11100010	bin: 11 100 010	342 = 3*8^2 + 4*8 + 2
		oct: 3 4 2	oct dec
---------+--------------+-----------------+-----------------------			

22

Answers: Conversion Tricks for Hex and Octal

▶ Converting between Binary and Hexadecimal is easiest when
grouping bits by 4: each 4 bits corresponds to one
hexadecimal digit
bin: 0101 0111 bin: 1110 0010
hex: 5 7 hex: E=14 2

▶ Converting between Binary and Octal is easiest when grouping
bits by 3: each 3 bits corresponds to one octal digit
bin: 01 010 111 bin: 11 100 010
oct: 1 2 7 oct: 3 4 2

23

Character Coding Conventions
▶ Would be hard for people to share words if they interpretted

bits as letters differently
▶ ASCII: American Standard Code for Information Interchange

An old standard for bit/character correspondence
▶ 7 bits per character, includes upper, lower case, punctuation

Dec Hex Binary Char Dec Hex Binary Char
65 41 01000001 A 78 4E 01001110 N
66 42 01000010 B 79 4F 01001111 O
67 43 01000011 C 80 50 01010000 P
68 44 01000100 D 81 51 01010001 Q
69 45 01000101 E 82 52 01010010 R
70 46 01000110 F 83 53 01010011 S
71 47 01000111 G 84 54 01010100 T
72 48 01001000 H 85 55 01010101 U
73 49 01001001 I 86 56 01010110 V
74 4A 01001010 J 87 57 01010111 W
75 4B 01001011 K 88 58 01011000 X
76 4C 01001100 L 89 59 01011001 Y
77 4D 01001101 M 90 5A 01011010 Z
91 5B 01011101 [97 61 01100001 a
92 5C 01011110 \ 98 62 01100010 b

Partial Table of ASCII Codes / Values, try man 7 ascii in a terminal for a full table
24

Exercise: Characters vs Numbers

Explain the following program and its output

1 // char_ints.c:
2 #include <stdio.h>
3 #include <string.h>
4 int main(){
5 ...
6 char nums[64] = {
7 72, 101, 108, 108, 111, 32,
8 87, 111, 114, 108, 100, 33,
9 0
10 };
11 printf("%s\n",nums);
12 len = strlen(nums);
13 for(int i=0; i<len; i++){
14 printf("[%2d] %c %3d %02X\n",
15 i,nums[i],nums[i],nums[i]);
16 }
17 return 0;
18 }

>> gcc char_ints.c
>> ./a.out
...
Hello World!
[0] H 72 48
[1] e 101 65
[2] l 108 6C
[3] l 108 6C
[4] o 111 6F
[5] 32 20
[6] W 87 57
[7] o 111 6F
[8] r 114 72
[9] l 108 6C
[10] d 100 64
[11] ! 33 21

25

Answers: Characters vs Numbers

The Whole Array
char nums[64] = {
72, 101, 108, 108, 111, 32,
87, 111, 114, 108, 100, 33,
0

};

Lays out a bit pattern at each
spot the array; bit pattern is
specified with decimal numbers

printf("%s\n",nums);

Print the array as though it were
“string”: an array of characters
that is null terminated

Elements of the Array
printf("[%2d] %c %3d %02X\n",

i,nums[i],nums[i],nums[i]);

Print a single element of the
array as
▶ %c : a character (ASCII

table lookup for the glyph to
draw)

▶ %3d : a decimal number
(padding to width 3)

▶ %02X : as a hexadecimal
number (with leading 0’s if
needed and padded with
width 2 - noice!)

26

Unicode
▶ World: Why can’t I write

컴퓨터
in my code/web address/email?

▶ America: ASCII has 128 chars.
Deal with it.

▶ World: Seriously?
▶ America: We invented

computers. ’Merica!

▶ World:
▶ America: ... Unicode?
▶ World: But my language takes

more bytes than American.
▶ America: Deal with it. ’Merica!

