
CMSC216: Virtual Memory

Chris Kauffman

Last Updated:
Tue Apr 30 09:14:27 AM EDT 2024

1

Logistics

Assignments
▶ P4 Due Wed 24-Apr
▶ HW12: Binary Files,

mmap()’d Files
▶ Lab12: Matrix Optimization
▶ P5 Up Fri, Due end of

Semester

Goals
▶ Tue: Virtual Memory and

Address translation
▶ Thu: Finish up Memory

Systems (props)
▶ Thu: mmap() / Finish

Virtual Memory

Reading Bryant/O’Hallaron

Ch Read? Topic
Ch 6 The Memory Hierarchy
Ch 6.1 skim Storage Technologies
Ch 6.2 READ Locality
Ch 6.3 READ The Memory Hierarchy
Ch 6.4 opt Cache Memories
Ch 6.5 READ Writing Cache Friendly Code
Ch 6.6 skim Impacts of Cache on Performance
Ch 9 Virtual Memory
Ch 9.1-6 skim VM Overview, Address Translation
Ch 9.7 opt Case Study
Ch 9.8 READ Memory mapping and mmap()
Ch 9.9 READ Dynamic Memory Allocation
Ch 9.10 opt Garbage Collection
Ch 9.11 skim Memory Bugs in C Programs

2

Announcements

See: https://piazza.com/class/lrqszzrlvo46gm/post/777

P4 Office Hours / Wednesday Labs
Project 4 is due on Wednesday 24-Apr. Students who want staff
assistance on Wednesday to help them complete the project are
encouraged to attend discussion sections, their own and any other
discussion section that fits their schedule. Course staff will be on
hand in during discussion sections to give help on P4 and the Lab
exercise this week is intentionally short to allow time to finish up
P4.

Kauffman OH This Week
Prof Kauffman will be holding his Tue/Wed office hours in the TA
office hours room in AVW 4166 rather than his office to help with
the expected crowd of students wanting help on P4.

3

https://piazza.com/class/lrqszzrlvo46gm/post/777

Exercise: Potential Conflicts in Memory

▶ Running multiple programs gets interesting particularly if they
both reference the same memory location, e.g. address 8192
PROGRAM 1 PROGRAM 2
... ...
load global from #8192 ## add to global at #8192
movq 8192, %rax addl %esi, 8192
... ...

▶ What conflict exists between these programs?
▶ What are possible solutions to this conflict?

4

Answers: Potential Conflicts in Memory

▶ Both programs use address #8192, behavior depends on order
that instructions are interleaved between them

ORDER A: Program 1 loads first ORDER B: Program 2 adds first
--------------------------------- -----------------------------------
PROGRAM 1 PROGRAM 2 PROGRAM 1 PROGRAM 2
movq 8192, %rax addl %esi, 8192
... addl %esi, 8192 movq 8192, %rax ...

▶ Solution 1: Never let Programs 1 and 2 run together (bleck!)
▶ Solution 2: Translate every memory address/access in every

program while it runs
As wild as it sounds, most modern systems use memory address
translation schemes called Virtual Memory (Solution 2) due to its
many powerful features

5

Paged Memory
▶ Physical devices divide memory into chunks called pages
▶ Common page size supported by many OS’s (Linux) and

hardware is 4KB = 4096 bytes, can be larger with OS config
▶ CPU models use some # of bits for Virtual Addresses

> cat /proc/cpuinfo
vendor_id : GenuineIntel
cpu family : 6
model : 79
model name : Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50GHz
...
address sizes : 46 bits physical, 48 bits virtual

^^^^^^^
▶ Example of address with page number and offset labelled

xxxxPagenumbrOff : 48 bits used
0x00007ffa0997a428 : 64 bit address

| | |
| | +-> Offset 0x428 within page, 12 bits
| +-> Page number 0x7ffa0997a, 36 bits
+-> Constant bits, not used by processor

6

Translation happens at the Page Level
▶ Within a page, addresses are sequential
▶ Between pages, may be non-sequential

Page Table:
|------------------+------+-----------------------|
| Virtual Page Num | Size | Physical Page Num |
|------------------+------+-----------------------|
00007ffa0997a000	4K	RAM: 0000564955aa1000
00007ffa0997b000	4K	RAM: 0000321e46937000
...		...
------------------+------+-----------------------		

Address Space From Page Table:
|------------------+-------------+------------------|
| Virtual Address | Page Offset | Physical Address |
|------------------+-------------+------------------|
00007ffa0997a000	0	0000564955aa1000
00007ffa0997a001	1	0000564955aa1001
00007ffa0997a002	2	0000564955aa1002
...		...
00007ffa0997afff	4095	0000564955aa1fff
------------------+-------------+------------------		
00007ffa0997b000	0	0000321e46937000
00007ffa0997b001	1	0000321e46937001
...		...
------------------+-------------+------------------		

