
CMSC 216: UNIX File Input/Output

Chris Kauffman

Last Updated:
Tue Apr 22 09:08:00 AM EDT 2025

1

Logistics
Reading: Bryant/O’Hallaron

Ch Read? Topic
8 Finish See specific section guide from previous slides

10 READ UNIX File structure, File System structure, I/O functions
Except

10.5 Opt Optional: “Robust” I/O library built on top of primitive ops

Assignments
▶ Lab10: I/O Redirection and File Stats
▶ HW10: Reading from Files, Directory Traversal
▶ P4: Just about ready, shorter, 9-day turn-around

Goals
⊠ File Descriptors, open() / close() / read() write()

⊟ I/O Redirection with dup2() / dup()

□ C Standard I/O library vs UNIX I/O
□ File Atributes / Permissions stat() / chmod()

□ (Optional) Directory Traversal opendir() / readdir()

□ Next: Memory Systems (Ch. 6 & Ch 9)
2

Announcements

Terrapin Teachers Pitch (11am)
See https://piazza.com/class/m69s0i6labk3eb/post/995

3

https://piazza.com/class/m69s0i6labk3eb/post/995

Exercise: C Standard I/O Functions

Recall basic I/O functions from the C Standard Library header
stdio.h

1. Printing things to the screen?
2. Opening a file?
3. Closing a file?
4. Printing to a file?
5. Scanning from terminal or file?
6. Get whole lines of text?
7. Names for standard input, output, error

Give samples of function calls

4

Answers: C Standard I/O Functions
Recall basic I/O functions from the C Standard Library header stdio.h

1 printf("%d is a number",5); Printing things to the screen?
2 FILE *file = fopen("myfile.txt","r"); Opening a file?
3 fclose(file); Close a file?
4 fprintf(file,"%d is a number",5); Printing to a file?
5 scanf("%d %f",&myint,&mydouble); Scanning from terminal

fscanf(file2,"%d %f",&myint,&mydouble); or file?
6 result = fgets(charbuf, 1024, file); Get whole lines of text?
7 FILE *stdin, *stdout, *stderr; Names for standard input, etc

The standard I/O library was written by Dennis Ritchie around 1975.
–Stevens and Rago, Advanced Programming for the Unix Environment

▶ Assuming you are familiar with these and could look up others like fgetc()
(single char) and fread() (read binary)

▶ Library Functions: available with any compliant C compiler
▶ On Unix systems, fscanf(), FILE*, and the like are backed by lower level

System Calls and Kernel Data Structures
5

The Process Table

Source:
SO What is the Linux Process Table?

▶ OS maintains data on all processes in a Process Table
▶ Process Table Entry ≈ Process Control Block
▶ Contains info like PID, instruction that process is executing*,

Virtual Memory Address Space and Files in Use
6

https://stackoverflow.com/questions/4880555/what-is-the-linux-process-table-what-does-it-consist-of
https://stackoverflow.com/questions/4880555/what-is-the-linux-process-table-what-does-it-consist-of

File Descriptors

▶ Each Process Table entry contains a table of open files
▶ A use program refers to these via File Descriptors
▶ File Descriptor is an integer index into Kernel’s table

int fd = open("some_file.txt", O_RDONLY);
▶ FD Table entry refers to other Kernel/OS data structures

7

File Descriptors (FDs) are Multi-Purpose
▶ Unix tries to provide most things via files/file descriptor
▶ Many Unix system actions are handled via read()-from or

write()-to file descriptors
▶ FDs allow interaction with “normal” files like myfile.txt or

commando.c to read/change them
▶ FDs also allow interaction with many other things

▶ Pipes for interprocess communication
▶ Sockets for network communication
▶ Special files to manipulate terminal, audio, graphics, etc.
▶ Raw blocks of memory for Shared Memory communication
▶ Even processes themselves have special files in the file system:

ProcFS in /proc/PID#, provide info on running process
▶ We will focus on standard File I/O using FDs now and touch

on some broader uses Later
▶ Also must discuss FD interactions with previous System Calls:

What happens with open() files when calling fork()?
8

https://en.wikipedia.org/wiki/Procfs

Open and Close: File Descriptors for Files
#include <sys/stat.h>
#include <fcntl.h>

int fd1 = open("firstfile", O_RDONLY); // read only
if(fd1 == -1){ // check for errors on open

perror("Failed to open 'firstfile'");
}

int fd2 = open("secndfile", O_WRONLY); // write only, fails if not found
int fd3 = open("thirdfile", O_WRONLY | O_CREAT); // write only, create if needed
int fd4 = open("forthfile", O_WRONLY | O_CREAT | O_APPEND); // append if existing