▶ ASCII Uses 7 bits per char,
limited to 128 characters

▶ UTF-8 uses 1-4 bytes per
character to represent many
more characters
(1,112,064 codepoints)

▶ Uses 8th bit in a byte
(high-order bit) to indicate
extension to multiple bytes

▶ Requires software to understand
coding convention allowing
broader language support

▶ ASCII is a proper subset of
UTF-8 making UTF-8
backwards compatible and
wildly popular

27

Binary Integer Addition/Subtraction
Adding/subtracting in binary works the same as with decimal
EXCEPT that carries occur on values of 2 rather than 10

ADDITION #1 SUBTRACTION #1
1 11 <-carries ? <-carries
0100 1010 = 74 0111 1001 = 121

+ 0101 1001 = 89 - 0001 0011 = 19
------------ ------------

1010 0011 = 163 VVVVVVVVVVVVV
VVVVVVVVVVVVV

ADDITION #2 VVVVVVVVVVVVV
1111 1 <-carries x12 <-carries
0110 1101 = 109 0111 0001 = 119

+ 0111 1001 = 121 - 0001 0011 = 19
------------ ------------

1110 0110 = 230 0110 0110 = 102

When 0/1 is represented as Low/High Voltage, one can design
digital circuits that implement arithmetic

28

Two’s Complement Integers: Representing Negative Values

▶ To represent negative integers, must choose a different
coding system than for positive-only integers

▶ The Two’s Complement Encoding is the most common
coding system for signed numbers so we will study it

▶ Alternatives exist
▶ Signed magnitude: leading bit indicates pos (0) or neg (1)
▶ One’s complement: invert bits to go between positive negative

▶ Great advantage of two’s complement: signed and unsigned
arithmetic are identical

▶ Hardware folks only need to make one set of units for both
unsigned and signed arithmetic

29

Summary of Two’s Complement
TL;DR: Most significant bit is a negative power of two.

UNSIGNED BINARY TWO's COMPLEMENT (signed)
--------------- -------------------------
7654 3210 : position 7654 3210 : position
ABCD EFGH : 8 bits ABCD EFGH : 8-bits
A: 0/1 * +(2^7) *POS* A: 0/1 * -(2^7) *NEG*
B: 0/1 * +(2^6) B: 0/1 * +(2^6)
C: 0/1 * +(2^5) C: 0/1 * +(2^5)
... ...
H: 0/1 * +(2^0) H: 0/1 * +(2^0)

UNSIGNED BINARY TWO's COMPLEMENT (signed)
--------- ---------
7654 3210 : position 7654 3210 : position
1000 0000 = +128 1000 0000 = -128
1000 0001 = +129 1000 0001 = -127 = -128+1
1000 0011 = +131 1000 0011 = -125 = -128+1+2
1111 1111 = +255 1111 1111 = -1 = -128+1+2+4+..+64
0000 0000 = 0 0000 0000 = 0 [+127]
0000 0001 = +1 0000 0001 = +1
0000 0101 = +5 0000 0101 = +5
0111 1111 = +127 0111 1111 = +127

30

Two’s Complement Notes
Unsigned/Signed Equivalents

Unsigned 1000 0110 = 134
Signed 1000 0110 = -121

= 134 - 256
Unsigned 1111 0001 = 241
Signed 1111 0001 = -15

=241-256
Unsigned 0011 0011 = 51
Signed 0011 0011 = 51

When/Why X-256?
▶ Leading (leftmost) bit is 1
▶ Counted as 128 in Unsigned
▶ Counts as -128 in Signed
▶ Take -256 to compensate

Negation in Two’s Complement
int y = -x;
▶ Unary Minus operator
▶ Invert bits, Add 1
▶ Works for both Pos→Neg

and Neg→Pos
~ 0110 1000 +104 : negate

1001 0111 inverted

+ 1

1001 1000 = -104

~ 1001 1000 = -104 : negate

0110 0111 = +103 inverted
+ 1

0110 1000 = +104

31

Exercise: Two’s Complement Conversions

▶ Fill in the missing entries in the following table
▶ Very similar to an upcoming exam problem

