
CMSC216: Assembly Basics and x86-64

Chris Kauffman

Last Updated:
Thu Mar 13 09:29:34 AM EDT 2025

1

Logistics

Reading Bryant/O’Hallaron
▶ Skim Ch 2.7-8: Floating Point Layout
▶ Now Ch 3.1-7: Assembly, Arithmetic, Control
▶ Later Ch 3.8-11: Arrays, Structs, Floats
▶ Any overview guide to x86-64 assembly instructions such as

Brown University’s x64 Cheat Sheet

Assignments
▶ P2: Due Fri 14-Mar-2025
▶ Lab06: Assembly Coding
▶ HW06: Assembly Debugging

Both relevant to P3

Goals
▶ Floating Point Layout

(20min)
▶ Assembly Basics
▶ x86-64 Overview

2

https://cs.brown.edu/courses/cs033/docs/guides/x64_cheatsheet.pdf

Announcements
Midterm Grades Posted / Grade Calculator Up
See Post 493 for info and summary statistics; overall things look
good; use Grade Calculator to track your progress

Midterm Feedback Survey
Results being processed by Prof K, likely post summary stats and
responses on Fri 14-Mar

Project 3 Looming
▶ Problem 1: Convert P2 Scale functions to assembly
▶ Problem 2: Puzzlebin, like Puzzlebox but no source code, use

disassembled binary to trace what inputs are required to earn
points

Will post before spring break BUT no expectation that students
work on it over the break; ~14 days after break before the deadline.

Today is a Double Dot Day - Participate and earn 2 Dots
3

https://piazza.com/class/m69s0i6labk3eb/post/493

The Many Assembly Languages
▶ Most microprocessors are created to understand a binary

machine language
▶ Machine Language provides means to manipulate internal

memory, perform arithmetic, etc.
▶ The Machine Language of one processor is not understood

by other processors

MOS Technology 6502
▶ 8-bit operations, limited

addressable memory, 1
general purpose register,
powered notable gaming
systems in the 1980s

▶ Apple IIe, Atari 2600,
Commodore

▶ Nintendo Entertainment
System / Famicom

IBM Cell Microprocessor
▶ Developed in early 2000s,

64-bit, many cores
(execution elements), many
registers (32 on the PPE),
large addressable space, fast
multimedia performance, is
a pain to program

▶ Playstation 3 and Blue Gene
Supercomputer

4

Assemblers and Compilers

▶ Compiler: chain of tools that translate high level languages
to lower ones, may perform optimizations

▶ Assembler: translates text description of the machine code to
binary, formats for execution by processor, late compiler stage

▶ Consequence: The compiler can generate assembly code
▶ Generated assembly is a pain to read but is often quite fast
▶ Consequence: A compiler on an Intel chip can generate

assembly code for a different processor, cross compiling
5

Our focus: The x86-64 Assembly Language
▶ x86-64 Targets Intel/AMD chips with 64-bit word size

Reminder: 64-bit “word size” ≈ size of pointers/addresses
▶ Lineage of x86 family

▶ 1970s: 16-bit systems like Intel 8086
▶ 1990s: IA32 (Intel 32-bit systems like 80386 and 80486)
▶ 2000s: x86-64 (64-bit extension by AMD)

▶ x86-64 is backwards compatibility, consequently much cruft
▶ Can run compiled code from the 70’s / 80’s on modern

processors without much trouble BUT means 50-year-old
instructions must be preserved

▶ x86-64 is not the assembly language you would design from
scratch today, it’s the assembly you have to code against

▶ RISC-V is a new assembly language that is “clean” as it has no
history to support (and few CPUs run it)

▶ Warning: Lots of information available on the web for Intel
assembly programming BUT some of it is dated, IA32 info
which may not work on 64-bit systems

6

x86-64 Assembly Language Syntax(es)
▶ Different assemblers understand different syntaxes for the

same assembly language
▶ GCC use the GNU Assembler (GAS, command ’as file.s’)
▶ GAS and Textbook favor AT&T syntax so we will too
▶ NASM assembler favors Intel, may see this online

AT&T Syntax (Our Focus)
multstore:

pushq %rbx
movq %rdx, %rbx
call mult2@PLT
movq %rax, (%rbx)
popq %rbx
ret

▶ Use of % to indicate registers
▶ Use of q/l/w/b to indicate

64 / 32 / 16 / 8-bit operands

Intel Syntax
multstore:

push rbx
mov rbx, rdx
call mult2@PLT
mov QWORD PTR [rbx], rax
pop rbx
ret

▶ Register names are bare
▶ Use of QWORD etc. to indicate

operand size

7

Generating Assembly from C Code

▶ gcc -S file.c will stop compilation at assembly generation
▶ Leaves assembly code in file.s

