
CMSC216: Exceptional Control Flow
and Unix Processes

Chris Kauffman

Last Updated:
Tue Apr 15 09:07:35 AM EDT 2025

1

Logistics
Reading: Bryant/O’Hallaron

Ch Read? Topic
8 Finish See specific section guide from previous slides

10 READ UNIX File structure, File System structure, I/O functions
Except

10.5 Opt Optional: “Robust” I/O library built on top of primitive ops

Assignments
▶ Grading has commenced for P3 / Exam 2, likely to complete late this week
▶ Lab09 on fork() / wait() + HW09 on fork()
▶ P4 up later this week

Goals
▶ Finish up Process Intro
▶ C Standard I/O library vs UNIX I/O
▶ File Descriptors, open() / close() / read() write()
▶ I/O Redirection with dup2() / dup()
▶ File Atributes / Permissions stat() / chmod()
▶ (Optional) Directory Traversal opendir() / readdir()

2

Announcements

CS Undergrad Town Hall Mon 21-Apr
▶ Chance to voice concerns / get attention to issues for CS

students
▶ Nominations for Undergrad rep to Department Council and

Education Committee
▶ Chances to demonstrate service and leadership for those who

want those things on their resume
▶ Food provided

RSVP: https://go.umd.edu/cstownhall25

3

https://go.umd.edu/cstownhall25

Detailed Reading from Bryant/O’Hallaron Ch 8

▶ Textbook has detailed coverage of many aspects of Process
basics in Chapter 8 Exceptional Control Flow

▶ Below is a detailed section reading guide for what we will be
important for us

Ch Read? Topic
8.1 Skim Assembly/Hardware mechanisms for “exceptional control flow”
8.2 READ Processes as running programs, context switches, user/kernel mode
8.3 Skim System call error handling
8.4 READ Fundamental process system calls: fork() / waitpid() / etc.
8.5 Opt Optional: Software Signals
8.6 Opt Optional: Nonlocal jumps via setjmp() / longjmp()
8.7 READ “Tools” (one paragraph, we’ll discuss these in more detail in class)

4

Traditional vs Modern Computing Devices
▶ Old-school computers had a single executing programs which

could interact freely with all parts of the computing hardware
▶ Modern computing devices have different expectations

summarized below

Traditional Modern
Single program on device Multiple programs sharing single device
No Operating System OS manages all programs
Program access to all hardware OS controls/coordinates hardware access
Single program accesses all memory OS isolates memories of each program
Relatively simple hardware interactions Complex interactions of many devices
Single “user” running programs at once Multiple users simultaneously on system
Apple II: insert disk to run program Mac OS: Click to start another program

▶ New hardware and expectations led to new concepts
▶ Operating Systems: “manager” program that coordinates

activities of all programs / users, manages hardware and
provides abstraction layer, enforces security and fairness

▶ Process: a running program with its context
5

OS Kernel and Kernel Mode
kernel (noun) 1. a softer, usually edible part of a nut,

seed, or fruit stone contained within its
hard shell.

2. the central or most important part of
something.

Operating System code is usually in the kernel, a program that
starts running when a computing system is powered on
▶ Kernel sets up handlers for various exceptional control flows

such as hardware interrupts and system calls
▶ Most CPUs have (at least) two modes

1. User / Normal mode
2. Kernel / Privileged / Supervisor mode

▶ User programs run in user mode, cannot directly manipulate
hardware or access certain resources

▶ Requests OS to perform some operations which jumps to
kernel code running in kernel mode

Example hello64.s: Linux System Call to write data in x86-64
6

Processes: Running Programs

▶ Hardware just executes a stream of instructions
▶ The OS creates the notion of a process: instructions

comprising a running program
▶ Processes can be executed for a while, then paused while

another process executes
▶ To accomplish this, OS usually provides. . .