// 'man 3 open' will list all the O_xxx options when opening.
// Other common options: O_RDONLY, O_RDWR, O_EXEC

...; // Do stuff with open files

int result = close(fd1); // close the file associated with fd1
if(result == -1){ // check for an error

perror("Couldn't close 'firstfile'");
}

open() / close() show common features of many system calls
▶ Returns -1 on errors
▶ Show errors using the perror() function
▶ Use of vertical pipe (|) to bitwise-OR several options

9

read() from File Descriptors
1 // read_some.c: Basic demonstration of reading data from
2 // a file using open(), read(), close() system calls.
3
4 #define SIZE 128
5
6 {
7 int in_fd = open(in_name, O_RDONLY);
8 char buffer[SIZE];
9 int bytes_read = read(in_fd, buffer, SIZE);

10 }

▶ Read up to SIZE from an open file descriptor
▶ Bytes stored in buffer, overwrite it
▶ Return value is number of bytes read, -1 for error
▶ SIZE commonly defined but can be variable, constant, etc
▶ Examine read_some.c: explain what’s happening

Caution:
▶ Bad things happen if buffer is actually smaller than SIZE
▶ read() does NOT null terminate, add \0 manually if needed

10

Exercise: Behavior of read() in count_bytes.c

Run count_bytes.c on
file data.txt
> cat data.txt
ABCDEFGHIJ
> gcc count_bytes.c
> ./a.out data.txt
???

1. Explain control flow
within program

2. Predict output of
program

8 // count_bytes.c
9 #define BUFSIZE 4

10
11 int main(int argc, char *argv[]){
12 char *infile = argv[1];
13 int in_fd = open(infile,O_RDONLY);
14 char buf[BUFSIZE];
15 int nread, total=0;
16 while(1){
17 nread = read(in_fd,buf,BUFSIZE-1);
18 if(nread == 0){
19 break;
20 }
21 buf[nread] = '\0';
22 total += nread;
23 printf("read: '%s'\n",buf);
24 }
25 printf("%d bytes total\n",total);
26 close(in_fd);
27 return 0;
28 }

11

Answers: Behavior of read() in count_bytes.c
==INITIAL STATE==
data.txt: ABCDEFGHIJ\n
position: ^
buf: |? ? ? ? |

0 1 2 3
nread: 0
total: 0

==ITERATION 1==
nread = read(in_fd,buf,3);
buf[nread] = '\0'
total+= nread;
printf("read: '%s'\n",buf);

data.txt: ABCDEFGHIJ\n
position: ^
buf: |A B C \0|

0 1 2 3
nread: 3
total: 3
output: 'ABC'

==ITERATION 2==
nread = read(in_fd,buf,3);
buf[nread] = '\0'
total+= nread;
printf("read: '%s'\n",buf);

data.txt: ABCDEFGHIJ\n
position: ^
buf: |D E F \0|

0 1 2 3
nread: 3
total: 6
output: 'DEF'

==ITERATION 3==
nread = read(in_fd,buf,3);
buf[nread] = '\0'
total+= nread;
printf("read: '%s'\n",buf);

data.txt: ABCDEFGHIJ\n
position: ^
buf: |G H I \0|

0 1 2 3
nread: 3
total: 9
output: 'GHI'

==ITERATION 4==
nread = read(in_fd,buf,3);
buf[nread] = '\0'
total+= nread;
printf("read: '%s'\n",buf);

data.txt: ABCDEFGHIJ\n
position: ^
buf: |J \n\0\0|

0 1 2 3
nread: 2
total: 11
output: 'J\n'

==ITERATION 5==
nread = read(in_fd,buf,3);
if(nread == 0){

break;
}

data.txt: ABCDEFGHIJ\n
position: ^
buf: |J \n\0\0|

0 1 2 3
nread: 0
total: 11
output: 11 bytes total

12

Answers: Behavior of read() in count_bytes.c

Take-Aways from count_bytes.c include
▶ OS maintains file positions for each open File Descriptor
▶ I/O functions like read() use/change position in a file
▶ read()’ing into program arrays overwrites data there
▶ OS does not update positions in user arrays: programmer

must do this in their program logic
▶ read() returns # of bytes read, may be less than requested
▶ read() returns 0 when at end of a file