▶ file.s and file.S conventionally assembly code though
sometimes file.asm is used

▶ By default, compiler generates code that is often difficult for
humans to interpret, may include re-arrangements,
“conservative” compatibility assembly, etc. increasing size of
assembly considerably

▶ gcc -Og file.c: optimize for debugging, generally makes it
easier to read generated assembly, aligns somewhat more
closely to C code

8

Example of Generating Assembly from C
>> cat exchange.c # show C file to be translated
// exchange.c: sample C function
// to compile to assembly
long exchange(long *xp, long y){ # function to translate

long x = *xp; # involves pointer deref
*xp = y;
return x;

}

>> gcc -Og -S exchange.c # Compile to show assembly
-Og: debugging level optimization
-S: only output assembly

>> cat exchange.s # show assembly output
.file "exchange.c"
.text
.globl exchange
.type exchange, @function

exchange: # beginning of exchange function
.LFB0:

.cfi_startproc
movq (%rdi), %rax # pointer derefs in assembly
movq %rsi, (%rdi) # uses registers
ret
.cfi_endproc

.LFE0:
.size exchange, .-exchange
.ident "GCC: (GNU) 11.1.0"
.section .note.GNU-stack,"",@progbits

9

gcc -Og -S mstore.c
> cat mstore.c # show a C file
long mult2(long a, long b);
void multstore(long x, long y, long *dest){

long t = mult2(x, y);
*dest = t;

}

> gcc -Og -S mstore.c # Compile to show assembly
-Og: debugging level optimization
-S: only output assembly

> cat mstore.s # show assembly output
.file "mstore.c"
.text
.globl multstore # function symbol for linking
.type multstore, @function

multstore: # beginning of mulstore function
.LFB0:

.cfi_startproc # assembler directives
pushq %rbx # assembly instruction
.cfi_def_cfa_offset 16 # directives
.cfi_offset 3, -16
movq %rdx, %rbx # assembly instructions
call mult2@PLT # function call
movq %rax, (%rbx)
popq %rbx
.cfi_def_cfa_offset 8
ret # function return
.cfi_endproc

10

Every Programming Language

Look for the following as it should almost always be there
□ Comments
□ Statements/Expressions
□ Variable Types
□ Assignment
□ Basic Input/Output
□ Function Declarations
□ Conditionals (if-else)
□ Iteration (loops)
□ Aggregate data (arrays, structs, objects, etc)
□ Library System

11

Exercise: Examine col_simple_asm.s
Take a simple sample problem to demonstrate assembly:

Computes Collatz Sequence starting at n=10:
if n is ODD n=n*3+1; else n=n/2.
Return the number of steps to converge to 1 as the return
code from main()

The following codes solve this problem

Code Notes
col_simple_asm.s Hand-coded assembly for obvious algorithm

Straight-forward reading
col_unsigned.c Unsigned C version

Generated assembly is reasonably readable
col_signed.c Signed C vesion

Generated assembly is . . . interesting
▶ Kauffman will Compile/Run code
▶ Students should study the code and predict what lines do
▶ Illustrate tricks associated with gdb and assembly 12

Exercise: col_simple_asm.s
1 ### Compute Collatz sequence starting at 10 in assembly.
2 .section .text
3 .globl main
4 main:
5 movl $0, %r8d # int steps = 0;
6 movl $10, %ecx # int n = 10;
7 .LOOP:
8 cmpl $1, %ecx # while(n > 1){ // immediate must be first
9 jle .END # n <= 1 exit loop

10 movl $2, %esi # divisor in esi
11 movl %ecx,%eax # prep for division: must use edx:eax
12 cqto # extend sign from eax to edx
13 idivl %esi # divide edx:eax by esi
14 # eax has quotient, edx remainder
15 cmpl $1,%edx # if(n % 2 == 1) {
16 jne .EVEN # not equal, go to even case
17 .ODD:
18 imull $3, %ecx # n = n * 3
19 incl %ecx # n = n + 1 OR n++
20 jmp .UPDATE # }
21 .EVEN: # else{
22 sarl $1,%ecx # n = n / 2; via right shift
23 .UPDATE: # }
24 incl %r8d # steps++;
25 jmp .LOOP # }
26 .END:
27 movl %r8d, %eax # r8d is steps, move to eax for return value
28 ret
29