1. Bookkeeping info for processes (resources)
2. Ability to interrupt / pre-empt a running process to allow OS

actions to take place
3. Scheduler that decides which process runs and for how long

▶ Will discuss these from a Systems Programming
perspective: control low-level program details to utilize OS
Service and Hardware as effectively as possible

7

Exceptional Control Flow

▶ CPUs use “regular” control flow most of the time but support
several kinds of exceptional control flow

▶ General idea is as follows:
1. Something triggers exceptional control flow
2. Normal program instructions pause
3. Processor jumps to a designated set of instructions to handle

the situation
4. Typical handling code is in the Operating System Kernel
5. After the situation is handled control may be returned to the

program that was running OR something else may happen
▶ Flavors of exceptional control flow include interrupts, traps,

faults, aborts, and possibly others depending on whose
terminology you follow

8

Process Context and Context Switches

Source: Bryan/O’Hallaron Fig 8.14

▶ Exceptional Control Flow at hardware level allows high-level
behaviors such as changing between processes

▶ OS Kernel tracks data structures associated with Processes
that allows them to be paused and resumed

▶ Process Context includes data such as
▶ Values of registers as the process is paused
▶ Regions of main memory in use by process
▶ Open files and other resources in use by process

▶ Switching between processes is a Context Switch
▶ OS saves the context of Process A someplace safe
▶ OS loads the context for Process B and starts it running
▶ Later A’s context can be loaded to resume where it left off

9

Exceptional Control Flow Use Cases
Enable Multiple Processes to Share the CPU

▶ OS sets a hardware timer
▶ OS Starts Process A running, A’s code runs in user mode
▶ When timer expires (“rings”), control jumps to the OS
▶ OS can select Process B to run, resuming A later after B’s timer expires
▶ Selecting a Process to run is part of the scheduler code in the OS

Hiding I/O Latency
▶ Process A requests to receive data from the Network (e.g. internet search result)
▶ This Input request is a System Call: jumps to OS code
▶ OS inspects the Network Interface Card (NIC), hardware responsible for network

communications, and find data is not yet available for Process A
▶ Marks Process A as waiting for I/O to complete, starts running Process B
▶ While Process B is running, data arrives on the NIC which sends an electrical

signal to the CPU
▶ CPU jumps away from Process B to handle the incoming I/O, finds it is a data

packet for Process A
▶ OS marks Process A as ready to run again, then scheduler selects A or B to run

10

Inside and Outside of the Kernel

CMSC216 (This Course)
▶ Discuss basic OS System

Calls that Unix provides
▶ Create processes, coordinate

them simply
▶ Perform low-level read/write

I/O calls
▶ Understand OS interface at

a high level, some ideas
about internal data
structures maintained by
Kernels for processes, files,
virtual memory, etc.

CMSC412 Operating Systems
▶ Build a small OS Kernel
▶ Directly implement data

structures for processes,
files, virtual memory, etc.

▶ Study tradeoffs in design of
these data structures

▶ Utilize more complex
process coordination /
communication mechanisms

If you find these things interesting, consider CMSC412 in the future
11

Overview of Process Creation/Coordination
The following are the 4 fundamental process creation /
coordination primitives provided by UNIX systems including Linux

getpid() / getppid()
▶ Get process ID of the

currently running process
▶ Get parent process ID

fork()
▶ Create a child process
▶ Identical to parent EXCEPT

for return value of fork() call
▶ Determines child/parent

wait() / waitpid()
▶ Wait for any child to finish

(wait)
▶ Wait for a specific child to

finish (waitpid)
▶ Get return status of child

exec() family
▶ Replace currently running

process with a different
program image

▶ Process becomes something
else losing previous code

▶ Focus on execvp() 12

Code: Overview of Process Creation/Coordination

getpid() / getppid()
pid_t my_pid = getpid();
printf("I'm proces %d\n",my_pid);
pid_t par_pid = getppid();
printf("My parent is %d\n",par_pid);

fork()
pid_t child_pid = fork();
if(child_pid == 0){

printf("Child!\n");
}
else{

printf("Parent!\n");
}

wait() / waitpid()
int status;
waitpid(child_pid, &status, 0);
printf("Child %d done, status %d\n",

child_pid, status);

exec() family
char *new_argv[] = {"ls","-l",NULL};
char *command = "ls";
printf("Goodbye old code, hello LS!\n");
execvp(command, new_argv);

Aside: before the next exercise, compile the complain.c program
to be named complain using GCC (good review)

13

Exercise: Putting Child Processes to Work
Explain this program that use getpid(), getppid(), fork(), execvp()

1 // child_labor.c:
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <sys/wait.h>
5 #include <unistd.h>
6
7 int main(int argc, char* argv){
8
9 char *child_argv[] = {"./complain",NULL};