13

Exercise: write() to File Descriptors

1 #define SIZE 128
2
3 {
4 int out_fd = open(out_name, O_WRONLY);
5 char buffer[SIZE];
6 int bytes_written = write(out_fd, buffer, SIZE);
7 }

▶ Write up to SIZE bytes to open file descriptor
▶ Bytes taken from buffer, leave it intact
▶ Return value is number of bytes written, -1 for error

Questions on write_then_read.c
▶ Compile and Run
▶ Explain Output, differences between write() / printf()

14

Answers: write() to File Descriptors

> gcc write_then_read.c
> ./a.out
0. Recreating empty existing.txt
1. Opening file existing.txt for writing
2. Writing to file existing.txt
3. Wrote 128 bytes to existing.txt
4. Opening existing.txt for reading
5. Reading up to 128 bytes from existing.txt
6. Read 127 chars, printf()'ing:
here is some text to write
7. printf()'ing 127 characters individually
here is some text to write\0\0\0hello\0
8. write()'ing 127 characters to screen
here is some text to write^@^@^@hello^@

15

read()/write() work with bytes
▶ In C, general correspondence between byte and the char type
▶ Not so for other types: int is often 4 bytes
▶ Requires care with non-char types
▶ All calls read/write actual bytes

#define COUNT 16
int out_ints[COUNT]; // array of 16 integers
int bufsize = sizeof(int)*COUNT; // size in bytes of array
...;
write(out_fd, out_ints, bufsize); // write whole buffer

int in_ints[COUNT];
...;
read(in_fd, in_ints, bufsize); // read to capacity of in_ints

Questions
▶ Examine write_read_ints.c, compile/run
▶ Examine contents of integers.dat
▶ Explain what you see

16

Standard File Descriptors

▶ When a process is born, comes with 3 open file descriptors
▶ Related to FILE* streams in Standard C I/O library
▶ Traditionally have FD values given but use the Symbolic name

to be safe

Symbol # FILE* FD for. . .
STDIN_FILENO 0 stdin standard input (keyboard)
STDOUT_FILENO 1 stdout standard output (screen)
STDERR_FILENO 2 stderr standard error (screen)

// Low level printing to the screen
char message[] = "Wubba lubba dub dub!\n";
int length = strlen(message);
write(STDOUT_FILENO, message, length);

See low_level_interactions.c to gain an appreciation for what
printf() and its kin can do for you.

17

File Descriptors refer to Kernel Structures

18

Processes Inherit Open FDs: Diagram

Typical sequence:
▶ Parent creates an output_fd and/or input_fd
▶ Call fork()
▶ Child changes standard output to output_fd and/or input_fd
▶ Changing means calls to dup2()

19

Shell I/O Redirection
▶ Shells can direct input / output for programs using < and >
▶ Most common conventions are as follows

$> some_program > output.txt
output redirection to output.txt

$> interactive_prog < input.txt
read from input.txt rather than typing

$> some_program &> everthing.txt
both stdout and stderr to file

$> some_program 2> /dev/null
stderr silenced, stdout normal

▶ Long output can be saved easily
▶ Can save typing input over and over
▶ Even more fun when you incorporate Pipes to make Pipelines
▶ Goal: Demonstrate systems calls to facilitate redirection

20

https://en.wikipedia.org/wiki/Pipeline_(Unix)

Manipulating the File Descriptor Table
▶ System calls dup() and dup2() manipulate the FD table
▶ int backup_fd = dup(fd); : copy a file descriptor
▶ dup2(src_fd, dest_fd); : src_fd copied to dest_fd

21

Exercise: Redirecting Output with dup() / dup2()
▶ dup(), dup2(), and fork() can be combined in

interesting ways
▶ Diagram fork-dup.pdf shows how to redirect standard out to

a file like a shell does in: ls -l > output.txt

Write a program which
1. Prints PID to screen
2. Opens a file named write.txt

3. Forks a Child process
4. Child: redirect standard output

into write.txt
Parent: does no redirection

5. Both: printf() their PID
6. Child: restore standard output to

screen
Parent: makes no changes

7. Both: printf() “All done”

> gcc duped_child.c

> ./a.out
BEGIN: Process 1913588
MIDDLE: Process 1913588
END: Process 1913588 All done
END: Process 1913590 All done

> cat write.txt
MIDDLE: Process 1913590

22

Answers: Redirecting Output with dup() / dup2()
1 // duped_chld.c: solution to in-class activity on redirecting output
2 // in child process.
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <unistd.h>
6 #include <errno.h>
7 #include <sys/stat.h>
8 #include <fcntl.h>
9 #include <string.h>

