
The Open Source Proving Grounds

Ben Liblit
Computer Sciences Department

University of Wisconsin-Madison
<liblit@cs.wisc.edu>

Open source software is an attractive target when devel-
oping and evaluating software defect detection tools. This
position paper discusses some of the benefits and chal-
lenges I have encountered as a researcher interacting with
the open source community.

The Cooperative Bug Isolation Project (CBI) explores
ways to identify and fix bugs in widely deployed software.
We use a mix of lightweight instrumentation and statisti-
cal modeling techniques to reveal failure patterns in large
numbers of end user runs. The ultimate validation of the
CBI approach comes when real data from real users helps
us find real bugs in real code. Thus, field deployment is
a key component of this project. CBI offers instrumented
binaries for several popular open source programs for any-
one to download and use.

An Open Marketplace of Code and Ideas

Most open source projects expose their entire develop-
ment process to the public. This includes much more than
just source code. Certainly, I can grab millions of lines of
code at any hour of the day or night. However, the more
disciplined projects also have revision histories, design
documents, regression test suites, bug tracking systems,
release schedules. . . all the trappings of “real” software
development, free for the taking. All of this comes with
no nondisclosure agreements, no lawyers, and no limits
on publication of potentially embarrassing defect data.

Furthermore, open source software has gained enough
market- and mind-share that it is seen as realistic. Sci-
entific progress demonstrated on open source software is
assumed to apply equally well to proprietary systems and
to software engineering in general. In the marketplace of
research, open source is now considered legitimate.

Openness also facilitates feedback of defect findings to
project developers. As CBI discovers bugs in target appli-
cations, we report them using the same bug tracking sys-
tems used by the developers themselves. Our bug reports
must compete with all others for developers’ attention. If
our reports are clear and describe important bugs, we gain
credibility and our patches are accepted gladly. Uninfor-
mative or unimportant reports languish. Thus, observing
how developers respond to the information we provide is

itself an important part of evaluating our tools. The trans-
parency of open source projects makes this process much
easier to observe.

At the same time, open source licenses mean we don’t
need developers’ permission, and there’s not much they
could do to either help or hinder our work. As one de-
veloper put it, if there’s even a tiny chance that CBI will
find a single bug, he’s all in favor of it, and in any case it
costs him nothing to let us try. A disadvantage stemming
from this openness is that open sourcedistributors are
only loosely connected to many open sourcedevelopers.
It has been difficult to convert developer enthusiasm into
a truly large scale deployment backed by any commercial
open source vendor such as Red Hat or Novell. Ultimately
the challenges here are no different from the challenges
faced in partnering with any large company. Even so, it
can come as a surprise that the lead developer on a project
has little or no influence on a third-party Linux vendor that
does not pay his salary and simply downloads his source
code just like everyone else.

Finding a User Community

Many open source projects feel that because they provide
source, they are under no obligation to provide compiled
binaries. However, these applications can be quite com-
plex with many dependencies that make them difficult for
end users to build. For research that includes dynamic
analysis of deployed software, this source/binary gap cre-
ates an opportunity for barter with end users. I spend the
time to build clean, tested, installable binary packages of
open source applications for CBI. In exchange, the users
who download these packages agree to provide me with
the raw data I need to do my research. Several people
have told me that they use CBI releases simply because
they are the easiest way to get the desired applications in-
stalled and running on their machines.

This approach to finding users has some disadvantages
as compared with piggybacking on a commercial release.
It is easy to get a few users this way, but hard to get truly
large numbers. All the traffic CBI accrues from down-
load links cannot come close to what Microsoft would
get by instrumenting even a small fraction of, say, shrink-

1

http://www.cs.wisc.edu/~liblit/
mailto:liblit@cs.wisc.edu
http://www.cs.wisc.edu/cbi/


wrapped Office 2003 CD’s. Anything requiring an ex-
plicit download and install naturally selects for a more
technical user base whose behavior may not be represen-
tative of software usage patterns in general. In spite of
these factors, the relative ease with which one can get a
small user community makes binary distribution of open
source applications an attractive option for research in-
volving deployed software.