13

Answers: x86-64 Assembly Basics for AT&T Syntax
▶ Comments are one-liners starting with #
▶ Statements: each line does ONE thing, frequently text

representation of an assembly instruction
movq %rdx, %rbx # move rdx register to rbx

▶ Assembler directives and labels are also possible:
.global multstore # notify linker of location multstore
multstore: # label beginning of multstore section

blah blah blah # instructions in this this section

▶ Variables: mainly registers, also memory ref’d by registers
maybe some named global locations

▶ Assignment: instructions like movX that put bits into registers
and memory

▶ Conditionals/Iteration: assembly instructions that jump to
code locations

▶ Functions: code locations that are labeled and global
▶ Aggregate data: none, use the stack/multiple registers
▶ Library System: link to other code

14

So what are these Registers?
▶ Memory locations directly wired to the CPU
▶ Usually very fast to access, faster than main memory
▶ Most instructions involve registers, access or change reg val

Example: Adding Together Integers
▶ Ensure registers have desired values in them
▶ Issue an addX instruction involving the two registers
▶ Result will be stored in a register

addl %eax, %ebx
add ints in eax and ebx, store result in ebx

addq %rcx, %rdx
add longs in rcx and rdx, store result in rdx

▶ Note instruction and register names indicate whether 32-bit
int or 64-bit long are being added

15

x86-64 “General Purpose” Registers
Many “general purpose”
registers have special purposes
and conventions associated
such as

▶ Return Value:
%rax / %eax / %ax

▶ Function Args 1 to 6:
%rdi, %rsi, %rdx,
%rcx, %r8, %r9

▶ Stack Pointer (top of
stack): %rsp

▶ Old Code Base Pointer:
%rbp, historically start of
current stack frame but is
not used that way in
modern codes

Note: There are also Special
Registers like %rip and %eflags
which we will discuss later.

64-bit 32-bit 16-bit 8-bit Notes
%rax %eax %ax %al Return Val
%rbx %ebx %bx %bl
%rcx %ecx %cx %cl Arg 4
%rdx %edx %dx %dl Arg 3
%rsi %esi %si %sil Arg 2
%rdi %edi %di %dil Arg 1
%rsp %esp %sp %spl Stack Ptr
%rbp %ebp %bp %bpl Base Ptr?
%r8 %r8d %r8w %r8b Arg 5
%r9 %r9d %r9w %r9b Arg 6
%r10 %r10d %r10w %r10b
%r11 %r11d %r11w %r11b
%r12 %r12d %r12w %r12b
%r13 %r13d %r13w %r13b
%r14 %r14d %r14w %r14b
%r15 %r15d %r15w %r15b
Caller Save: Restore after calling func
Callee Save: Restore before returning

16

https://stackoverflow.com/questions/41912684/what-is-the-purpose-of-the-rbp-register-in-x86-64-assembler
https://stackoverflow.com/questions/41912684/what-is-the-purpose-of-the-rbp-register-in-x86-64-assembler

Register Naming Conventions
▶ AT&T syntax identifies registers with prefix %
▶ Naming convention is a historical artifact
▶ Originally 16-bit architectures in x86 had

▶ General registers ax,bx,cx,dx,
▶ Special Registers si,di,sp,bp

▶ Extended to 32-bit: eax,ebx,...,esi,edi,...
▶ Grew again to 64-bit: rax,rbx,...,rsi,rdi,...
▶ Added Eight 64-bit regs r8,r9,...,r14,r15 with 32-bit

portion r8d,r9d,..., 16-bit r8w,r9w..., etc.
▶ Instructions must match registers sizes:

addw %ax, %bx # word (16-bit)
addl %eax, %ebx # long word (32-bit)
addq %rax, %rbx # quad-word (64-bit)

▶ When hand-coding assembly, easy to mess this up, assembler
will error out

17

Hello World in x86-64 Assembly : Not that Easy
▶ Non-trivial in assembly because output is involved

▶ Try writing helloworld.c without printf()
▶ Output is the business of the operating system, always a

request to the almighty OS to put something somewhere
▶ Library call: printf("hello"); mangles some bits but

eventually results with a . . .
▶ System call: Unix system call directly implemented in the OS

kernel, puts bytes into files / onto screen as in
write(1, buf, 5); // file 1 is screen output

This gives us several options for hello world in assembly:
1. hello_printf64.s: via calling printf() which means the C

standard library must be (painfully) linked
2. hello64.s via direct system write() call which means no

external libraries are needed: OS knows how to write to
files/screen. Use the 64-bit Linux calling convention.

