
Name: UID#: DirectoryID:

CMSC216: Practice Final Exam A
Spring 2025

University of Maryland

Exam period: 20 minutes Points available: 40

Problem 1 (10 pts): Pagebo Undary recently
wrote a C program that is shown nearby and is star-
tled to find that, despite his code clearly accessing
out-of-bounds array indices, a Segmentation Fault
does not occur unless the access is “way” out of
bounds. Pagebo is confused by this apparent in-
consistency but concludes that, so long as his code
is only a “little” out of bounds, apparently nothing
bad will happen.

1 #include <stdio.h>
2 int main(){
3 int arr[5]={10,20,30,40,50};
4 printf("arr[10]: %d\n",arr[10]);
5 printf("arr[100]: %d\n",arr[100]);
6 printf("arr[10000]: %d\n",arr[10000]);
7 return 0;
8 }
9 // >> gcc array_bounds.c

10 // >> a.out
11 // arr[10]: 378735946
12 // arr[100]: 1892438979
13 // Segmentation fault (core dumped)

Use your knowledge of the Virtual Memory System to educate Pagebo on why some out-of-bounds
accesses generate Segmentation faults while others do not. Indicate whether you agree with Pagebo’s
conclusion (going a little out of bounds is okay) or if there is more to it than this.

Problem 2 (10 pts): New programmers are often surprised to learn that once an array is allocated,
its size cannot be extended. In C code, this is easily observable as calling malloc(16) will yield a block of
16 bytes but there are no simple calls to expand this block of memory and calls like realloc() indicate
they may move data to another location to find enough space.
Consider a proposed function for EL Malloc called int el_expand_block(el_blockhead_t *bock) which
would expand a given block.

(A) What conditions need to occur for the function to succeed?

(B) Why is it impossible to expand a block in some cases?

1/ 2

WRITE ON EVERY PAGE – Name:

Problem 3 (20 pts): Below are two functions that augment El Malloc with block shrinking. This allows
a user to specify that the originally requested size for a memory area can be adjusted down potentially
creating open space. Fill in the definitions for these functions.

el_blockhead_t *el_shrink_block(el_blockhead_t *head, size_t newsize){
// Shrinks the size of the given block potentially creating a new block. Computes remaining space
// as the difference between the current size and parameter newsize. If this is smaller than
// EL_BLOCK_OVERHEAD, does nothing further and returns NULL. Otherwise, reduces the size of the
// given block by adjusting its header and footer and establishes a new block above it with
// remaining space beyond the block overhead. Returns a pointer to the newly introduced blocks. Does
// not modify any links in lists.

}
int el_shrink(void *ptr, size_t newsize){
// Shrink the area associated with the given ptr if possible. Checks to ensure that the block
// associated with the given user ptr is EL_USED and exits if not. Uses el_shrink_block() to
// adjust the block size and create a block for the remaining space. If not possible to shrink,
// returns 0. Otherwise moves the current block to the front of the Used List and places the newly
// created block to the front of the Available List after setting its state to EL_AVAILABLE. Returns
// 1 on successfully shrinking.

}

2/ 2