Bits Hex Decimal Decimal
Unsigned Signed

1111 1111 A: ____ B: ___ C: ___
1001 0110 0x96 D: ___ E: ___

F: ____ ____ 0x3E G: ___ H: ___
0010 0011 I: ____ 35 J: ___

K: ____ ____ L: ____ M: ___ -35

32

Answers: Two’s Complement Conversions

Bits Hex Decimal Decimal
Unsigned Signed

1111 1111 A: 0xFF B: 255 C: -1
1001 0110 0x96 D: 150 E: -106

F: 0011 1110 0x3E G: 62 H: 62
0010 0011 I: 0x23 35 J: 35

K: 1101 1101 L: 0xDD M: 221 -35

K / L / M: Converting 35 to -35 decimal/bits can be done via
(-35+255) AND/OR via Invert Bits + 1

33

Overflow
▶ Sums that exceed the representation of the bits associated

with the integral type overflow
▶ Excess significant bits are dropped
▶ Addition can result in a sum smaller than the summands, even

for two positive numbers (!?)
▶ Integer arithmetic in fixed bits is a mathematical ring

Examples of Overflow in 8 bits
ADDITION #3 OVERFLOW ADDITION #4 OVERFLOW
1 1111 111 <-carries 1 1 <-carries
1111 1111 = 255 1010 1001 = 169

+ 0000 0001 = 1 + 1100 0001 = 193
------------ ------------
1 0000 0000 = 256 1 0110 1010 = 362
x drop 9th bit x drop 9th bit

------------ ------------
0000 0000 = 0 0110 1010 = 106

34

Underflow

▶ Underflow occurs in
unsigned arithmetic when
values go below 0 (no longer
positive)

▶ Pretend that there is an
extra significant bit to carry
out subtraction

▶ Subtracting a positive
integer from a positive
integer may result in a
larger positive integer (?!?)

▶ Integer arithmetic in fixed
bits is a mathematical ring

Examples of 8-bit Underflow
SUBTRACTIION #2 UNDERFLOW

?<-carries
0000 0000 = 0

- 0000 0001 = 1

VVVVVVVVVVVVV

?<-carries
1 0000 0000 = 256 (pretend)
- 0000 0001 = 1

VVVVVVVVVVVVV
x 2<-carries
0 1111 1110 = 256
- 0000 0001 = 1

1111 1111 = 255

35

Overflow and Underflow In C Programs
▶ See over_under_flow.c for demonstrations in a C program.
▶ No runtime errors for under/overflow
▶ Good for hashing and cryptography
▶ Bad for most other applications: system critical operations

should use checks for overflow / underflow
▶ Textbook mentions the Ariane Rocket Crash which was due to

overflow of an integer converted from a floating point value
The Ariane explosion is an instructive example for several reasons.
(1) Software re-use caused the problem subverting the usual wisdom of
relying on tested software; hardware changes ALWAYS trump software.
(2) Sometimes computer science IS rocket science

▶ Assembly provides condition codes indicating when overflow
occurs but checking in C is tricky and painful2

2Many compilers like GCC can generate assembly instructions that will
detect overflow and abort programs. See the demo program
overflow_detect.c and GCCs -ftrapv option.

36

https://en.wikipedia.org/wiki/Ariane_5#Notable_launches

======== END EXAM 1 CONTENT ========

Content which follows will be covered after Exam 1

37

Integer Ops and Speed
▶ Along with Addition and

Subtraction, Multiplication
and Division can also be
done in binary

▶ Algorithms are the same as
base 10 but more painful to
do by hand

▶ This pain is reflected in
hardware speed of these
operations

▶ The Arithmetic and Logic
Unit (ALU) does integer
ops in the machine

▶ A clock ticks in the machine
at some rate like 3Ghz (3
billion times per second)

▶ Under ideal circumstances,
typical ALU Op speeds are

Operation Cycles
Addition 1
Logical 1
Shifts 1
Subtraction 1
Multiplication 3
Division >30

▶ Due to disparity, it is worth
knowing about relation
between multiply/divide and
bitwise operations

▶ Compiler often uses such
tricks: shift rather than
multiply/divide

38

Mangling Bits Puts Muscle on Your Bones
Below illustrates difference between logical and bitwise operations.
int xl = 12 || 10; // truthy (Logical OR)
int xb = 12 | 10; // 14 (Bitwise OR)
int yl = 12 && 10; // truthy (Logical AND)
int yb = 12 & 10; // 8 (Bitwise AND)
int zb = 12 ^ 10; // 6 (Bitwise XOR)
int wl = !12; // falsey (Logical NOT)
int wb = ~12; // 3 (Bitwise NOT/INVERT)