7

Addresses Translation Hardware

▶ Translation must be
FAST so usually
involves hardware

▶ MMU (Memory
Manager Unit) is a
hardware element
specifically designed
for address translation

▶ Usually contains a
special cache, TLB
(Translation
Lookaside Buffer),
which stores recently
translated addresses

▶ OS Kernel interacts with MMU
▶ Provides location of the Page

Table, data structure relating
Virtual/Physical Addresses

▶ Page Fault : MMU couldn’t map
Virtual to Physical page, runs a
Kernel routine to handle the fault

8

Exercise: Translating Virtual Addresses

Nearby diagram illustrates relation
of Virtual Pages to Physical Pages

1. How many page tables are
there?

2. Where can a page table entry
refer to?

3. Count the number of Virtual
pages, compare to the number
of physical pages - which his
larger?

4. What happens if PID #123
accesses its Virtual Page #2

5. What happens if PID #456
accesses its Virtual Page #2

9

Translating Virtual Addresses 1/2

▶ On using a Virtual Memory
address, MMU will search TLB
for physical DRAM address,

▶ If found in TLB, Hit, use
physical DRAM address

▶ If not found, MMU will search
Page Table, if found and in
DRAM, cache in TLB

▶ Else Miss = Page fault, OS
decides..

1. Page is swapped to Disk,
move to DRAM,
potentially evicting
another page

2. Page not in page table =
Segmentation Fault

10

Translating Virtual Addresses 2/2

▶ Each process has its own page
table, OS maintains mapping
of Virtual to Physical addresses

▶ Processes “compete” for RAM
▶ OS gives each process

impression it owns all of RAM
▶ OS may not have enough

memory to back up all or even
1 process

▶ Disk used to supplement ram
as Swap Space

▶ Thrashing may occur when
too many processes want too
much RAM, “constantly
swapping”

11

Trade-offs of Address Translation

Wins of Virtual Memory
1. Avoids memory Conflicts where

separate programs each use the
same memory address

2. Programs can be compiled to
assume they will have all
memory to themselves

3. OS can make decisions about
DRAM use and set policies for
security and efficiency (next
slide)

Losses of Virtual Memory
1. Address translation is not

constant O(1), has an
impact on performance of
real algorithms*

2. Requires special hardware to
make translation fast
enough: MMU/TLB

3. Not needed if only a single
program is running on a
machine

Wins outweigh Losses in most systems so Virtual Memory is used
widely, a great idea in CS
*See On a Model of Virtual Address Translation (2015)

12

https://dl.acm.org/citation.cfm?id=2656337

The Many Other Advantages of Virtual Memory
1. Swap Space: System can project larger total memory than

available DRAM by using Disk Space, DRAM is a “cache” for
larger disk space, Swap program memory between
DRAM+Disk as it is used

2. Security: Translation allows OS to check memory addresses
for validity, segfault on out-of bounds access

3. Debugging: Valgrind checks addresses for validity
4. Sharing Data: Processes can share data with one another;

request OS to map virtual addresses to same physical
addresses

5. Sharing Libraries: Can share same program text between
programs by mapping address space to same shared library

6. Convenient I/O: Map internal OS data structures for files to
virtual addresses to make working with files free of
read()/write()

13

Virtual Memory and mmap()
▶ Normally programs interact indirectly with Virtual Memory

system
▶ Stack/Heap/Globals/Text are mapped automatically to

regions in Virtual Memory System
▶ Maps are adjusted as Stack/Heap Grow/Shrink

▶ mmap() / munmap() directly manipulate page tables
▶ mmap() creates new entries in page table
▶ munmap() deletes entries in the page table
▶ Can map arbitrary or specific addresses into memory

▶ mmap() is used to initially set up Stack / Heap / Globals /
Text when a program is loaded by the program loader

▶ While a program is running can also use mmap() to interact
with virtual memory

▶ We will use mmap() for 2 specific purposes
1. Implement our own malloc() / free() system (Project 5)
2. A convenient way to interact with files via Memory Mapped

Files (in lecture/lab)
14

Basic Use of mmap() System Call

1 // memory_parts.c: demo mmap() and allow inspection of memory
2 {
3 // create 2 blocks of mmap()'d space starting at a fixed address
4 // which are contiguous
5 char *address = (char *) 0x0000600000000000; // requested starting address for block
6 size_t bsize = 0x1000; // 1*16^3 = 4096
7
8 char *block1 =
9 mmap(address, bsize, // request start address and size