10 char *child_cmd = "complain";
11
12 printf("P: I'm %d, and I really don't feel like '%s'ing\n",
13 getpid(),child_cmd);
14 printf("P: I have a solution\n");
15
16 pid_t child_pid = fork();
17
18 if(child_pid == 0){
19 printf("C: I'm %d My pa '%d' wants me to '%s'. This sucks.\n",
20 getpid(), getppid(), child_cmd);
21
22 execvp(child_cmd, child_argv);
23
24 printf("C: I don't feel like myself anymore...\n");
25 }
26 else{
27 printf("P: Great, junior %d is taking care of that\n",
28 child_pid);
29 }
30 return 0;
31 }

14

Answers: Putting Child Processes to Work
1 // child_labor.c: demonstrate the basics of fork/exec to launch a
2 // child process to do "labor"; e.g. run a another program via
3 // exec. Make sure that the the 'complain' program is compiled first.
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <sys/wait.h>
7 #include <unistd.h>
8
9 int main(int argc, char* argv[]){

10
11 char *child_argv[] = {"complainnot",NULL}; // argument array to child, must end with NULL
12 char *child_cmd = "complainnot"; // actual command to run, must be on path
13
14 printf("P: I'm %d, and I really don't feel like '%s'ing\n",
15 getpid(),child_cmd); // use of getpid() to get current PID
16 printf("P: I have a solution\n");
17
18 pid_t child_pid = fork(); // clone a child
19
20 if(child_pid == 0){ // child will have a 0 here
21 printf("C: I'm %d My pa '%d' wants me to '%s'. This sucks.\n",
22 getpid(), getppid(), child_cmd); // use of getpid() and getppid()
23
24 execvp(child_cmd, child_argv); // replace running image with child_cmd
25
26 printf("C: I don't feel like myself anymore...\n"); // unreachable statement
27 }
28 else{ // parent will see nonzero in child_pid
29 printf("P: Great, junior %d is taking care of that\n",
30 child_pid);
31 }
32 return 0;
33 }

15

Experiment: Alter Command for exec()

Experiment in child_labor.c with altering lines associated with
exec() arguments
char *child_argv[] = {"./complain",NULL}; // argument array to child, must end with NULL
char *child_cmd = "complain"; // actual command to run, must be on path

char *child_argv[] = {"ls","-l","-ah",NULL}; // alternative argv/command swap commenting
char *child_cmd = "ls"; // with above to alter what child does

char *child_argv[] = {"seq","5","2","20",NULL}; // alternative
char *child_cmd = "seq";

Note the effects after recompiling and re-running.

16

Exercise: Coordinating Parent and Child
child_labor.c has concurrency issues: Parent/Child output
mixed and may occur in an unpredictable order
>> ./a.out
P: I'm 53174, and I really don't feel like 'complain'ing
P: I have a solution
P: Great, junior 53175 is taking care of that
C: I'm 53175 My pa '53174' wants me to 'complain'. This sucks.
>> COMPLAIN: God this sucks. On a scale of 0 to 10 I hate pa ...

>> ./a.out
P: I'm 53187, and I really don't feel like 'complain'ing
P: I have a solution
C: I'm 53188 My pa '53187' wants me to 'complain'. This sucks.
COMPLAIN: God this sucks. On a scale of 0 to 10 I hate pa ...
P: Great, junior 53188 is taking care of that

>> ./a.out
P: I'm 53198, and I really don't feel like 'complain'ing
P: I have a solution
C: I'm 53199 My pa '53198' wants me to 'complain'. This sucks.
P: Great, junior 53199 is taking care of that
>> COMPLAIN: God this sucks. On a scale of 0 to 10 I hate pa ...

>>

Modify with a call to wait(somepid) to ensure Parent output
comes AFTER Child output

17

Answers: child_wait.c modification
1 // child_wait.c: fork/exec plus parent waits for child to
2 // complete printing befor printing itself.
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <sys/wait.h>
6 #include <unistd.h>
7
8 int main(int argc, char* argv){
9

10 char *child_argv[] = {"./complain",NULL}; // alternative commands
11 char *child_cmd = "complain";
12
13 printf("P: I'm %d, and I really don't feel like '%s'ing\n",
14 getpid(),child_cmd);
15 printf("P: I have a solution\n");
16
17 pid_t child_pid = fork();
18
19 if(child_pid == 0){
20 printf("C: I'm %d My pa '%d' wants me to '%s'. This sucks.\n",
21 getpid(), getppid(), child_cmd);
22 execvp(child_cmd, child_argv);
23 printf("C: I don't feel like myself anymore...\n"); // unreachable
24 }
25 else{
26 int status;
27 wait(&status); // wait for any child to finish, collect status
28 // wait(NULL); // wait for any child, ignore status
29 // waitpid(child_pid, &status); // wait for specific child
30 // waitpid(-1, NULL); // wait for any child, collect status
31 printf("P: Great, junior %d is done with that '%s'ing\n",
32 child_pid, child_cmd);
33 }
34 return 0;
35 }