Effects of Shortened Release Cycles

Open source projects typically release new versions ear-
lier and more often than their commercial equivalents.
This can be an advantage or a disadvantage from a re-
search perspective. Early releases make projects’ “dirty
laundry” more visible. When hunting for bugs, early re-
leases from young open source projects are a target-rich
environment. Feedback provided to developers can be
incorporated quickly; one project posted a new release
specifically in response to bugs reported by CBI. As noted
above, enthusiastic developer response is strong valida-
tion for any defect detection tool.

On the other hand, it can be difficult for software qual-
ity researchers to keep up with a moving target. CBI de-
pends on accumulating many examples of good and bad
runs. If new releases come out every few weeks, there is
little time to accumulate data for any single snapshot of
the code. However, if we stop tracking each new release,
then users eager to try the latest and greatest may wander
elsewhere. With access to many binary providers, as well
as the source itself, users have no strong reason to stay
in one place. Commercial providers have a more captive
audience. Combined with longer release cycles, this gives
researchers operating in a commercial environment more
time to collect data for analysis.

Conclusions

In hindsight, I have found that working with open source
makes it easier to get started, but perhaps harder to get fin-
ished. The barriers to entry are low, making it very easy
to try out any crazy scheme that comes to mind. A tool
can sail or sink based on its technical merits, and feed-
back from real developers is a fast and direct validation
channel. On the other hand, the decentralized nature of
open source development means there is no clearly de-
fined decision maker. There is no one who can declare
by executive fiat that his engineering team will henceforth
use my tools on all their millions of lines of code. Small
deployments are easy to arrange, but large ones are diffi-
cult. Researchers working outside a commercial environ-
ment should keep these trade-offs in mind as they consider
using open source as a proving grounds for their work.

Further Reading on Cooperative Bug Isola-
tion
[1] Ben Liblit. The Cooperative Bug Isolation Project.

<http://www.cs.wisc.edu/cbi/> .

[2] Ben Liblit, Alex Aiken, Alice X. Zheng, and
Michael I. Jordan. Bug isolation via remote pro-
gram sampling. In Jr. James B. Fenwick and Cindy
Norris, editors,Proceedings of the ACM SIGPLAN
2003 Conference on Programming Language Design
and Implementation (PLDI-03), volume 38, 5 ofACM
SIGPLAN Notices, pages 141–154. ACM Press, 2003.

[3] Ben Liblit, Alex Aiken, Alice X. Zheng, and
Michael I. Jordan. Sampling user executions for bug
isolation. In Alessandro Orso and Adam Porter, edi-
tors,RAMSS ’03: 1st International Workshop on Re-
mote Analysis and Measurement of Software Systems,
pages 5–8, Portland, Oregon, May 9 2003.

[4] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken,
and Michael I. Jordan. Public deployment of cooper-
ative bug isolation. In Alessandro Orso and Adam
Porter, editors,Proceedings of the Second Interna-
tional Workshop on Remote Analysis and Measure-
ment of Software Systems (RAMSS ’04), pages 57–62,
Edinburgh, Scotland, May 24 2004.

[5] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken,
and Michael I. Jordan. Scalable statistical bug iso-
lation. In Proceedings of the ACM SIGPLAN 2005
Conference on Programming Language Design and
Implementation, Chicago, Illinois, June 11–17 2005.

[6] Benjamin Robert Liblit. Cooperative Bug Isolation.
PhD thesis, University of California, Berkeley, De-
cember 2004.

[7] Alice X. Zheng, Michael I. Jordan, Ben Liblit, and
Alex Aiken. Statistical debugging of sampled pro-
grams. In Sebastian Thrun, Lawrence Saul, and Bern-
hard Scḧolkopf, editors,Advances in Neural Informa-
tion Processing Systems 16. MIT Press, Cambridge,
MA, 2004.

2

http://www.cs.wisc.edu/cbi/

	An Open Marketplace of Code and Ideas
	Finding a User Community
	Effects of Shortened Release Cycles
	Conclusions

