
CSCI216: Threads in a Nutshell

Chris Kauffman

Last Updated:
Tue Apr 30 09:20:58 AM EDT 2024

1

Logistics
Reading Bryant/O’Hallaron

Ch Read? Topic
Ch 12 Concurrent Programming

12.1 opt Conc Progr. w/ Processes
12.2 opt Conc Progr. w/ I/O Multiplexing
12.3 READ Conc Progr. w/ Threads
12.4 READ Shared Vars in Threaded Programs
12.5 READ Synchronizing Threads w/ Semaphores
12.6 READ Using Threads for Parallelism
12.7 opt Other Concurrency Issues

▶ B&H use
Semaphores in text
to coordinate
threads in Ch 12.5

▶ We will use
Mutexes instead

▶ Will explain the
minor difference
soon

Assignments
▶ Dis 13: Matrix Opt
▶ HW 13: Threads Wrap
▶ P5 Up, Due Fri 10-May

Date Event
Tue 30-Apr VirtMem / Threads
Thu 02-May Threads
Mon 06-May Lab13/HW13 Due
Tue 07-May Threads Wrap
Wed 08-May Dis: Review

Feedback Due
Thu 09-May Lec: Practice Exam
Fri 10-May P5 Due
Mon 13-May Final Exam

Questions on anything?
2

Announcements: Student Feedback Opportunities

Student Feedback on Course Experiences Now Open
e.g. Rate your Professor
▶ https://www.courseexp.umd.edu/
▶ If response rate reaches 80% for all sections. . .
▶ by Wed 08-May 11:59pm. . .
▶ I will reveal a Final Exam Question
▶ No answers but public discussion welcome
▶ Feedback open through Fri 10-May

Canvas Exit Survey to Open Soon
▶ Will announce a Canvas Exit Survey to collect feedback
▶ Worth 1 Full Engagement Point to for completion
▶ Due prior to Final Exam (Sun 12-May 11:59pm)

3

https://www.courseexp.umd.edu/

Threads of Control within the Same Process

▶ Parallel execution path within the same process
▶ Multiple threads execute different parts of the same code for

the program concurrently
▶ Concurrent: simultaneous or in an unspecified order

▶ Threads each have their own “private” function call stack
▶ CAN share stack values by passing pointers to them around
▶ Share the heap and global area of memory
▶ In Unix, Posix Threads (pthreads) is the most widely

available thread library

4

Processes vs Threads

Process in IPC Threads in pthreads
(Marginally) Longer startup (Marginally) Faster startup
Must share memory explicitly Memory shared by default
Good protection between processes Little protection between threads
fork() / waitpid() pthread_create() / _join()

Modern systems (Linux) can use semaphores / mutexes / shared memory /
message queues / condition variables to coordinate Processes or Threads

IPC Memory Model

Source

Thread Memory Model

Source
5

https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/3_Processes.html
http://www.read.cs.ucla.edu/111/2006fall/notes/lec5

Process and Thread Functions

▶ Threads and process both represent “flows of control”
▶ Most ideas have analogs for both

Processes Threads Description
fork() pthread_create() create a new flow of control
waitpid() pthread_join() get exit status from flow of control
getpid() pthread_self() get “ID” for flow of control
exit() pthread_exit() exit (normally) from an existing flow

of control
abort() pthread_cancel() request abnormal termination of flow

of control
atexit() pthread_cleanup_push() register function to be called at exit

from flow of control

Stevens/Rago Figure 11.6: Comparison of process and thread primitives

6

Thread Creation

#include <pthread.h>
int pthread_create(pthread_t *thread,

const pthread_attr_t *attr,
void *(*start_routine) (void *),
void *arg);

int pthread_join(pthread_t thread, void **retval);

▶ Start a thread running function start_routine
▶ attr may be NULL for default attributes
▶ Pass arguments arg to the function
▶ Wait for thread to finish, put return in retval

7

Minimal Example

Code
// Minimal example of starting a
// pthread, passing a parameter to the
// thread function, then waiting for it
// to finish
#include <pthread.h>
#include <stdio.h>

void *doit(void *param){
int p=(int) param;
p = p*2;
return (void *) p;

}

int main(){
pthread_t thread_1;
pthread_create(&thread_1, NULL,

doit, (void *) 42);
int xres;
pthread_join(thread_1, (void **) &xres);
printf("result is: %d\n",xres);
return 0;