18

Effects of fork()

▶ Single process becomes 2 processes
▶ Sole difference is return value from fork()
▶ All other aspects of process are copied

child_pid ?child_pid
5myint

heap_str 0x500

...
0x500 h
0x501 i
0x502 \0

...
1.23glob_doub

...

int main(){
 char *heap_str = malloc(..);
 int myint = 5;
 glob_doub = 1.23;
>> int child_pid = fork()
 if(child_pid == 0){
 myint = 19;
 }
 printf("myint: %d\n", myint);
 ...

STACK

HEAP

GLOBALS

TEXT/CODE

Process 1234

child_pid 5678child_pid
5myint

heap_str 0x500

...
0x500 h
0x501 i
0x502 \0

...
1.23glob_doub

...

int main(){
 char *heap_str = malloc(..);
 int myint = 5;
 glob_doub = 1.23;
 int child_pid = fork()
>> if(child_pid == 0){
 myint = 19;
 }
 printf("myint: %d\n", myint);
 ...

STACK

HEAP

GLOBALS

TEXT/CODE

Process 1234 (parent)

child_pid 0child_pid
5myint

heap_str 0x500

...
0x500 h
0x501 i
0x502 \0

...
1.23glob_doub

...

int main(){
 char *heap_str = malloc(..);
 int myint = 5;
 glob_doub = 1.23;
 int child_pid = fork()
>> if(child_pid == 0){
 myint = 19;
 }
 printf("myint: %d\n", myint);
 ...

STACK

HEAP

GLOBALS

TEXT/CODE

Process 5678 (child)
Before fork(): 1 process After fork(): 2 processes

19

Effects of exec()

▶ Entire Memory image of process is replaced/reset
▶ Original process Text/Code is replaced, begin new main()
▶ Successful exec() does not return to original code

some_var ?
5myint

heap_str 0x500

...
0x500 h
0x501 i
0x502 \0

...
1.23glob_doub

...

int main(){ // my program
 char *heap_str = malloc(..);
 int myint = 5;
 glob_doub = 1.23;
>> exec("ls",...);
 printf("Unreachable!\n");
 some_var = 21;
 ...

STACK

HEAP

GLOBALS

TEXT/CODE

Process 1234

?? ??
????

?? ??

...
0x500 ??
0x501 ??
0x502 ??

...
????

...

int main(...){ // ls program
>> if(argc == 1){
 MODE = SIMPLE_LIST;
 }
 else {
 ...
 }
 ...

STACK

HEAP

GLOBALS

TEXT/CODE

Process 1234
Before exec(): original code After exec(): code replaced

20

Exercise: Child Exit Status
▶ A successful call to wait() sets a

status variable with child info:
int status;
wait(&status);

▶ Several macros are used to parse
out this variable
// determine if child actually exited
// other things like signals can cause
// wait to return
if(WIFEXITED(status)){

// get the return value of program
int retval = WEXITSTATUS(status);

}

▶ Modify child_labor.c so that
parent checks child exit status

▶ Convention: 0 normal, nonzero
error, print something if non-zero

program that returns non-zero
> gcc -o complain complain.c

EDIT FILE TO HAVE CHILD RUN 'complain'
> gcc child_labor_wait_returnval.c
> ./a.out
I'm 2239, and I really don't feel
like 'complain'ing
I have a solution

I'm 2240 My pa '2239' wants me to 'complain'.
This sucks.

COMPLAIN: God this sucks. On a scale of 0 to 10
I hate pa ...

Great, junior 2240 did that and told me '10'
That little punk gave me a non-zero return.
I'm glad he's dead
>

NOTE: C Macros look a bit like
functions with CAPTIAL_NAMES() but
are different from normal functions. We
will discuss Macros more later.