3. hello32.s via direct system call using the older 32 bit Linux
calling convention which “traps” to the operating system.

18

(Optional): The OS Privilege: System Calls
▶ Most interactions with the outside world happen via

Operating System Calls (or just “system calls”)
▶ User programs indicate what service they want performed by

the OS via making system calls
▶ System Calls differ for each language/OS combination

▶ x86-64 Linux: set %rax to system call number, set other args
in registers, issue syscall

▶ IA32 Linux: set %eax to system call number, set other args in
registers, issue an interrupt

▶ C Code on Unix: make system calls via write(), read() and
others (studied in CSCI 4061)

▶ Tables of Linux System Call Numbers
▶ 64-bit (335 calls)
▶ 32-bit (190 calls)

▶ Mac OS X: very similar to the above (it’s a Unix)
▶ Windows: use OS wrapper functions

▶ OS executes priveleged code that can manipulate any part of
memory, touch internal data structures corresponding to files,
do other fun stuff discussed in CSCI 4061 / 5103

19

http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
http://asm.sourceforge.net/syscall.html

Basic Instruction Classes
▶ Remember: Goal is

to understand
assembly as a target
for higher languages,
not become expert
“assemblists”

▶ Means we won’t hit
all 4,834 pages of the
Intel x86-64 Manual

▶ Brown University’s
x64 Cheat Sheet has
a good overview

▶ x86 Assembly Guide
from Yale is also
good but is limited to
32-bit coverage

Kind Assembly Instructions
Fundamentals
- Memory Movement mov
- Stack manipulation push,pop
- Addressing modes (%eax),12(%eax,%ebx)...
Arithmetic/Logic
- Arithmetic add,sub,mul,div,lea
- Bitwise Logical and,or,xor,not
- Bitwise Shifts sal,sar,shr
Control Flow
- Compare / Test cmp,test
- Set on result set
- Jumps (Un)Conditional jmp,je,jne,jl,jg,...
- Conditional Movement cmove,cmovg,...
Procedure Calls
- Stack manipulation push,pop
- Call/Return call,ret
- System Calls syscall
Floating Point Ops
- FP Reg Movement vmov
- Conversions vcvts
- Arithmetic vadd,vsub,vmul,vdiv
- Extras vmins,vmaxs,sqrts

20

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://cs.brown.edu/courses/cs033/docs/guides/x64_cheatsheet.pdf
https://cs.brown.edu/courses/cs033/docs/guides/x64_cheatsheet.pdf
http://flint.cs.yale.edu/cs421/papers/x86-asm/asm.html
http://flint.cs.yale.edu/cs421/papers/x86-asm/asm.html

Data Movement: movX instruction

movX SOURCE, DEST # move/copy source value to dest

Overview
▶ Moves data. . .

▶ Reg to Reg
▶ Mem to Reg
▶ Reg to Mem
▶ Imm to . . .

▶ Reg: register
▶ Mem: main memory
▶ Imm: “immediate” value

(constant) specified like
▶ $21 : decimal
▶ $0x2f9a : hexadecimal
▶ NOT 1234 (mem adder)

▶ More info on operands next

Examples
64-bit quadword moves
movq $4, %rbx # rbx = 4;
movq %rbx,%rax # rax = rbx;
movq $10, (%rcx) # *rcx = 10;

32-bit longword moves
movl $4, %ebx # ebx = 4;
movl %ebx,%eax # eax = ebx;
movl $10, (%rcx) # *rcx = 10;

Note variations
▶ movq for 64-bit (8-byte)
▶ movl for 32-bit (4-byte)
▶ movw for 16-bit (2-byte)
▶ movb for 8-bit (1-byte)

21

Operands and Addressing Modes
In many instructions like movX, operands can have a variety of
forms called addressing modes, may include constants and
memory addresses

Style Address Mode C-like Notes
$21 immediate 21 value of constant like 21
$0xD2 or 0xD2 = 210

%rax register rax to/from register contents
(%rax) indirect *rax reg holds memory address, deref
8(%rax) displaced *(rax+2) base plus constant offset, often
4(%rdx) rdx->field used for strcut field derefs

(%rax,%rbx) indexed *(rax+rbx) base plus offset in given reg
char_arr[rbx] actual value of rbx is used,