10
11 int main(int argc, char *argv[]){
12 system("echo '' > write.txt"); // ensure file exists, is empty
13 printf("BEGIN: Process %d\n",getpid());
14 int fd = open("write.txt",O_WRONLY); // open a file
15 int backup;
16 pid_t child = fork(); // fork a child, inherits open file
17 if(child == 0){ // child only redirects stdout
18 backup = dup(STDOUT_FILENO); // make backup of stdout
19 dup2(fd,STDOUT_FILENO); // dup2() alters stdout so child printf() goes into file
20 }
21 printf("MIDDLE: Process %d\n",getpid());
22 if(child == 0){
23 dup2(backup,STDOUT_FILENO); // child restores stdout
24 }
25 printf("END: Process %d All done\n",getpid());
26 close(fd);
27 if(child != 0){ // parent waits on child
28 wait(NULL);
29 }
30 return 0;
31 }

23

C FILE Structs Use File Descriptors in UNIX

Typical Unix implementation of standard I/O library FILE is
▶ A file descriptor
▶ Some buffers with positions
▶ Some options controlling buffering

From /usr/include/bits/types/struct_FILE.h
struct _IO_FILE {

int _flags; // options
char* _IO_read_ptr; // buffers for read/write and
char* _IO_read_end; // positions within them
char* _IO_read_base;
char* _IO_write_base;
...;
int _fileno; // unix file descriptor
...;
_IO_lock_t *_lock; // locking

};

24

Exercise: Subtleties of Mixing Standard / Low-Level I/O

3K.txt:
1 2 3 4 5 6 7 8 9 10 11 12 13 14...

37 38 39 40 41 42 43 44 45 46 47 ...
70 71 72 73 74 75 76 77 78 79 80 ...
102 103 104 105 106 107 108 109 1...
...

1 // mixed_std_low.c: mix C Standard
2 // and Unix I/O calls. pain++;
3 #include <stdio.h>
4 #include <unistd.h>
5
6 int main(int argc, char *argv[]){
7 FILE *input = fopen("3K.txt","r");
8 int first;
9 fscanf(input, "%d", &first);

10 printf("FIRST: %d\n",first);
11
12 int fd = fileno(input);
13 char buf[64];
14 read(fd, buf, 63);
15 buf[63] = '\0';
16 printf("NEXT: %s\n",buf);
17
18 return 0;
19 }

Sample compile/run:
> gcc mixed_std_low.c
> ./a.out
FIRST: 1
NEXT: 41 1042 1043 1044 1045...

▶ Explain output of program
given input file

▶ Use knowledge that
buffering occurs internally
for standard I/O library

25

Answers: Subtleties of Mixing Standard / Low-Level I/O
▶ C standard I/O calls like printf / fprintf() and scanf()

/ fscanf() use internal buffering
▶ A call to fscanf(file, "%d", &x) will read a large chunk

from a file but only process part of it
▶ From OS perspective, associated file descriptor has advanced

forwards / read a bunch
▶ The data is in a hidden “buffer” associated with a FILE

*file, used by fscanf()

Output Also buffered, Always fclose()
▶ Output is also buffered: output_buffering.c
▶ Output may be lost if FILE* are not fclose()’d: closing will

flush remaining output into a file
▶ See fail_to_write.c
▶ File descriptors always get flushed out by OS when a program

ends BUT FILE* requires user action
▶ To force output, use fflush(some_file);

26

Controlling FILE Buffering
#include <stdio.h>
void setbuf(FILE *stream, char *buf);
void setbuffer(FILE *stream, char *buf, size_t size);
void setlinebuf(FILE *stream);
int setvbuf(FILE *stream, char *buf, int mode, size_t size);

Above functions change buffering behavior of standard C I/O
Examples:

// 1. Set full "block" buffering for stdout, use outbuf
#define BUFSIZE 64
char outbuf[BUFSIZE] = {};
setvbuf(stdout, outbuf, _IOFBF, BUFSIZE);

// 2. Turn off buffering of stdout, output immediately printed
setvbuf(stdout, NULL, _IONBF, 0);

▶ When testing lab/project code, buffering is disabled as it
makes it easier to understand some bugs

27

Basic File Statistics via stat

Command C function Effect
stat file int ret = stat(file,&statbuf); Get statistics on file

int ret = lstat(file,&statbuf); Same, don’t follow symlinks
int fd = open(file,...); Same as above but with
int ret = fstat(fd,&statbuf); an open file descriptor