21

Answers: Child Exit Status
1 // child_wait_returnval.c: fork/exec plus parent waits for child and
2 // checks their status using macors. If nonzero, parent reports.
3
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <sys/wait.h>
7 #include <unistd.h>
8
9 int main(int argc, char* argv[]){

10 char *child_argv[] = {"./complain",NULL}; // program returns non-zero
11 char *child_cmd = "complain";
12
13 printf("P: I'm %d, and I really don't feel like '%s'ing\n",
14 getpid(),child_cmd);
15 printf("P: I have a solution\n");
16
17 pid_t child_pid = fork();
18
19 if(child_pid == 0){
20 printf("C: I'm %d My pa '%d' wants me to '%s'. This sucks.\n",
21 getpid(), getppid(), child_cmd);
22 execvp(child_cmd, child_argv);
23 printf("C: I don't feel like myself anymore...\n"); // unreachable
24 }
25 else{
26 int status;
27 wait(&status); // wait for child to finish, collect status
28 if(WIFEXITED(status)){
29 int retval = WEXITSTATUS(status); // decode status to 0-255
30 printf("P: Great, junior %d did that and told me '%d'\n",
31 child_pid, retval);
32 if(retval != 0){ // nonzero exit codes usually indicate failure
33 printf("P: That little punk gave me a non-zero return. I'm glad he's dead\n");
34 }
35 }
36 else{
37 printf("P: Oh no, something happened to the boy!\n");
38 }
39 }
40 return 0;
41 }

22

Normal Processes Exit

▶ Normal exit for a C program results from
1. main() executes return code;
2. Program calls the exit(code); standard function

▶ WIFEXITED(status) is “truthy” in parent for such cases
▶ An “error” may have occurred but the child process detects,

handles, and bails “gracefully” in these cases
Alternatively, processes may exit abnormally. . .

23

Abnormal Process Exit

▶ Abnormal exit can happen for a variety of reasons including
1. Attempts to access out-of-bounds memory causing a

segmentation fault or memory bus error
2. Divides an integer by 0 triggering a floating point exception1

3. Executes an illegal instruction
4. . . .

▶ WIFEXITED(status) is “falsey” in parent process in these
cases

▶ Usually WIFSIGNALLED(status) is “truthy” in parent process

1This is among the worst named errors as a “floating point exception” or
“SIGFPE” is almost always integer division by 0; modern floating point units
allow for division by 0.0 which gives either Inf or NaN results as dictated by the
IEEE-754 standard

24

Abnormal Exits and Software Signals

▶ Unix systems usually signal a running process when severe
errors such as a Segmentation Fault occurs

▶ Signals also allow for a limited form of communication
between processes but. . .

▶ Signal handling is beyond the scope of this course
▶ Our only use:

Parent processes can determine the cause of death when
a child is killed by the OS using signals

Examine: dumb_kid.c and dumb_kid_parent.c
▶ Common abnormal exits (dumb_kid.c)
▶ Diagnosing abnormal exits with WIFSIGNALLED() and

WTERMSIGNAL()

25

Return Value for wait() family
▶ Return value for wait() and waitpid() is the PID of the

child that finished
▶ Makes a lot of sense for wait() as multiple children can be

started and wait() reports which finished
▶ One wait() per child process is typical

Examine: faster_child.c
Demonstrates determining which child finished based on the return
value of wait()

// parent waits for each child
for(int i=0; i<3; i++){

int status;
int child_pid = wait(&status);
if(WIFEXITED(status)){

int retval = WEXITSTATUS(status);
printf("PARENT: Finished child proc %d, retval: %d\n",

child_pid, retval);
}

}

26

Blocking vs. Nonblocking Activities
Blocking
▶ A call to wait() and waitpid() may cause calling process to

block (hang, stall, pause, suspend, so many names. . .)
▶ Blocking is associated with other activities as well

▶ I/O, obtain a lock, get a signal, etc.
▶ Generally creates synchronous situations: waiting for

something to finish means the next action always happens..
next (e.g. print after wait() returns)
// BLOCKING VERSION
int pid = waitpid(child_pid, &status, 0);

Non-blocking
▶ Contrast with non-blocking (asynchronous) activities: calling

process goes ahead even if something isn’t finished yet
▶ wait() is always blocking
▶ waitpid() can be blocking or non-blocking

27

Non-Blocking waitpid()

▶ Use the WNOHANG option
▶ Returns immediately regardless of the child’s status

int child_pid = fork();
int status;

// NON-BLOCKING
int pid = waitpid(child_pid, &status, WNOHANG); // specific child
OR |||||||
int pid = waitpid(-1, &status, WNOHANG); // any child