}

Compilation
▶ Link thread library

-lpthread
▶ Lots of warnings

> gcc pthreads_minimal_example.c -lpthread
pthreads_minimal_example.c: In function 'doit':
pthreads_minimal_example.c:7:9: warning:
cast from pointer to integer of different
size [-Wpointer-to-int-cast]

int p=(int) param;
^

pthreads_minimal_example.c:9:10: warning:
cast to pointer from integer of different
size [-Wint-to-pointer-cast]

return (void *) p;
^

> a.out
result is: 84

8

Exercise: Observe this about pthreads

1. Where does a thread start execution?
2. What does the parent thread do on creating a child thread?
3. How much compiler support do you get with pthreads?
4. How does one pass multiple arguments to a thread function?
5. If multiple children are spawned, which execute?

9

Answers: Observe this about pthreads

1. Where does a thread start execution?
▶ Child thread starts running code in the function passed to

pthread_create(), function doit() in example
2. What does the parent thread do on creating a child thread?

▶ Continues immediately, much like fork() but child runs the
given function while parent continues as is

3. How much compiler support do you get with pthreads?
▶ Little: must do a lot of casting of arguments/returns

4. How does one pass multiple arguments to a thread function?
▶ Create a struct or array and pass in a pointer

5. If multiple children are spawned, which execute?
▶ Can’t say which order they will execute in, similar to fork()

and children

10

Motivation for Threads
▶ Like use of fork(), threads increase program complexity
▶ Improving execution efficiency is a primary motivator
▶ Assign independent tasks in program to different threads
▶ 2 common ways this can speed up program runs

(1) Parallel Execution with Threads
▶ Each thread/task computes part of an answer and then results are

combined to form the total solution
▶ Discuss in Lecture (Pi Calculation)
▶ REQUIRES multiple CPUs to improve on Single thread; Why?

(2) Hide Latency of Slow Tasks via Threads
▶ Slow tasks block a thread but Fast tasks can proceed independently

allowing program to stay busy while running
▶ Textbook coverage (I/O latency reduction)
▶ HW 13 explores fast and slow “worms”
▶ Does NOT require multiple CPUs to get benefit Why?

11

Model Problem: A Slice of Pi

▶ Calculate the value of π ≈ 3.14159
▶ Simple Monte Carlo algorithm to

do this
▶ Randomly generate positive (x,y)

coords
▶ Compute distance between (x,y)

and (0,0)
▶ If distance ≤ 1 increment “hits”
▶ Counting number of points in the

positive quarter circle
▶ After large number of hits, have

approximation

π ≈ 4 × total hits
total points

Algorithm generates dots, computes fraction
of red which indicates area of quarter circle
compared to square

12

Exercise: picalc_pthreads_broken.c

Serial Version (Single Thread)
▶ picalc_serial.c codes Monte Carlo approximation for Pi
▶ Uses rand_r() to generate pseudo-random numbers
▶ picalc_rand.c uses traditional rand(), discuss more later

Parallel Version (Multiple Threads)
Examine source code for pthreads_picalc_broken.c
Discuss following questions with a neighbor

1. How many threads are created? Fixed or variable?
2. How do the threads cooperate? Is there shared information?
3. Do the threads use the same or different random number

sequences?
4. Will this code actually produce good estimates of π?

13

Exercise: pthreads_picalc_broken.c
1 long total_hits = 0; long points_per_thread = -1;
2
3 void *compute_pi(void *arg){
4 long thread_id = (long) arg;
5 unsigned int rstate = 123456789 * thread_id; // unique seed per thread
6 for (int i = 0; i < points_per_thread; i++) {
7 double x = ((double) rand_r(&rstate)) / ((double) RAND_MAX);
8 double y = ((double) rand_r(&rstate)) / ((double) RAND_MAX);
9 if (x*x + y*y <= 1.0){

