
Name: SOLUTION UID#: DirectoryID:

CMSC216: Practice Final Exam B SOLUTION
Spring 2025

University of Maryland

Exam period: 20 minutes
Points available: 40

Problem 1 (10 pts): Examine the code to the right and
describe what you expect its output to be. Explain why or why
not you would expect to see any specific ordering in the output
of the program.

SOLUTION: The processes will fork out in a “line” or “list”
rather than branching in a tree. This is because each parent
process falls into the if() consequence and will break out of
the loop so will have only a single child. The order of output
will start with the last child in the last iteration and proceed
backwards to the original parent due to the placement of wait().
Example:

> a.out

iter 4, 13374 from 13373

iter 3, 13373 from 13372

iter 2, 13372 from 13371

iter 1, 13371 from 13370

iter 0, 13370 from 26018

1 #include <stdio.h>
2 #include <unistd.h>
3 #include <stdlib.h>
4 #include <wait.h>
5

6 int main(){
7 for(int i=0; i<5; i++){
8 pid_t p = fork();
9 if(p != 0){

10 wait(NULL);
11 printf("iter %d, %d from %d\n",
12 i,getpid(),getppid());
13 fflush(stdout); // output now
14 break; // quit loop
15 }
16 }
17 exit(0);
18 }

Problem 2 (10 pts): Nearby is the output of pmap showing page table virtual memory mapping
information for a running program called memory_parts. Answer the following questions about this output.

(A) Certain addresses of memory are marked with the an-
notation r-x. Explain what this means and what kind of
information you would expect to find in those addresses.
SOLUTION: The annotation means “read and execute” with
no write permission. Typically this is a page of memory
that would contain program text: executable instructions that
should not be changed but can be fed to the processor to run
the program. Examples are in the memory parts program it-
self for its main() and in the shared library libc which has
instructions for printf() and the like.

(B) Why does pmap only show a limited number of virtual
addresses? What would happen if the program attempted to
access an address not listed in the output? Example: address
0x00 is not in the listing.
SOLUTION: The page table only contains mapped pages for
program. These mapped addresses are what is shown. The
large number of other addresses are unmapped. Attempting to
access these unmapped addresses will result in errors such as
segmentation faults; this usually causes the program to be
immediately terminated.

> pmap 7986

7986: ./memory_parts

00005579a4abd000 4K r-x-- memory_parts

00005579a4cbd000 4K r---- memory_parts

00005579a4cbe000 4K rw--- memory_parts

00005579a4cbf000 4K rw--- [anon]

00005579a53aa000 132K rw--- [heap]

00007f441f2e1000 1720K r-x-- libc-2.26.so

00007f441f48f000 2044K ----- libc-2.26.so

00007f441f68e000 16K r---- libc-2.26.so

00007f441f692000 8K rw--- libc-2.26.so

00007f441f694000 16K rw--- [anon]

00007f441f698000 148K r-x-- ld-2.26.so

00007f441f88f000 8K rw--- [anon]

00007f441f8bb000 4K r---- gettysburg.txt

00007f441f8bc000 4K r---- ld-2.26.so

00007f441f8bd000 4K rw--- ld-2.26.so

00007f441f8be000 4K rw--- [anon]

00007fff96ae1000 132K rw--- [stack]

00007fff96b48000 12K r---- [anon]

00007fff96b4b000 8K r-x-- [anon]

total 4276K

1/ 2

WRITE ON EVERY PAGE – Name: SOLUTION

Problem 3 (10 pts): Nearby is a matrix/vector
function which performs poorly. Create a new ver-
sion of this function that optimizes the memory
access pattern. Show your code and give a brief
description of why the changes you made should im-
prove performance.

1 int subcol_BASE(matrix_t mat, vector_t vec) {
2 for(int j=0; j<mat.cols; j++){
3 for(int i=0; i<mat.rows; i++){
4 int elij = MGET(mat,i,j);
5 int veci = VGET(vec,i);
6 elij -= veci;
7 MSET(mat,i,j,elij);
8 }
9 }

10 return 0;
11 }

WHY CHANGES IMPROVE PERFORMANCE:

1 //////// SOLUTION ////////
2 int subcol_opt(matrix_t mat,
3 vector_t vec)
4 {
5 if(mat.rows != vec.len){
6 printf("mat.rows (%ld) != vec.len (%ld)\n",
7 mat.rows,vec.len);
8 return 1;
9 }

10 // Loop over rows
11 for(int i=0; i<mat.rows; i++){
12 // subtract same vec el each time
13 int veci = VGET(vec,i);
14 // across row
15 for(int j=0; j<mat.cols; j++){
16 int elij = MGET(mat,i,j);
17 elij -= veci;
18 MSET(mat,i,j,elij);
19 } // end INNER LOOP across row
20 } // end OUTER LOOP over rows
21 return 0;
22 }

SOLUTION: The new version favors cache by visiting matrix elements across rows rather than down
columns. This eliminates the memory stride and will improve speed.

Problem 4 (5 pts): To further optimize the subcol_opt() function, a common strategy is to utilize
multiple threads. Describe briefly how this might be done. Include in your answer.

(A) How the work to be done is divided among threads

(B) How changes to shared data will be coordinated to ensure safety.

SOLUTION: Set up a “worker” function where each thread would select some rows to work on. Working
across rows as in the optimized version will continue to run fast. (A) Each thread subtracts elements from
vec away from corresponding elements in its assigned rows of the matrix: 2 threads operation on a matrix
with 100 rows would have thread 0 subtract off of rows 0-49 and thread 1 from 50-99. A main thread could
pass logical thread ID numbers, thread counts, and pointers to the matrix/vector via a “context” struct.
(B) Even though the Matrix is shared, threads will NOT need to coordinate with a mutex in this case as
they are each changing different elements in the matrix: thread 0 and thread 1 will never alter the same
elements.

Problem 5 (5 pts): Consider the code sample nearby
which prints logging messages to either the screen or a
log file as dictated by the USE_LOGFILE variable. Describe
how one could eliminate the conditional if/else and all
the fprintf() calls using I/O redirection system calls
within the program.

SOLUTION: If USE_LOGFILE is true, do the falling.
Call dup() system call to duplicate STDOUT_FILENNO then
dup2(logfd,STDOUT_FILENO) so that anything that is
printed to the screen instead goes into the log file. One
would need to open() the log file to get a File Descrip-
tor for it and possible restore Standard Output later, but
this line of attack would mean only unconditional printf()
calls are needed.

1 {
2 if(USE_LOGFILE){
3 fprintf(logfile,"Updating DB\n");
4 }
5 else{
6 printf("Updating DB\n");
7 }
8 update_db();
9 if(USE_LOGFILE){

10 fprintf(logfile,"Syncing files\n");
11 }
12 else{
13 printf("Syncing files\n");
14 }
15 file_sync();
16 ...;
17 }

2/ 2