Returned pid is

Returned Means
child_pid status of child that changed / exited
0 there is no status change for child / none exited
-1 an error

Examine impatient_parent.c

28

impatient_parent.c
1 // impatient_parent.c: demonstrate non-blocking waitpid(),
2
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <sys/wait.h>
6 #include <unistd.h>
7
8 int main(int argc, char* argv){
9 char *child_argv[] = {"./complain",NULL};

10 char *child_cmd = "complain";
11 printf("PARENT: Junior is about to '%s', I'll keep an eye on him\n",
12 child_cmd);
13 pid_t child_pid = fork();
14
15 // CHILD CODE
16 if(child_pid == 0){
17 printf("CHILD: I'm %d and I'm about to '%s'\n",
18 getpid(), child_cmd);
19 execvp(child_cmd, child_argv);
20 }
21
22 // PARENT CODE
23 int status;
24 int count = 0;
25 while(1){
26 int retcode = waitpid(child_pid+1, &status, WNOHANG); // non-blocking wait
27 if(retcode == child_pid){ // 0 means child has not exited/changed status
28 break;
29 }
30 printf("Oh, junior's taking so long. Is he among the 50%% of people that are below average?\n");
31 count++;
32 }
33 printf("PARENT: Good job junior. I only checked on you %d times.\n",
34 count);
35 // if(WIFEXITED(status)){
36 // printf("Ah, he Exited with code %d\n", WEXITSTATUS(status));
37 // }
38 // else{
39 // printf("Junior didn't exit, what happened to him?\n");
40 // }
41
42 return 0;
43 } 29

Runs of impatient_parent.c

> gcc impatient_parent.c
> a.out
PARENT: Junior is about to 'complain', I'll keep an eye on him
PARENT: 0? The kid's not done yet. I'm bored
CHILD: I'm 1863 and I'm about to 'complain'
> COMPLAIN: God this sucks. On a scale of 0 to 10 I hate pa ...

> a.out
PARENT: Junior is about to 'complain', I'll keep an eye on him
PARENT: 0? The kid's not done yet. I'm bored
CHILD: I'm 1865 and I'm about to 'complain'
> COMPLAIN: God this sucks. On a scale of 0 to 10 I hate pa ...

30

Exercise: Helicopter Parent

▶ Modify impatient_parent.c to
helicopter_parent.c

▶ Checks continuously on child
process

▶ Will need a loop for this. . .

> gcc helicopter_parent.c
> a.out
PARENT: Junior is about to 'complain', I'll keep an eye on him
Oh, junior's taking so long. Is he among the 50% of people that are below average?
Oh, junior's taking so long. Is he among the 50% of people that are below average?
...
Oh, junior's taking so long. Is he among the 50% of people that are below average?
Oh, junior's taking so long. Is he among the 50% of people that are below average?
CHILD: I'm 21789 and I'm about to 'complain'
Oh, junior's taking so long. Is he among the 50% of people that are below average?
...
Oh, junior's taking so long. Is he among the 50% of people that are below average?
Oh, junior's taking so long. Is he among the 50% of people that are below average?
COMPLAIN: God this sucks. On a scale of 0 to 10 I hate pa ...
Oh, junior's taking so long. Is he among the 50% of people that are below average?
Oh, junior's taking so long. Is he among the 50% of people that are below average?
...
PARENT: Good job junior. I only checked on you 226 times.

31

Answers: Helicopter Parent
1 // helicopter_parent.c: demonstrate non-blocking waitpid() in excess
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <sys/wait.h>
5 #include <unistd.h>
6
7 int main(int argc, char* argv){
8
9 char *child_argv[] = {"./complain",NULL};

10 char *child_cmd = "complain";
11
12 printf("PARENT: Junior is about to '%s', I'll keep an eye on him\n",
13 child_cmd);
14
15 pid_t child_pid = fork();
16
17 // CHILD CODE
18 if(child_pid == 0){
19 printf("CHILD: I'm %d and I'm about to '%s'\n",
20 getpid(), child_cmd);
21 execvp(child_cmd, child_argv);
22 }
23
24 // PARENT CODE
25 int status;
26 int checked = 0;
27 while(1){
28 int cpid = waitpid(child_pid,&status,WNOHANG); // Check if child done, but don't actually wait
29 if(cpid == child_pid){ // Child did finish
30 break;
31 }
32 printf("Oh, junior's taking so long. Is he among the 50%% of people that are below average?\n");
33 checked++;
34 }
35 printf("PARENT: Good job junior. I only checked on you %d times.\n",checked);
36 return 0;
37 }