10 total_hits++;
11 }
12 }
13 return NULL;
14 }
15 int main(int argc, char **argv) {
16 long npoints = atol(argv[1]); // number of samples
17 int num_threads = argc>2 ? atoi(argv[2]) : 4; // number of threads
18 points_per_thread = npoints / num_threads; // init global variables
19 pthread_t threads[num_threads]; // track each thread
20 for(long p=0; p<num_threads; p++){ // launch each thread
21 pthread_create(&threads[p],NULL,compute_pi, (void *) (p+1));
22 }
23 for(int p=0; p<num_threads; p++){ // wait for each thread to finish
24 pthread_join(threads[p], (void **) NULL);
25 }
26 double pi_est = ((double)total_hits) / npoints * 4.0;
27 printf("npoints: %8ld\n",npoints);
28 printf("hits: %8ld\n",total_hits);
29 printf("pi_est: %f\n",pi_est);
30 return 0;
31 } 14

Answers: pthreads_picalc_broken.c

1. How many threads are created? Fixed or variable?
▶ Threads specified on command line

2. How do the threads cooperate? Is there shared information?
▶ Shared global variable total_hits

3. Do the threads use the same or different random number
sequences?
▶ Different, seed is based on thread number

4. Will this code actually produce good estimates of π?
▶ Nope: not coordinating updates to total_hits so will likely

be wrong
> gcc -Wall pthreads_picalc_broken.c -lpthread
> a.out 10000000 4
npoints: 10000000
hits: 3134064
pi_est: 1.253626 # not a good estimate for 3.14159

15

Why is pthreads_picalc_broken.c so wrong?
▶ The instructions total_hits++; is not atomic
▶ Translates to assembly

// total_hits stored at address #1024
30: load REG1 from #1024
31: increment REG1
32: store REG1 into #1024

▶ Interleaving of these instructions by several threads leads to
undercounting total_hits1

Mem #1024 Thread 1 REG1 Thread 2 REG1
total_hits Instruction Value Instruction Value

100
30: load REG1 100
31: incr REG1 101

101 32: store REG1
30: load REG1 101
31: incr REG1 102

102 32: store REG1
30: load REG1 102
31: incr REG1 103

30: load REG1 102
31: incr REG1 103

103 32: store REG1
103 32: store REG1

1CSAPP Ch 12.5 discusses similar code for another example
16

Critical Regions and Mutex Locks

▶ Access to shared variables
must be coordinated among
threads

▶ A mutex allows mutual
exclusion

▶ Locking a mutex is an
atomic operation like
incrementing/decrementing
a semaphore

pthread_mutex_t lock;

int main(){
// initialize a lock
pthread_mutex_init(&lock, NULL);
...;
// release lock resources
pthread_mutex_destroy(&lock);

}

void *thread_work(void *arg){
...
// block until lock acquired
pthread_mutex_lock(&lock);

do critical;
stuff in here;

// unlock for others
pthread_mutex_unlock(&lock);
...

}

17

Exercise: Protect critical region of picalc

▶ Insert calls to pthread_mutex_lock() / _unlock()
▶ Protect the critical region and Predict effects on execution

1 int total_hits=0;
2 int points_per_thread = ...;
3 pthread_mutex_t lock; // initialized in main()
4
5 void *compute_pi(void *arg){
6 long thread_id = (long) arg;
7 unsigned int rstate = 123456789 * thread_id;
8 for (int i = 0; i < points_per_thread; i++) {
9 double x = ((double) rand_r(&rstate)) / ((double) RAND_MAX);

10 double y = ((double) rand_r(&rstate)) / ((double) RAND_MAX);
11 if (x*x + y*y <= 1.0){
12 total_hits++; // update
13 }
14 }
15 return NULL;
16 }

18

Answers: Protect critical region of picalc

▶ Naive approach
if (x*x + y*y <= 1.0){

pthread_mutex_lock(&lock); // lock global variable
total_hits++; // update
pthread_mutex_unlock(&lock); // unlock global variable

}

▶ Ensures correct answers but. . .
▶ Severe effects on performance (next slide)

19

Speedup?
▶ Multiple threads should decrease wall (real) time and give

Speedup:
Speedup = Serial Time

Parallel Time
▶ Ideally want linear speedup: 2X speedup for 2 Threads, etc.

> gcc -Wall picalc.c -lpthread
> time a.out 100000000 > /dev/null # SERIAL version
real 0m1.553s # 1.55 s wall time
user 0m1.550s
sys 0m0.000s
> gcc -Wall pthreads_picalc_mutex.c -lpthread
> time a.out 100000000 1 > /dev/null # PARALLEL 1 thread
real 0m2.442s # 2.44s wall time ?
user 0m2.439s
sys 0m0.000s
> time a.out 100000000 2 > /dev/null # PARALLEL 2 threads
real 0m7.948s # 7.95s wall time??
user 0m12.640s
sys 0m3.184s
> time a.out 100000000 4 > /dev/null # PARALLEL 4 threads
real 0m9.780s # 9.78s wall time???
user 0m18.593s # wait, something is
sys 0m18.357s # terribly wrong...