10 PROT_READ | PROT_WRITE, // can read and write this block
11 MAP_PRIVATE | MAP_ANONYMOUS, // not shared or tied to a file
12 -1, 0); // default options for anonymous block
13 char *block2 =
14 mmap(address+bsize, bsize, // start at end of previous block
15 PROT_READ | PROT_WRITE, // similar options to previous block
16 MAP_PRIVATE | MAP_ANONYMOUS,
17 -1, 0);
18 // create 3rd block that is not contiguous
19 char *block3 =
20 mmap(NULL, 3*bsize, // NULL: allow OS to choose address
21 PROT_READ | PROT_WRITE, // similar options to previous block
22 MAP_PRIVATE | MAP_ANONYMOUS,
23 -1, 0);
24 }

15

pmap: show virtual address space of running process
> ./memory_parts
0x5c9d813151e9 : main()
0x5c9d813180a0 : global_arr
0x5c9d826b92a0 : heap_arr
0x600000000000 : mmap'd block1
0x600000001000 : mmap'd block2
0x7b4a8f83c000 : mmap'd block3
0x7b4a8f83b000 : mmap'd file
0x7ffdc5499050 : stack_arr
my pid is 496605
press any key to continue

▶ Determine process id
of running program

▶ pmap reports its virtual
address space

▶ Reports features of
each mapped page
range such as size,
permissions, possibly
logical area

> pmap 496605
496605: ./memory_parts
00005c9d81314000 4K r---- memory_parts
00005c9d81315000 4K r-x-- memory_parts TEXT
00005c9d81316000 4K r---- memory_parts
00005c9d81317000 4K r---- memory_parts
00005c9d81318000 4K rw--- memory_parts GLOBALS
00005c9d81319000 4K rw--- [anon]
00005c9d826b9000 132K rw--- [anon] HEAP
0000600000000000 8K rw--- [anon] Block 1+2
00007b4a8f613000 12K rw--- [anon]
00007b4a8f616000 144K r---- libc.so.6
00007b4a8f63a000 1388K r-x-- libc.so.6 C LIBRARY
00007b4a8f795000 340K r---- libc.so.6 (SHARED)
00007b4a8f7ea000 16K r---- libc.so.6
00007b4a8f7ee000 8K rw--- libc.so.6
00007b4a8f7f0000 40K rw--- [anon]
00007b4a8f83b000 4K r---- gettysburg.txt mmap()'d FILE
00007b4a8f83c000 12K rw--- [anon] BLOCK 3
00007b4a8f83f000 4K r---- ld-linux-x86-64.so.2
00007b4a8f840000 156K r-x-- ld-linux-x86-64.so.2
00007b4a8f867000 44K r---- ld-linux-x86-64.so.2
00007b4a8f872000 8K r---- ld-linux-x86-64.so.2
00007b4a8f874000 8K rw--- ld-linux-x86-64.so.2
00007ffdc547a000 132K rw--- [stack] STACK
00007ffdc5589000 16K r---- [anon]
00007ffdc558d000 8K r-x-- [anon]
ffffffffff600000 4K --x-- [anon]
total 2508K

16

Memory Protection

▶ Output of pmap indicates another feature of virtual memory:
protection

▶ OS marks pages of memory with Read/Write/Execute/Share
permissions like files

▶ Attempt to violate these and get segmentation violations
(segfault)

▶ Ex: Executable page (instructions) usually marked as r-x: no
write permission.

▶ Ensures program don’t accidentally write over their
instructions and change them

▶ Ex: By default, pages are not shared (no ’s’ permission) but
can make it so with the right calls

17

Exercise: Printing Contents of file
Examine the two programs below which print the contents of a file
▶ Identify differences between them
▶ Which has a higher memory requirement?

1 // print_file.c
2 int main(int argc, char *argv[]){
3 int fin = open(argv[1], O_RDONLY);
4 char inbuf[256];
5 while(1){
6 int nread =
7 read(fin, inbuf, 256);
8 if(nread == 0){
9 break;

10 }
11 for(int i=0; i<nread; i++){
12 printf("%c",inbuf[i]);
13 }
14 }
15
16 close(fin);
17 return 0;
18 }

1 // mmap_print_file.c
2 int main(int argc, char *argv[]){
3 int fd = open(argv[1], O_RDONLY);
4
5 struct stat stat_buf;
6 fstat(fd, &stat_buf);
7 int size = stat_buf.st_size;
8
9 char *file_chars =