NOT multiplied by sizeof()

(%rax,%rbx,4) scaled index rax[rbx] like array access with sizeof(..)=4
(%rax,%rbx,8) rax[rbx] “” with sizeof(..)=8

1024 absolute . . . Absolute address #1024
Rarely used

22

Exercise: Show movX Instruction Execution
Code movX_exercise.s
movl $16, %eax
movl $20, %ebx
movq $24, %rbx
POS A

movl %eax,%ebx
movq %rcx,%rax
POS B

movq $45,(%rdx)
movl $55,16(%rdx)
POS C

movq $65,(%rcx,%rbx)
movq $3,%rbx
movq $75,(%rcx,%rbx,8)
POS D

Registers/Memory
INITIAL
|-----+-------+-------|
REG	%rax	0
	%rbx	0
	%rcx	#1024
	%rdx	#1032
-----+-------+-------		
MEM	#1024	35
	#1032	25
	#1040	15
	#1048	5
-----+-------+-------		
Lookup. . .
May need to look up addressing
conventions for things like. . .

movX %y,%x # reg y to reg x
movX $5,(%x) # 5 to address in %x

23

Answers Part 1/2: movX Instruction Execution
movl $16, %eax
movl $20, %ebx movl %eax,%ebx
movq $24, %rbx movq %rcx,%rax #WARNING!

INITIAL ## POS A ## POS B
-------+-------		-------+-------		-------+-------			
REG	VALUE		REG	VALUE		REG	VALUE
%rax	0		%rax	16		%rax	#1024
%rbx	0		%rbx	24		%rbx	16
%rcx	#1024		%rcx	#1024		%rcx	#1024
%rdx	#1032		%rdx	#1032		%rdx	#1032
-------+-------		-------+-------		-------+-------			
MEM	VALUE		MEM	VALUE		MEM	VALUE
#1024	35		#1024	35		#1024	35
#1032	25		#1032	25		#1032	25
#1040	15		#1040	15		#1040	15
#1048	5		#1048	5		#1048	5
-------+-------		-------+-------		-------+-------			

#WARNING!: On 64-bit systems, ALWAYS use a 64-bit reg name
like %rdx and movq to copy memory addresses; using smaller name
like %edx will miss half the memory addressing leading to major
memory problems

24

Answers Part 2/2: movX Instruction Execution

movq $65,(%rcx,%rbx)
movq $45,(%rdx) #1024+16 = #1040

movl %eax,%ebx #1032 movq $3,%rbx
movq %rcx,%rax #! movq $55,16(%rdx) movq $75,(%rcx,%rbx,8)

16+#1032=#1048 #1024 + 3*8 = #1048
POS B ## POS C ## POS D

-------+-------		-------+-------		-------+-------			
REG	VALUE		REG	VALUE		REG	VALUE
%rax	#1024		%rax	#1024		%rax	#1024
%rbx	16		%rbx	16		%rbx	3
%rcx	#1024		%rcx	#1024		%rcx	#1024
%rdx	#1032		%rdx	#1032		%rdx	#1032
-------+-------		-------+-------		-------+-------			
MEM	VALUE		MEM	VALUE		MEM	VALUE
#1024	35		#1024	35		#1024	35
#1032	25		#1032	45		#1032	45
#1040	15		#1040	15		#1040	65
#1048	5		#1048	55		#1048	75
-------+-------		-------+-------		-------+-------			

25

gdb Assembly: Examining Memory

gdb commands print and x allow one to print/examine memory
memory of interest. Try on movX_exercises.s
(gdb) tui enable # TUI mode
(gdb) layout asm # assembly mode
(gdb) layout reg # show registers
(gdb) stepi # step forward by single Instruction
(gdb) print $rax # print register rax
(gdb) print *($rdx) # print memory pointed to by rdx
(gdb) print (char *) $rdx # print as a string (null terminated)
(gdb) x $r8 # examine memory at address in r8
(gdb) x/3d $r8 # same but print as 3 4-byte decimals
(gdb) x/6g $r8 # same but print as 6 8-byte decimals
(gdb) x/s $r8 # print as a string (null terminated)
(gdb) print *((int*) $rsp) # print top int on stack (4 bytes)
(gdb) x/4d $rsp # print top 4 stack vars as ints
(gdb) x/4x $rsp # print top 4 stack vars as ints in hex

Many of these tricks are needed to debug assembly.