20

time Utility Reports 3 Times
'time prog args' reports 3 times for program runs
- real: amount of "wall" clock time, how long you have to wait
- user: CPU time used by program, sum of ALL threads in use
- sys : amount of CPU time OS spends in system calls for program

> time seq 10000000 > /dev/null # print numbers in sequence
real 0m0.081s # real == user time
user 0m0.081s # 100% cpu utilization
sys 0m0.000s # 1 thread, few syscalls

> time du ~ > /dev/null # check disk usage of home dir
real 0m2.012s # real >= user + sys
user 0m0.292s # 50% CPU utilization, lots of syscalls for I/O
sys 0m0.691s # I/O bound: blocking on hardware stalls

> time ping -c 3 google.com > /dev/null # contact google.com 3 times
real 0m2.063s # real >>= user+sys time
user 0m0.003s # low cpu utilization
sys 0m0.007s # lots of blocking on network

> time make > /dev/null # make with 1 thread
real 0m0.453s # real == user+sys time
user 0m0.364s # ~100% cpu utilization
sys 0m0.089s # syscalls for I/O but not I/O bound

> time make -j 4 > /dev/null # make with 4 "jobs" (threads/processes)
real 0m0.176s # real <= user+sys
user 0m0.499s # syscalls for I/O and coordination
sys 0m0.111s # parallel execution gives SPEEDUP!

21

Alternative Approach: Local count then merge

▶ Contention for locks creates tremendous overhead
▶ Classic divide/conquer or map/reduce or split/join paradigm

works here
▶ Each thread counts its own local hits, combine only at the

end with single lock/unlock
void *compute_pi(void *arg){

long thread_id = (long) arg;
int my_hits = 0; // private count for this thread
unsigned int rstate = 123456789 * thread_id;
for (int i = 0; i < points_per_thread; i++) {

double x = ((double) rand_r(&rstate)) / ((double) RAND_MAX);
double y = ((double) rand_r(&rstate)) / ((double) RAND_MAX);
if (x*x + y*y <= 1.0){

my_hits++; // update local
}

}
pthread_mutex_lock(&lock); // lock global variable
total_hits += my_hits; // update global hits
pthread_mutex_unlock(&lock); // unlock global variable
return NULL;

}

22

Speedup!
▶ This problem is almost embarassingly parallel: very little

communication/coordination required
▶ Solid speedup gained but note that the user time increases as

threads increases due to overhead
8-processor desktop
> gcc -Wall pthreads_picalc_mutex_nocontention.c -lpthread
> time a.out 100000000 1 > /dev/null # 1 thread
real 0m1.523s # 1.52s, similar to serial
user 0m1.520s
sys 0m0.000s
> time a.out 100000000 2 > /dev/null # 2 threads
real 0m0.797s # 0.80s, about 50% time
user 0m1.584s
sys 0m0.000s
> time a.out 100000000 4 > /dev/null # 4 threads
real 0m0.412s # 0.41s, about 25% time
user 0m1.628s
sys 0m0.003s
> time a.out 100000000 8 > /dev/null # 8 threads
real 0m0.238s # 0.24, about 12.5% time
user 0m1.823s
sys 0m0.003s

23

Interesting Observations
pthreads_picalc_broken.c was the original threaded version
▶ uses NO mutex lock/unlock
▶ gives wrong answers
▶ has “weird” timing information

> gcc pthreads_picalc_broken.c -lpthread
> time ./a.out 50000000 1 > /dev/null
real 0m0.679s
user 0m0.679s # 1 thread(s) 0.67s
sys 0m0.000s

> time ./a.out 50000000 2 > /dev/null
real 0m0.687s
user 0m1.319s # 2 thread(s) 1.32s
sys 0m0.010s

> time ./a.out 50000000 4 > /dev/null
real 0m0.790s
user 0m3.056s # 4 thread(s) 3.06s
sys 0m0.000s

Why might this slowdown be happening? Hint: think hardware..