10 mmap(NULL, size,
11 PROT_READ, MAP_SHARED,
12 fd, 0);
13
14 for(int i=0; i<size; i++){
15 printf("%c",file_chars[i]);
16 }
17 printf("\n");
18
19 munmap(file_chars, size);
20 close(fd);
21 return 0;
22 }

18

Answers: Printing Contents of file

1. Write a simple program to print all characters in a file. What
are key features of this program?
▶ Open file
▶ Read up to 256 characters into memory using

fread()/fscanf()
▶ Print those characters with printf()
▶ Read more characters and print
▶ Stop when end of file is reached
▶ Close file

2. Examine mmap_print_file.c: does it contain all of these
key features? Which ones are missing?
▶ Missing the fread()/fscanf() portion
▶ Uses mmap() to get direct access to the bytes of the file
▶ Treat bytes as an array of characters and print them directly

19

mmap(): Mapping Addresses is Amazing

▶ ptr = mmap(NULL, size,...,fd,0) arranges backing
entity of fd to be mapped to be mapped to ptr

▶ fd often a file opened with open() system call
int fd = open("gettysburg.txt", O_RDONLY);
// open file to get file descriptor

char *file_chars = mmap(NULL, size, PROT_READ, MAP_SHARED,
fd, 0);

// call mmap to get a direct pointer to the bytes in file associated
// with fd; NULL indicates don't care what address is returned;
// specify file size, read only, allow sharing, offset 0

printf("%c",file_chars[0]); // print 0th file char
printf("%c",file_chars[5]); // print 5th file char

20

OS usually Caches Files in RAM

▶ For efficiency, part of files are stored in RAM by the OS
▶ OS manages internal data structures to track which parts of a

file are in RAM, whether they need to be written to disk
▶ mmap() alters a process Page Table to translate addresses to

the cached file page
▶ OS tracks whether page is changed, either by file write or

mmap() manipulation
▶ Automatically writes back to disk when needed
▶ Changes by one process to cached file page will be seen by

other processes
▶ See diagram on next slide

21

Diagram of Kernel Structures for mmap()

22

Changing Files

▶ mmap() exposes several capabilities from the OS
char *file_chars =

mmap(NULL, size,
PROT_READ | PROT_WRITE, // map allowing read + write
MAP_SHARED, // share changes with original file
fd, 0); // file to map + offset from start

▶ Assign new value to memory, OS writes changes into the file
▶ Example: mmap_tr.c to transform one character to another

23

Mapping things that aren’t characters
mmap() just gives a pointer: can assert type of what it points at
▶ Example int *: treat file as array of binary ints
▶ Notice changing array will write to file

// mmap_increment.c: demonstrate working with mmap()'d binary data

int fd = open("binary_nums.dat", O_RDWR);
// open file descriptor, like a FILE *

int *file_ints = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
// get pointer to file bytes through mmap,
// treat as array of binary ints

int len = size / sizeof(int);
// how many ints in file

for(int i=0; i<len; i++){
printf("%d\n",file_ints[i]); // print all ints

}

for(int i=0; i<len; i++){
file_ints[i] += 1; // increment each file int, writes back to disk

}

24

mmap() Compared to Traditional fread()/fwrite() I/O
Advantages of mmap()
▶ Avoid following cycle

▶ fread()/fscanf() file contents into memory
▶ Analyze/Change data
▶ fwrite()/fscanf() write memory back into file

▶ Saves memory and time
▶ Many Linux mechanisms backed by mmap() like processes

sharing memory

Drawbacks of mmap()
▶ Always maps pages of memory: multiple of 4096b (4K)
▶ For small maps, lots of wasted space
▶ Cannot change size of files with mmap(): must used

fwrite() to extend or other calls to shrink
▶ No bounds checking, just like everything else in C

25

Virtual Memory Enables Shared Libraries: *.so Files

▶ Many programs need
to use malloc(),
printf(),
fopen(), etc.