26

Register Size and Movement
▶ Recall %rax is 64-bit register, %eax is lower 32 bits of it
▶ Data movement involving small registers may NOT overwrite

higher bits in extended register
▶ Moving data to low 32-bit regs automatically zeros high 32-bits

movabsq $0x1122334455667788, %rax # 8 bytes to %rax
movl $0xAABBCCDD, %eax # 4 bytes to %eax
%rax is now 0x00000000AABBCCDD

▶ Moving data to other small regs DOES NOT ALTER high bits
movabsq $0x1122334455667788, %rax # 8 bytes to %rax
movw $0xAABB, %ax # 2 bytes to %ax
%rax is now 0x112233445566AABB

▶ Gives rise to two other families of movement instructions for moving
little registers (X) to big (Y) registers, see movz_examples.s
movzXY move zero extend, movsXY move sign extend
movabsq $0x112233445566AABB,%rdx
movzwq %dx,%rax # %rax is 0x000000000000AABB
movswq %dx,%rax # %rax is 0xFFFFFFFFFFFFAABB

27

Exercise: movX differences in Main Memory

Instr # bytes
movb 1 byte
movw 2 bytes
movl 4 bytes
movq 8 bytes

Show the result of each of the
following copies to main memory
in sequence.
movl %eax, (%rsi) #1
movq %rax, (%rsi) #2
movb %cl, (%rsi) #3
movw %cx, 2(%rsi) #4
movl %ecx, 4(%rsi) #5
movw 4(%rsi), %ax #6

INITIAL
|-------+--------------------|
REG	
rax	0x00000000DDCCBBAA
rcx	0x000000000000FFEE
rsi	#1024
-------+--------------------	
MEM	
#1024	0x00
#1025	0x11
#1026	0x22
#1027	0x33
#1028	0x44
#1029	0x55
#1030	0x66
#1031	0x77
#1032	0x88
#1033	0x99
-------+--------------------	

28

Answers: movX to Main Memory 1/2

|-----+--------------------| movl %eax, (%rsi) #1 4 bytes rax -> #1024
| REG | | movq %rax, (%rsi) #2 8 bytes rax -> #1024
| rax | 0x00000000DDCCBBAA | movb %cl, (%rsi) #3 1 byte rcx -> #1024
| rcx | 0x000000000000FFEE | movw %cx, 2(%rsi) #4 2 bytes rcx -> #1026
| rsi | #1024 | movl %ecx, 4(%rsi) #5 4 bytes rcx -> #1028
|-----+--------------------| movw 4(%rsi), %ax #6 2 bytes #1024 -> rax

#1 #2 #3 #4 #5
INITIAL movl %eax,(%rsi) movq %rax,(%rsi) movb %cl,(%rsi) movw %cx,2(%rsi) movl %ecx,4(%rsi)
-------+------		-------+------		-------+------		-------+------		-------+------		-------+------						
MEM			MEM			MEM			MEM			MEM			MEM	
#1024	0x00		#1024	0xAA		#1024	0xAA		#1024	0xEE		#1024	0xEE		#1024	0xEE
#1025	0x11		#1025	0xBB		#1025	0xBB		#1025	0xBB		#1025	0xBB		#1025	0xBB
#1026	0x22		#1026	0xCC		#1026	0xCC		#1026	0xCC		#1026	0xEE		#1026	0xEE
#1027	0x33		#1027	0xDD		#1027	0xDD		#1027	0xDD		#1027	0xFF		#1027	0xFF
#1028	0x44		#1028	0x44		#1028	0x00		#1028	0x00		#1028	0x00		#1028	0xEE
#1029	0x55		#1029	0x55		#1029	0x00		#1029	0x00		#1029	0x00		#1029	0xFF
#1030	0x66		#1030	0x66		#1030	0x00		#1030	0x00		#1030	0x00		#1030	0x00
#1031	0x77		#1031	0x77		#1031	0x00		#1031	0x00		#1031	0x00		#1031	0x00
#1032	0x88		#1032	0x88		#1032	0x88		#1032	0x88		#1032	0x88		#1032	0x88
#1033	0x99		#1033	0x99		#1033	0x99		#1033	0x99		#1033	0x99		#1033	0x99
-------+------		-------+------		-------+------		-------+------		-------+------		-------+------						