24

Portability issues with pthread_self()
As noted in other answers, pthreads does not define a
platform-independent way to retrieve an integral thread
ID. This answer2 gives a non-portable way which works on
many BSD-based platforms.
– Bleater on Stack Overflow

// Stevens & Rago Figure 11.2 from Chapter 11.4
void printids(char *strid) {

pid_t pid = getpid();
pthread_t tid = pthread_self(); // opaque data type for thread ids
printf("%s pid: %lu tid: %lu (0x%lx)\n",strid,pid,tid,tid);

}

> ./a.out # SOLARIS (Sun) Unix
main pid 20075 tid 1 (0x1)
child pid 20075 tid 2 (0x2)

> ./a.out # MAC OSX
main pid 31807 tid 140735073889440 (0x7fff70162ca0)
child pid 31807 tid 4295716864 (0x1000b7000)

> ./a.out # LINUX
main: pid 17874 tid 140693894424320 (0x7ff5d9996700)
child: pid 17874 tid 140693886129920 (0x7ff5d91ad700)

2http://stackoverflow.com/a/21206357/316487
25

http://stackoverflow.com/questions/21091000/how-to-get-thread-id-of-a-pthread-in-linux-c-program
http://stackoverflow.com/a/21206357/316487

Thread ID Work-Arounds
Portable & Robust
typedef struct {

int threadid;
...

} work_context_t;

void *worker_func(void *arg){
work_context_t *ctx =

(work_context *) arg ;
int my_id = ctx->threadid;
...;

}

int main(){
...;
work_context_t ctxs[4]={};
for(int i=0; i<4; i++){

ctxs[i].thread_id = i;
pthread_create(&threads[i],NULL

worker_func, &ctxs[i]);
}
...;

}

See pthread_sum_array.c and
other examples for this pattern

Non-portable / Non-robust
// treat thread as a big integer
unsigned long = pthread_self();

// Linux only
pid_t tid = gettid(); // system call
printf("Thread %d reporting for duty\n",tid);

// Non-portable, non-linux
pthread_id_np_t tid = pthread_getthreadid_np();

NONE of the above are likely
give thread ids numbered
0,1,2,3. . . on all systems, not as
useful as left column solutions
AND non-portable between
different Unix/PThread
implementations

26

Lessons from pthread_sum_array.c

▶ To make threaded functions more general avoid use of
global variables

▶ Commonly requires passing pointers to a struct as the
argument to worker threads; Kauffman uses the term
“context” for this struct but that is not in wide use

▶ The struct usually caries

27

Exercise: Mutex Busy wait or not?

▶ Consider given program
▶ Threads acquire a mutex, sleep

1s, release
▶ Predict user and real/wall

times if
1. Mutex uses busy waiting

(polling)
2. Mutex uses interrupt driven

waiting (sleep/wakup when
ready)

▶ Can verify by compiling and
running
time a.out

1 // Busy?
2 int glob = 1;
3 pthread_mutex_t glob_lock;
4
5 void *doit(void *param){
6 pthread_mutex_lock(&glob_lock);
7 glob = glob*2;
8 sleep(1);
9 pthread_mutex_unlock(&glob_lock);

10 return NULL;
11 }
12
13 int main(){
14 printf("BEFORE glob: %d\n",glob);
15
16 pthread_mutex_init(&glob_lock, NULL);
17 pthread_t thread_1;
18 pthread_create(&thread_1, NULL, doit, NULL);
19 pthread_t thread_2;
20 pthread_create(&thread_2, NULL, doit, NULL);
21
22 pthread_join(thread_1, (void **) NULL);
23 pthread_join(thread_2, (void **) NULL);
24
25 printf("AFTER glob: %d\n",glob);
26 pthread_mutex_destroy(&glob_lock);
27
28 return 0;
29 }

28

Answers: Mutex Busy wait or not? NOT

▶ Locking is Not a busy wait
▶ Either get the lock and

proceed OR
▶ Block and get woken up

when the lock is available
▶ Timing is

▶ real: 2.000s
▶ user: 0.001s

▶ Contrast with
time_spinlock.c:
▶ real: 2.000s
▶ user: 1.001s

▶ pthread_spinlock_* like
mutex but wait “busily”:
faster access for more CPU

1 // time_mutex_.c: Not busy, blocked!
2 int glob = 1;
3 pthread_mutex_t glob_lock;
4
5 void *doit(void *param){
6 pthread_mutex_lock(&glob_lock);
7 glob = glob*2;
8 sleep(1);
9 pthread_mutex_unlock(&glob_lock);