▶ Bitwise ops evaluate on a per-bit level
▶ 32 bits for int, 4 bits shown

Bitwise OR Bitwise AND Bitwise XOR Bitwise NOT
1100 = 12 1100 = 12 1100 = 12

| 1010 = 10 & 1010 = 10 ^ 1010 = 10 ~ 1100 = 12
----------- ----------- ----------- -----------

1110 = 14 1000 = 8 0110 = 6 0011 = 3

39

Bitwise Shifts
▶ Shift operations move bits within a field of bits
▶ Shift operations are

x = y << k; // left shift y by k bits, store in x
x = y >> k; // right shift y by k bits, store in x

▶ All integral types can use shifts: long, int, short, char
▶ Not applicable to pointers or floating point
▶ Examples in 8 bits

// 76543210
char x = 0b00010111; // 23
char y = x << 2; // left shift by 2
// y = 0b01011100; // 92
// x = 0b00010111; // not changed
char z = x >> 3; // right shift by 3
// z = 0b00000010; // 2
// x = 0b00010111; // not changed
char n = 0b10000000; // -128, signed
char s = n >> 4; // right shift by 4
// s = 0b11111000; // -8, sign extension
// right shift >> is "arithmetic"

40

Shifty Arithmetic Tricks
▶ Shifts with add/subtract can be used instead of multiplication

and division
▶ Turn on optimization: gcc -O3 code.c
▶ Compiler automatically does this if it thinks it will save cycles
▶ Sometimes programmers should do this but better to convince

compiler to do it for you, comment if doing manually

Multiplication
// 76543210
char x = 0b00001010; // 10
char x2 = x << 1; // 10*2
// x2 = 0b00010100; // 20
char x4 = x << 2; // 10*4
// x4 = 0b00101000; // 40
char x7 = (x << 3)-x; // 10*7
// x7 = (x * 8)-x; // 10*7
// x7 = 0b01000110; // 70
// 76543210

Division
// 76543210
char y = 0b01101110; // 110
char y2 = y >> 1; // 110/2
// y2 = 0b00110111; // 55
char y4 = y >> 2; // 110/4
// y4 = 0b00011011; // 27
char z = 0b10101100; // -84
char z2 = z >> 2; // -84/4
// z2 = 0b11101011; // -21
// right shift sign extension

41

Exercise: Checking / Setting Bits

Use a combination of bit shift / bitwise logic operations to...
1. Check if bit i of int x is set (has value 1)
2. Clear bit i (set bit at index i to value 0)

Show C code for this
{

int x = ...;
int i = ...;
if(???) { // ith bit of x is set

printf("set!\n");
}

i = ...;
???;
printf("ith bit of x now cleared to 0\n");

}

42

Answers: Checking / Setting Bits

1. Check if bit i of int x is set (has value 1)
int x = ...;
int mask = 1; // or 0b0001 or 0x01 ...
int shifted = mask << i; // shifted 0b00...010..00
if(x & shifted){ // x & 0b10...010..01
... // ------------------

} // 0b00...010..00

2. Clear bit i (set bit at index i to value 0)
int x = ...;
int mask = 1; // or 0b0001 or 0x01 ...
int shifted = mask << i; // shifted 0b00...010..00
int inverted = ~shifted; // inverted 0b11...101..11
x = x & inverted; // x & 0b10...010..01
... // ------------------

// 0b10...000..01

43

Showing Bits

▶ printf() capabilities:
%d as Decimal
%x as Hexadecimal
%o as Octal
%c as Character

▶ No specifier for binary
▶ Can construct such with

bitwise operations
▶ Code pack contains two

codes to do this
▶ printbits.c: single args

printed as 32 bits
▶ showbits.c: multiple

args printed in binary,
hex, decimal

▶ Showing bits usually involves
shifting and bitwise AND &

▶ Example from showbits.c
#define INT_BITS 32

// print bits for x to screen
void showbits(int x){

for(int i=INT_BITS-1; i>=0; i--){
int mask = 1 << i;
if(mask & x){
printf("1");

} else {
printf("0");