Shell command stat provides basic file info such as shown below
>> stat a.out

File: a.out
Size: 12944 Blocks: 40 IO Block: 4096 regular file

Device: 804h/2052d Inode: 6685354 Links: 1
Access: (0770/-rwxrwx---) Uid: (1000/kauffman) Gid: (1000/kauffman)
Access: 2017-10-02 23:03:21.192775090 -0500
Modify: 2017-10-02 23:03:21.182775091 -0500
Change: 2017-10-02 23:03:21.186108423 -0500
Birth: -

>> stat /
File: /
Size: 4096 Blocks: 8 IO Block: 4096 directory

Device: 803h/2051d Inode: 2 Links: 17
Access: (0755/drwxr-xr-x) Uid: (0/ root) Gid: (0/ root)
Access: 2017-10-02 00:56:47.036241675 -0500
Modify: 2017-05-07 11:34:37.765751551 -0500
Change: 2017-05-07 11:34:37.765751551 -0500
Birth: -

See stat_demo.c for info on C calls to obtain this info
28

Attributes of Files from stat()

stat_demo.c shows some attributes that may be obtained about a
file after a call to stat(filename, &statbuf) which fills in the
statbuff struct. Attributes include:

Attribute Notes
Size In bytes via st_size field

File Type Via st_mode field and macros like S_ISREG(mode)
Limited number of fundamental types: regular, directory, socket, etc.

Permissions Read/Write/Execute for Owner/Group/Others via st_mode field

Ownership Via st_uid (user) and st_gid (group), numeric IDs for both

Time Data Access / Change / Modification times via st_atime, st_ctime, ...

29

Permissions / Modes
▶ Unix enforces file security via modes: permissions as to who can read /

write / execute each file
▶ See permissions/modes with ls -l
▶ Look for series of 9 permissions

> ls -l
total 140K
-rwx--x--- 2 kauffman faculty 8.6K Oct 2 17:39 a.out
-rw-r--r-- 1 kauffman devel 1.1K Sep 28 13:52 files.txt
-rw-rw---- 1 kauffman faculty 1.5K Sep 26 10:58 gettysburg.txt
-rwx--x--- 2 kauffman faculty 8.6K Oct 2 17:39 my_exec
---------- 1 kauffman kauffman 128 Oct 2 17:39 unreadable.txt
-rw-rw-r-x 1 root root 1.2K Sep 26 12:21 scripty.sh
U G O O G S M T N
S R T W R I O I A
E O H N O Z D M M
R U E E U E E E

P R R P
^^^^^^^^^^
PERMISSIONS

▶ Every file has permissions set from somewhere on creation
30

Changing Permissions
Owner of file (and sometimes group member) can change
permissions via chmod
> ls -l a.out
-rwx--x--- 2 kauffman faculty 8.6K Oct 2 17:39 a.out

> chmod u-w,g+r,o+x a.out

> ls -l a.out
-r-xr-x--x 2 kauffman faculty 8.6K Oct 2 17:39 a.out

▶ chmod also works via octal bits (suggest against this unless
you want to impress folks at parties)

▶ Programs specify file permissions via system calls
▶ Curtailed by Process User Mask which indicates permissions

that are disallowed by the process
▶ umask shell function/setting: $> umask 007
▶ umask() system call: umask(S_IWGRP | S_IWOTH);

▶ Common program strategy: create files with very liberal
read/write/execute permissions, umask of user will limit this

31

Permissions / Modes in System Calls

open() can take 2 or 3 arguments
int fd = open(name, flags);
new file will have NO permissions
to read/write, not an issue if opening
existing file

int fd = open(name, flags, perms);
^^^^^

new file will have given permissions
(subject to the umask), ignored for
existing files

Symbol Entity Sets
S_IRUSR User Read
S_IWUSR User Write
S_IXUSR User Execute
S_IRGRP Group Read
S_IWGRP Group Write
S_IXGRP Group Execute
S_IROTH Others Read
S_IWOTH Others Write
S_IXOTH Others Execute

Compare: write_readable.c VERSUS write_unreadable.c
char *outfile = "newfile.txt"; // doesn't exist yet
int flags = O_WRONLY | O_CREAT; // write/create
mode_t perms = S_IRUSR | S_IWUSR; // variable for permissions
int out_fd = open(outfile, flags, perms);

^^^^^

32

Movement within Files, Changing Sizes
▶ Can move OS internal position in a file around with lseek()
▶ Note that size is arbitrary: can seek to any positive position
▶ File automatically expands if position is larger than current

size - fills holes with 0s (null chars)
▶ Can manually set size of a file with ftruncate(fd, size)
▶ Examine file_hole1.c and file_hole2.c