10 return NULL;
11 }
12
13 int main(){
14 printf("BEFORE glob: %d\n",glob);
15
16 pthread_mutex_init(&glob_lock, NULL);
17 pthread_t thread_1;
18 pthread_create(&thread_1, NULL, doit, NULL);
19 pthread_t thread_2;
20 pthread_create(&thread_2, NULL, doit, NULL);
21
22 pthread_join(thread_1, (void **) NULL);
23 pthread_join(thread_2, (void **) NULL);
24
25 printf("AFTER glob: %d\n",glob);
26 pthread_mutex_destroy(&glob_lock);
27
28 return 0;
29 }

29

Mutex Gotchas
▶ Managing multiple mutex locks is tricky: wrong protocol may

result in deadlock, threads waiting for each other to release
locks

▶ Same thread locking same mutex twice can cause deadlock
depending on options associated with mutex

▶ Interactions between threads with different scheduling priority
are also tough to understand and the source of trouble

▶ Notable Mutex problem in the Mars Pathfinder Onboard
Computer
▶ Used multiple threads with differing priorities to manage

limited hardware
▶ Shortly after landing, started rebooting like crazy due to odd

thread interactions
▶ Short-lived, low-priority thread got a mutex, pre-empted by

long-running medium priority thread, system freaked out
because others could not use resource associated with mutex

▶ Search for articles on “Thread Priority Inversion” problems
which is the class of problems that nearly derailed the mission

30

https://en.wikipedia.org/wiki/Mars_Pathfinder#On-board_computer
https://en.wikipedia.org/wiki/Mars_Pathfinder#On-board_computer

Mutex vs Semaphore

Similarities
▶ Both used to protect critical

regions of code from other
processes/threads

▶ Both use non-busy waiting
▶ process/thread blocks if

locked by another
▶ unlocking wakes up a blocked

process/thread
▶ Both can be process private or

shared between processes
▶ Shared mutex requires shared

memory
▶ Private semaphore with

option pshared==0

Differences
▶ Semaphores loosely associated

to Process coordination
▶ Mutexes loosely associated to

to Thread coordination
▶ Both can be used for either

with correct setup
▶ Semaphores posses an arbitrary

natural number, usually
0 for locked, 1,2,3,.. for
available

▶ Mutexes are either
locked/unlocked

▶ Mutexes have a busy locking
variant: pthread_spinlock_t

31

Mixing Processes and Threads
▶ You can mix IPC and Threads if you hate yourself enough.

Dealing with signals can be complicated even with a
process-based paradigm. Introducing threads into the pic-
ture makes things even more complicated.
– Stevens/Rago Ch 12.8

▶ Strongly suggest you examine Stevens and Rago 12.8-12.10 to
find out the following pitfalls:

▶ Threads have individual Signal Masks (for blocking) but share
Signal Disposition (for handling funcs/termination)

▶ Calling fork() from a thread creates a new process with all
the locks/mutexes of the parent but only one thread (!?)
▶ Usually implement a pthread_atfork() handler for this

▶ Multiple threads should use pread() / pwrite() to
read/write from specific offsets; ensure that they do not step
on each other’s I/O calls

32

https://www.linuxprogrammingblog.com/threads-and-fork-think-twice-before-using-them

Are they really so different?
▶ Unix standards strongly distinguish between threads and

processes: different system calls, sharing, etc.
▶ Due to their similarities, you should be skeptical of this

distinction as smart+lazy OS implementers can exploit it:
Linux uses a 1-1 threading model, with (to the kernel) no
distinction between processes and threads – everything is
simply a runnable task.
On Linux, the system call clone() clones a task, with a
configurable level of sharing. . .