▶ Rather than each
program having its
own copy, modern
systems use Shared
Objects and Shared
Libraries Source: John T. Bell Operating Systems Course Notes

▶ Example: libc.so is the C Library which contains Code/Text
for malloc(), printf(), fopen(), etc., 1-2MB of code

▶ One copy of libc.so exists in DRAM
▶ Many programs “share it” via Page Table mappings in Virtual

Memory, reduces overall memory required
26

https://www2.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/9_VirtualMemory.html

(Optional) Physical Locations of Pages

▶ UMN Kernel Object Student group members put together a
vpmap program to print virtual to physical page locations on
Linux

▶ Requires Administrator rights to use as physical locations are
OS business

▶ https://github.com/UMN-Kernel-Object/virtmem

27

https://github.com/UMN-Kernel-Object/virtmem

vpmap Sample Output
##
vpmap shows Virtual Page Number (vpn) followed by Page Frame Number (pfn)
$> sudo ./vpmap 64814
[sudo] password for sudo:
Process 64814
55d11d5c7000-55d11d5c8000 r--p 00000000 fe:01 5119082 /virtmem/memory_parts
| vpn: 55d11d5c7 present pfn: 2a9314 dirty: 1 exclu: 1 wprot: 0 isfile: 1

55d11d5c8000-55d11d5c9000 r-xp 00001000 fe:01 5119082 /virtmem/memory_parts
| vpn: 55d11d5c8 present pfn: 1fddc6 dirty: 1 exclu: 1 wprot: 0 isfile: 1
...

55d11e7f0000-55d11e811000 rw-p 00000000 00:00 0 [heap]
| vpn: 55d11e7f0 present pfn: 440dc0 dirty: 1 exclu: 1 wprot: 0 isfile: 0
| vpn: 55d11e7f1
| vpn: 55d11e7f2
| vpn: 55d11e7f3 ## unmapped pages (promised but not delivered)
...

7fc074a41000-7fc074a63000 r--p 00000000 fe:01 19139877 /usr/lib/libc.so.6
| vpn: 7fc074a41 present pfn: 22b275 dirty: 1 exclu: 0 wprot: 0 isfile: 1
| vpn: 7fc074a42 present pfn: 3b677d dirty: 1 exclu: 0 wprot: 0 isfile: 1
...

7fc074a63000-7fc074bbd000 r-xp 00022000 fe:01 19139877 /usr/lib/libc.so.6
| vpn: 7fc074a63 present pfn: 3ac617 dirty: 1 exclu: 0 wprot: 0 isfile: 1
...
| vpn: 7fc074a6b present pfn: 3ac61f dirty: 1 exclu: 0 wprot: 0 isfile: 1
| vpn: 7fc074a6c present pfn: 22b200 dirty: 1 exclu: 0 wprot: 0 isfile: 1
| vpn: 7fc074a6d present pfn: 22b201 dirty: 1 exclu: 0 wprot: 0 isfile: 1

7ffd46c53000-7ffd46c74000 rw-p 00000000 00:00 0 [stack]
... ## Highest addresses in stack in use but no physical pages
| vpn: 7ffd46c6f ## yet assigned to lower pages
| vpn: 7ffd46c70
| vpn: 7ffd46c71 present pfn: 403934 dirty: 1 exclu: 1 wprot: 0 isfile: 0
| vpn: 7ffd46c72 present pfn: 21b607 dirty: 1 exclu: 1 wprot: 0 isfile: 0
| vpn: 7ffd46c73 present pfn: 18ef8e dirty: 1 exclu: 1 wprot: 0 isfile: 0
...

28

Exercise: Quick Review

1. While running a program, memory address #1024 always
refers to a physical location in DRAM (True/False: why?)

2. Two programs which both use the address #1024 cannot be
simultaneously run (True/False: why?)

3. What do MMU and TLB stand for and what do they do?
4. What is a memory page? How big is it usually?
5. What is a Page Table and what is it good for?

29

Answers: Quick Review
1. While running a program, memory address #1024 always refers to a physical

location in DRAM (True/False: why?)
▶ False: #1024 is usually a virtual address which is translated

by the OS/Hardware to a physical location which may be in
DRAM but may instead be paged out to disk

2. Two programs which both use the address #1024 cannot be simultaneously run
(True/False: why?)
▶ False: The OS/Hardware will likely translate these identical

virtual addresses to different physical locations so that the
programs doe not clobber each other’s data

3. What do MMU and TLB stand for and what do they do?
▶ Memory Management Unit: a piece of hardware involved in

translating Virtual Addresses to Physical Addresses/Locations
▶ Translation Lookaside Buffer: a special cache used by the

MMU to make address translation fast
4. What is a memory page? How big is it usually?

▶ A discrete hunk of memory usually 4Kb (4096 bytes) big
5. What is a Page Table and what is it good for?

▶ A table maintained by the operating system that is used to
map Virtual Addresses to Physical addresses for each page

30

Additional Review Questions

▶ What OS data structure facilitates the Virtual Memory
system? What kind of data structure is it?

▶ What does pmap do?
▶ What does the mmap() system call do that enables easier

I/O? How does this look in a C program?
▶ Describe at least 3 benefits a Virtual Memory system provides

to a computing system

31