C function Effect
int res = lseek(fd, offset, option); Move position in file
lseek(fd, 20, SEEK_CUR); Move 20 bytes forward
lseek(fd, 50, SEEK_SET); Move to position 50
lseek(fd, -10, SEEK_END); Move 10 bytes from end
lseek(fd, +15, SEEK_END); Move 15 bytes beyond end
ftruncate(fd, 64); Set file to be 64 bytes big

If file grows, new space is
zero-filled

Note: C standard I/O functions fseek(FILE*) and
rewind(FILE*) mirror functionality of lseek()

33

Directory Access

▶ Directories are fundamental to Unix (and most file systems)
▶ Unix file system rooted at / (root directory)
▶ Subdirectores like bin, ~/home, and /home/kauffman
▶ Useful shell commands and C function calls pertaining to

directories are as follows

Shell Command C function Effect
mkdir name int ret = mkdir(path,perms); Create a directory
rmdir name int ret = rmdir(path); Remove empty directory
cd path int ret = chdir(path); Change working directory
pwd char *path = getcwd(buf,SIZE); Current directory
ls List directory contents

DIR *dir = opendir(path); Start reading filenames from dir
struct dirent *file = readdir(dir); Call in a loop, NULL when done
int ret = closedir(dir); After readdir() returns NULL

See dir_demo.c for demonstrations

34

Optional Exercise: Code for Total Size of Regular Files

▶ Code which will scan all files
in a directory

▶ Will get file statistics on
each file

▶ Skips directories, symlinks,
etc.

▶ Totals bytes of all Regular
files in current directory

Use techniques demoed in
dir_demo.c and stat_demo.c
from codepack

> gcc total_size.c

> ./a.out
26 readable1.txt

1299 buffered_output.c
2512 stat_demo.c

...
584 file_hole2.c

SKIP .
SKIP my_symlink
SKIP subdir

907 dir_demo.c.bk
...

1415 write_umask.c
==================

67106 total bytes

35

Answers: Sketch Code for Total Size of Regular Files
// total_size.c
int main(int argc, char *argv[]){

size_t total_size = 0;
DIR *dir = opendir(".");
while(1){

struct dirent *file = readdir(dir);
if(file == NULL){

break;
}
struct stat sb;
lstat(file->d_name, &sb);
if(S_ISREG(sb.st_mode)){

printf("%8lu %s\n",
sb.st_size, file->d_name);

total_size += sb.st_size;
}
else{

printf("%-8s %s\n",
"SKIP", file->d_name);

}
}
closedir(dir);
printf("==================\n");
printf("%8lu total bytes from REGULAR files\n",

total_size);
return 0;

}

▶ Scans only current directory
▶ Recursive scanning is

trickier and involves. . .
recursion

▶ OR the very useful nftw()
library function (read about
this on your own if curious
about systems
programming)

36

Extras: Processes Inherit Open FDs

▶ Child processes share all open
file descriptors with parents

▶ By default, Child prints to
screen / reads from keyboard
input

▶ Redirection requires
manipulation prior to fork()

▶ See: open_fork.c
▶ Experiment with order

1. open() then fork()
2. fork() then open()

Diagram on next slide shows variations of open-then-fork vs
fork-then-open from open_fork.c

37

38

(Review) Exercise: Regular File Creation Basics

C Standard I/O
▶ Write/Read data?
▶ Open a file, create it if

needed?
▶ Result of opening a file?
▶ Close a file?
▶ Set permissions on file

creation?

Unix System Calls
▶ Write/Read data?
▶ Open a file, create it if

needed?
▶ Result of opening a file?
▶ Close a file?
▶ Set permissions on file

creation?

39

Answers: Regular File Creation Basics
C Standard I/O

▶ Write/Read data?

fscanf(), fprintf()
fread(), fwrite()

▶ Open a file, create it if needed?
▶ Result of opening a file?

FILE *out =
fopen("myfile.txt","w");

▶ Close a file?

fclose(out);

▶ Set permissions on file creation?
Not possible. . . dictated by
umask

Unix System Calls
▶ Write/Read data?

write(), read()

▶ Open a file, create it if needed?
▶ Result of opening a file?

int fd =
open("myfile.txt",

O_WRONLY | O_CREAT,
permissions);

▶ Close a file?

close(fd);

▶ Set permissions on file creation?
▶ Additional options to

open(), which brings us
to. . .

40