Unix Syscall Linux implementation
fork() clone(LEAST sharing)
pthread_create() clone(MOST sharing)

– Ryan Emerle, SO:“Threads vs Processes in Linux”

The “1-1” model is widely used (Linux, BSD, Windows(?)) but
conventions vary between OSs: check your implementation for
details

33

https://stackoverflow.com/questions/807506/threads-vs-processes-in-linux

Lightweight Threads of Various Colors
▶ Pthreads are (almost) guaranteed to interact with the OS
▶ On Linux, a Pthread is a “schedulable” entity which is

automatically given time on the CPU by the scheduler
▶ Other kinds of threads exist with different properties with

various names, notably lightweight / green threads
Green threads are threads that are scheduled by a runtime
library or virtual machine (VM) instead of natively by the
underlying operating system (OS).
– Wikip: Green Threads

▶ Lightweight/Green thread library usually means OS only sees
a single process

▶ Process itself must manage its internal threads with its own
scheduler / yield semantics
▶ Advantage: Fast startup :-D
▶ Drawback: No parallelism :-(

34

https://en.wikipedia.org/wiki/Green_threads

Exercise: Processes vs Threads

Processes when. . .
Identify some obvious signs your application should you use
processes vs. . .

Threads when. . .
Identify some obvious signs your application should you use threads
instead

35

Answers: Processes vs Threads

Processes when. . .
▶ Limited amount of sharing needed, file or single block of

memory
▶ Want ability to monitor/manage/kill distinct tasks with

standard OS tools
▶ Plan to make use of signals in any appreciable way

Threads when. . .
▶ Tasks must share a lot of data
▶ Likely that won’t need to individually monitor tasks
▶ Absolutely need fastest possible startup of subtasks

36

Threads Should be Chosen Cautiously

▶ Managing concurrency is hard
▶ Separate processes provide one means to do so, often a good

start as defaults to nothing shared
▶ Performance benefits of threads come with MANY

disadvantages and pitfalls
▶ If forced to use threads, consider design carefully
▶ If possible, use a higher-level thread manager like OpenMP,

well-suited for parallelizing loops for worker threads
▶ Avoid mixing threads/IPC if possible
▶ Prepare for a tough slog. . .

37

https://en.wikipedia.org/wiki/OpenMP

Thread-Safe Functions Documentation
Manual pages for library functions often describe whether they are
safe for multiple threads to use or not
MALLOC(3) Library Functions Manual MALLOC(3)

NAME
malloc, free, calloc, realloc, reallocarray - allocate and free dynamic
memory

...
ATTRIBUTES

|---------------------------------------+---------------+---------|
| Interface | Attribute | Value |
|---------------------------------------+---------------+---------|
| malloc(), free(), calloc(), realloc() | Thread safety | MT-Safe |
|---------------------------------------+---------------+---------|

==
CRYPT(3) Library Functions Manual CRYPT(3)

NAME
crypt, crypt_r, crypt_rn, crypt_ra - passphrase hashing

...
char * crypt(const char *phrase, const char *setting);
char * crypt_r(const char *phrase, const char *setting,

struct crypt_data *data);

ATTRIBUTES
|-----------------------------+---------------+----------------|
| Interface | Attribute | Value |
|-----------------------------+---------------+----------------|
| crypt | Thread safety | MT-UnSafe race |
|-----------------------------+---------------+----------------|
| crypt_r, crypt_rn, crypt_ra | Thread safety | MT-Safe |
|-----------------------------+---------------+----------------| 38

Meaning of Thread Safety
Thread safety is achieved in one of two ways

1. Use local data only: no shared data
2. Protect shared data with mutex locking/unlocking around

critical regions
Historically many Unix library functions were not thread-safe
▶ malloc() / free() operated on the heap, a shared data

structure; not initially thread-safe but modern incarnations are
using combinations of (hidden) local data and mutexs

▶ rand() function was historically NOT thread-safe
▶ used a global variable as the state of the random number

generator
▶ multiple threads calling it would corrupt the state leading

too. . . random numbers (unpredictable random numbers)
▶ rand_r() was introduced to fix this, use local state
▶ Most rand() implementations are now thread-safe and

rand_r() has been deprecated: will be eventually removed

39

Reentrant Functions

A related concept to Thread Safe functions are Reentrant
Functions

. . . reentrant if it can be interrupted in the middle of its
execution, and then be safely called again (“re-entered”)
before its previous invocations complete execution.
– Wikipedia: Reentrancy

General hierearchy is:

Quality Probable Causes
Thread Unsafe Uses shared data without coordination
Thread Safe Uses shared data (e.g. mutex locking), not necessarily reentrant
Reentrant Uses local data, Thread-safe by default

Reentrant functions are important as one would write signal
handlers as handlers can be interrupted and lead to re-entering a
function

40

https://en.wikipedia.org/wiki/Reentrancy_(computing)