29

Answers: movX to Main Memory 2/2
|-----+--------------------| movl %eax, (%rsi) #1 4 bytes rax -> #1024
| REG | | movq %rax, (%rsi) #2 8 bytes rax -> #1024
| rax | 0x00000000DDCCBBAA | movb %cl, (%rsi) #3 1 byte rcx -> #1024
| rcx | 0x000000000000FFEE | movw %cx, 2(%rsi) #4 2 bytes rcx -> #1026
| rsi | #1024 | movl %ecx, 4(%rsi) #5 4 bytes rcx -> #1028
|-----+--------------------| movw 4(%rsi), %ax #6 2 bytes #1024 -> rax
#3 #4 #5 #6
movb %cl,(%rsi) movw %cx,2(%rsi) movl %ecx,4(%rsi) movw 4(%rsx),%ax
-------+------		-------+------		-------+------		-------+------				
MEM			MEM			MEM			MEM	
#1024	0xEE		#1024	0xEE		#1024	0xEE		#1024	0xEE
#1025	0xBB		#1025	0xBB		#1025	0xBB		#1025	0xBB
#1026	0xCC		#1026	0xEE		#1026	0xEE		#1026	0xEE
#1027	0xDD		#1027	0xFF		#1027	0xFF		#1027	0xFF
#1028	0x00		#1028	0x00		#1028	0xEE		#1028	0xEE
#1029	0x00		#1029	0x00		#1029	0xFF		#1029	0xFF
#1030	0x00		#1030	0x00		#1030	0x00		#1030	0x00
#1031	0x00		#1031	0x00		#1031	0x00		#1031	0x00
#1032	0x88		#1032	0x88		#1032	0x88		#1032	0x88
#1033	0x99		#1033	0x99		#1033	0x99		#1033	0x99
-------+------		-------+------		-------+------		-------+------				

| rax | 0x00000000DDCCFFEE |

30

addX : A Quintessential ALU Instruction
addX B, A # A = A+B

OPERANDS:
addX %reg, %reg
addX (%mem),%reg
addX %reg, (%mem)
addX $con, %reg
addX $con, (%mem)

No mem+mem or con+con

EXAMPLES:
addq %rdx, %rcx # rcx = rcx + rdx
addl %eax, %ebx # ebx = ebx + eax
addq $42, %rdx # rdx = rdx + 42
addl (%rsi),%edi # edi = edi + *rsi
addw %ax, (%rbx) # *rbx = *rbx + ax
addq $55, (%rbx) # *rbx = *rbx + 55

addl (%rsi,%rax,4),%edi # edi = edi+rsi[rax] (int)

▶ Addition represents most 2-operand
ALU instructions well

▶ Second operand A is modified by first
operand B, No change to B

▶ Variety of register, memory, constant
combinations honored

▶ addX has variants for each register
size: addq, addl, addw, addb

31

Optional Exercise: Addition
Show the results of the following addX/movX ops at each of the
specified positions

addq $1,%rcx # con + reg
addq %rbx,%rax # reg + reg
POS A

addq (%rdx),%rcx # mem + reg
addq %rbx,(%rdx) # reg + mem
addq $3,(%rdx) # con + mem
POS B

addl $1,(%r8,%r9,4) # con + mem
addl $1,%r9d # con + reg
addl %eax,(%r8,%r9,4) # reg + mem
addl $1,%r9d # con + reg
addl (%r8,%r9,4),%eax # mem + reg
POS C

INITIAL
|-------+-------|
REGS	
%rax	15
%rbx	20
%rcx	25
%rdx	#1024
%r8	#2048
%r9	0
-------+-------	
MEM	
#1024	100
...	...
#2048	200
#2052	300
#2056	400
-------+-------	

32

Answers: Addition
INITIAL POS A POS B POS C
-------+-------		-------+-------		-------+-------		-------+-------				
REG			REG			REG			REG	
%rax	15		%rax	35		%rax	35		%rax	435
%rbx	20		%rbx	20		%rbx	20		%rbx	20
%rcx	25		%rcx	26		%rcx	126		%rcx	126
%rdx	#1024		%rdx	#1024		%rdx	#1024		%rdx	#1024
%r8	#2048		%r8	#2048		%r8	#2048		%r8	#2048
%r9	0		%r9	0		%r9	0		%r9	2
-------+-------		-------+-------		-------+-------		-------+-------				
MEM			MEM			MEM			MEM	
#1024	100		#1024	100		#1024	123		#1024	123
...
#2048	200		#2048	200		#2048	200		#2048	201
#2052	300		#2052	300		#2052	300		#2052	335
#2056	400		#2056	400		#2056	400		#2056	400
-------+-------		-------+-------		-------+-------		-------+-------				

addq $1,%rcx addq (%rdx),%rcx addl $1,(%r8,%r9,4)
addq %rbx,%rax addq %rbx,(%rdx) addl $1,%r9d

addq $3,(%rdx) addl %eax,(%r8,%r9,4)
addl $1,%r9d
addl (%r8,%r9,4),%eax

33

The Other ALU Instructions
▶ Most ALU instructions follow the same patter as addX: two

operands, second gets changed.
▶ Some one operand instructions as well.