32

Polling vs Interrupts

▶ helicopter_parent.c is an example of polling: checking
on something repeatedly until it achieves a ready state

▶ Easy to program, generally inefficient
▶ Alternative: interrupt style is closer to wait() and

waitpid() without WNOHANG: rest until notified of a change
▶ Usually requires cooperation with OS/hardware which must

wake up process when stuff is ready
▶ Both polling-style and interrupt-style programming have uses
▶ Projects may use one or the other of these so it’s good to be

aware of them

33

Zombies Processes
▶ Parent creates a child
▶ Child completes
▶ Child becomes a zombie (!!!)
▶ Parent waits for child
▶ Child reaped

All we want is the attention of a loving parent. . .

Zombie Process
A process that has finished, but has not been wait()’ed for by its
parent yet so cannot be (entirely) eliminated from the system. OS
can reclaim child resources like memory once parent wait()’s.

Demonstrate
Requires a process monitoring with top/ps but can see zombies
created using spawn_undead.c

34

Tree of Processes
> pstree
systemd-+-NetworkManager---2*[{NetworkManager}]

|-accounts-daemon---2*[{accounts-daemon}]
|-colord---2*[{colord}]
|-csd-printer---2*[{csd-printer}]
|-cupsd
|-dbus-daemon
|-drjava---java-+-java---27*[{java}]
| `-37*[{java}]
|-dropbox---106*[{dropbox}]
|-emacs-+-aspell
| |-bash---pstree
| |-evince---4*[{evince}]
| |-idn
| `-3*[{emacs}]
|-gdm-+-gdm-session-wor-+-gdm-wayland-ses-+-gnome-session-b-+-gnome-shell-+-Xwayland---14*[{Xwayland}]
... ...
| |-gnome-terminal--+-bash-+-chromium-+-chrome-sandbox---chromium---chromium-+-8*[chromium---12*[{chromium}]]
| | | | | |-chromium---11*[{chromium}]
| | | | | |-chromium---14*[{chromium}]
| | | | | |-chromium---15*[{chromium}]
| | | | | `-chromium---18*[{chromium}]
| | | | |-chromium---9*[{chromium}]
| | | | `-42*[{chromium}]
| | | `-cinnamon---21*[{cinnamon}]
| | |-bash---ssh
| | `-3*[{gnome-terminal-}]

▶ Processes exist in a tree: see with shell command pstree
▶ Children can be orphaned by parents: parent exits without

wait()’ing for child
▶ Orphans are adopted by the root process (PID==1)

▶ init traditionally
▶ systemd in many modern systems

▶ Root process occasionally wait()’s to “reap” zombies
35

Orphans are always Adopted

▶ Parent exits without wait()’ing, leaving them orphaned.
▶ Adopted by root process with PID=1

Examine: baudelair_orphans.c
Demonstrates what happens to orphan processes: adopted by the
“root” process #1
> gcc baudelaire_orphans.c

> ./a.out
1754593: I am Klaus and my parent is 1754592
1754594: I amm Violet and my parent is 1754592
1754596: (Sunny blows raspberry) 1754592
1754593: My original parent was 1754592, my current parent is 1754592
> 1754594: My original parent was 1754592, my current parent is 1
1754594: I have been orphaned. How Unforunate.
1754596: My original parent was 1754592, my current parent is 1
1754596: I have been orphaned. How Unforunate.

36

Reapers and the Subreapers
▶ Process X creates many

children, Orphans them
▶ Children of X complete,

become Zombies until. . .
▶ Newly assigned Parent

wait()’s for them
▶ Adoptive parent like Process

1 sometimes referred to as a
Reaper process: “reaps the
dead processes”

▶ System may designate a
Subreaper to do this per
user so orphans NOT
re-parented to process ID 1

▶ Graphical Login on Ubuntu
Linux systems usually
designates a Subreaper for
each user

Source: Cartoongoodies.com
Reaper and Orphan? More like Subreaper. . .

37

https://unix.stackexchange.com/questions/250153/what-is-a-subreaper-process
https://cartoongoodies.com/png_images/mandy-angry-at-the-grim-reaper/