}
}

}

44

Bit Masking

▶ Semi-common for functions to accept bit patterns which
indicate true/false options

▶ Frequently makes use of bit masks which are constants
associated with specific bits

▶ Example: Unix permissions might be...
#define S_IRUSR 0b100000000 // User Read
#define S_IWUSR 0b010000000 // User Write
#define S_IXUSR 0b001000000 // User Execute
#define S_IRGRP 0b000100000 // Group Read
...
#define S_IWOTH 0b000000010 // Others Write
#define S_IXOTH 0b000000001 // Others Execute

▶ Use them to create options to C functions like
int permissions = S_IRUSR|S_IWUSR|S_RGRP;
chmod("/home/kauffman/solution.zip",permissions);

45

Unix Permissions with Octal
▶ Octal arises associated with Unix file permissions
▶ Every file has 3 permissions for 3 entities
▶ Permissions are true/false so a single bit will suffice

▶ ls -l: long list files, shows
permissions

▶ chmod 665 somefile.txt:
change permissions of
somefile.txt to those
shown to the right

▶ chmod 777 x.txt: read /
write / exec for everyone

▶ chmod also honors letter
versions like r and w

▶ chmod u+x script.sh #
make file executable

binary octal
110110101 = 665
rw-rw-r-x somefile.txt
U G O
S R T
E O H
R U E

P R

Readable chmod version:
chmod u=rw,g=rw,o=rx somefile.txt

46

Endinaness: Byte ordering in Memory
▶ Single bytes like ASCII characters lay out sequentially in

memory in increasing address
▶ Multi-byte entities like 4-byte ints require decisions on byte

ordering
▶ We think of a 32-bit int like this

Most Signifcant <------> Least Significant
Binary: 0000 0000 0000 0000 0001 1000 1110 1001

0 0 0 0 1 8 E 9
Hex : 000018E9
Decimal: 6377

▶ There are 2 Options to for ordering multi-byte data in memory
▶ Little Endian: Least Significant byte at low address
▶ Big Endian: Most Significant Byte at low address

▶ Example: Integer starts at address #1024
Address

LittleEnd: #1027 #1026 #1025 #1024
Binary: 0000 0000 0000 0000 0001 1000 1110 1001

0 0 0 0 1 8 E 9
BigEnd: #1024 #1025 #1026 #1027

Address 47

Little Endian vs. Big Endian

▶ Most modern machines use Little Endian ordering by default
▶ Some processor (ARM) support both Little / Big Endian BUT

and one is chosen at startup and used until turned off
▶ Both Big and Little Endian have (minor) engineering trade-offs
▶ At one time debated hotly among hardware folks: a la

Gulliver’s Travels conflicts
▶ Intel Chips were little endian and have dominated computing

for several decades, set the precedent for modern platforms
▶ Big endian byte order shows up in network programming:

sending bytes over the network is done in big endian ordering
▶ Examine show_endianness.c : uses C code to print bytes in

order, reveals whether a machine is Little or Big Endian

48

https://en.wikipedia.org/wiki/Gulliver%27s_Travels#Cultural_influences

Output of show_endianness.c
1 // show_endianness.c: Shows endiannes layout of a binary number in
2 // memory. Intel machines and some ARM machines (Apple M1) are little
3 // endian so bytes will print least signficant earlier.
4 #include <stdio.h>
5
6 int main(){
7 int bin = 0b00000000000000000001100011101001; // 6377
8 // | | | | | | | |
9 // 0 0 0 0 1 8 e 9
10 printf("%d\n%08x\n",bin,bin); // show decimal and hex representation of bin
11 char *ptr = (char *) &bin; // pointer to beginning of bin
12 for(int i=0; i<4; i++){ // print bytes of bin from low to high
13 printf("%hhx ", ptr[i]); // memory address
14 } // '%hhx' : 1-byte char in hex
15 printf("\n"); // '%hx' : 2-byte short in hex
16 return 0; // '%x' : 4-byte int in hex
17 }

>> gcc show_endianness.c
>> ./a.out
6377
000018e9
e9 18 0 0

Notice: num prints with value 18e9 but bytes appear in reverse
order e9 18 when run on a Little Endian machine: the “littlest”
byte appears earliest in memory

49