Instruction Name Effect Notes
addX B, A Add A = A + B Two Operand Instructions
subX B, A Subtract A = A - B
imulX B, A Multiply A = A * B Has a limited 3-arg variant
andX B, A And A = A & B
orX B, A Or A = A | B
xorX B, A Xor A = A ^ B
salX B, A Shift Left A = A << B B is constant or %cl reg
shlX B, A A = A << B
sarX B, A Shift Right A = A >> B Arithmetic: Sign carry
shrX B, A A = A >> B Logical: Zero carry
incX A Increment A = A + 1 One Operand Instructions
decX A Decrement A = A - 1
negX A Negate A = -A
notX A Complement A = ~A

34

leaX: Load Effective Address
▶ Memory addresses must often be loaded into registers
▶ Often done with a leaX, usually leaq in 64-bit platforms
▶ Sort of like “address-of” op & in C but a bit more general

INITIAL
|-------+-------|
REG	VAL
rax	0
rcx	2
rdx	#1024
rsi	#2048
-------+-------	
MEM	
#1024	15
#1032	25
...	
#2048	200
#2052	300
#2056	400
-------+-------	

leaX_examples.s:
movq 8(%rdx),%rax # rax = *(rdx+1) = 25
leaq 8(%rdx),%rax # rax = rdx+1 = #1032
movl (%rsi,%rcx,4),%eax # rax = rsi[rcx] = 400
leaq (%rsi,%rcx,4),%rax # rax = &(rsi[rcx]) = #2056

Compiler sometimes uses leaX for multiplication
as it is usually faster than imulX but less readable.
Odd Collatz update n = 3*n+1
#READABLE with imulX #OPTIMIZED with leaX:
imul $3,%eax leal 1(%eax,%eax,2),%eax
addl $1,%eax
eax = eax*3 + 1 # eax = eax + 2*eax + 1,
3-4 cycles # 1 cycle

35

Division: It’s a Pain (1/2)
▶ idivX operation has some special rules
▶ Dividend must be in the rax / eax / ax register
▶ Sign extend to rdx / edx / dx register with cqto
▶ idivX takes one register argument which is the divisor
▶ At completion

▶ rax / eax / ax holds quotient (integer part)
▶ rdx / edx / dx holds the remainder (leftover)

division.s:
movl $15, %eax # set eax to int 15
cqto # extends 0 sign bit (positive) to edx
combined 64-bit register %edx:%eax is
eax: 0x00000000 0000000F = 15
exx: 0x00000000 00000000 = 0
movl $2, %esi # set esi to 2
idivl %esi # divide combined register by 2
15 div 2 = 7 rem 1
%eax == 7, quotient
%edx == 1, remainder

answer in eax, return
ret

Compiler avoids division whenever possible: compile
col_unsigned.c and col_signed.c to see some tricks. 36

Division: It’s a Pain (2/2)
▶ When performing division on 8-bit or 16-bit quantities, use

instructions to sign extend small reg to all rax register
division with 16-bit shorts from division.s
movq $0,%rax # set rax to all 0's
movq $0,%rdx # set rdx to all 0's

rax = 0x00000000 00000000
rdx = 0x00000000 00000000

movw $-17, %ax # set ax to short -17
rax = 0x00000000 0000FFEF
rdx = 0x00000000 00000000

cwtl # "convert word to long" sign extend ax to eax
rax = 0x00000000 FFFFFFEF
rdx = 0x00000000 00000000

cltq # "convert long to quad" sign extend eax to rax
rax = 0xFFFFFFFF FFFFFFEF
rdx = 0x00000000 00000000

cqto # sign extend rax to rdx
rax = 0xFFFFFFFF FFFFFFEF
rdx = 0xFFFFFFFF FFFFFFFF

movq $3, %rcx # set rcx to long 3
idivq %rcx # divide combined rax/rdx register by 3

rax = 0xFFFFFFFF FFFFFFFB = -5 (quotient)
rdx = 0xFFFFFFFF FFFFFFFE = -2 (remainder)

37

