
2005 SIGPLAN Workshop on the Evaluation of Software Defect Detection Tools

Bug Specimens are Important

Jaime Spacco, David Hovemeyer, William Pugh
Dept. of Computer Science

University of Maryland
College Park, MD, 20742 USA

{jspacco,daveho,pugh}@cs.umd.edu

June 10, 2005

science n. The observation, identification,
description, experimental investigation, and
theoretical explanation of phenomena.

To perform a scientific experimental investigation
of software defects, we need bugs.

Lots of them. Thousands only begins to cover it.
Pinned to the wall, embedded in blocks of clear

plastic, with a whole cabinet full of note cards about
them.

So, how are we going to make that happen?

Studying Software Defects

Many papers on software reliability don’t even ad-
dress the issue of software defects, and instead report
on numbers such as the size of the points-to relation,
with a hope that the numbers will be relevant to soft-
ware defect detection.

But when papers do report on number of bugs
found, often they only report the “number of bugs
found”.

Unfortunately, companies now now feel that the
exact bugs they can identify with their tools is a trade
secret, and no longer make such information publicly
available.

Even the exact nature of the bugs identified by re-
search papers is often unclear: many different things
can be classified as a null pointer or synchronization
error, and without being able to examine which bugs
are being classified as which, it is very difficult to
compare two different analysis techniques. The use
of heuristics to eliminate false positives or unimpor-
tant bugs makes it hard even to compare bug counts.

Work on array data dependence analysis showed
that many things other than proposed techniques can

substantially results presented in a paper. For exam-
ple, the kind of induction variable recognition used
often had a far greater impact on the accuracy of the
analysis than the actual array data dependence anal-
ysis technique used. I would not be surprised to find
the same of software defect detection techniques.

OK, fine, so we need to come up with some bench-
marks.

But I’m not sure if benchmarks will cut it.
Most benchmarks are lousy. Benchmarks can be

OK for allowing you to compare two different tech-
niques. But conventional benchmarks can be really
lousy as a basis for trying to build an experimental
understanding of a phenomena. If we put together
a benchmark of 10 programs with a total of 14 null
pointer dereferences, what does that tell us? Not
much.

The problem is that we don’t understand software
defects enough to craft small benchmarks that char-
acterize the types of problems we want to be able
to detect with software defect detection tools. Some
special cases, maybe (e.g., format string vulnerabili-
ties).

But if we want to understand the larger universe of
software defects, we need huge collections of software
defects. This, of course, means a huge collection of
software. And open source repositories can be a good
source of software for research.

But we also need to have some kind of ground truth
as to what is a bug, and how important the bug is.
One possible source for this is bug databases for open
source projects. These bug databases can be pretty
noisy, and matching the bug reports with the actual
lines of code containing the defect or the lines changed
in order to fix the defect is a challenging research

1

problem.
To use open source projects as a basis for studying

software defects, we need

• Results on specific and available versions of
open-source software artifacts.

• Detailed bug reports published in a easy, ma-
chine readable format.

To be truly successful, our community also needs to
choose some specific versions of specific open-source
software artifacts. This would allow

• Artifacts to be examined by multiple researchers.

• Development of standard interchange format for
labeling defects and warnings in the artifacts.

• Some kind of shared information about con-
firmed defects found in the artifact. These con-
firmed defects would arise from bug databases,
change logs, unit tests, or manual inspections.

The Marmoset Project

In addition to using open source, widely used, soft-
ware artifacts for benchmarking, at the University
of Maryland we are using student code as an ex-
perimental basis for studying software defects. This
work is taking place as part of the Marmoset project,
which is an innovative system for student program-
ming project submission and testing. The Marmoset
system provides significant technical, motivational
and pedagogical advantages over traditional project
submission and grading systems, and in particular
helps students strengthen their skills at developing
and using testing.

But of more relevance, the Marmoset system al-
lows us to have students participate in research stud-
ies where we collect every save of every file as they
develop their programming projects. These each are
added to a database, and we compile and run all of
the unit tests on each compilable snapshot. We col-
lect code coverage information from each run, and
also apply static analysis tools such as FindBugs to
each snapshot. Figure 1 shows some data from two
semesters of our second semester OO programming
course (taught in Java).

We have found the tests results to be uniquely valu-
able. It starts letting us have a good approximation
for ground truth. But more importantly, we can look
for defects we weren’t expecting. We didn’t expect to
see so many ClassCast and StackOverflow errors. By

snapshots 108,352
compilable 84,950
unique 68,226
test outcomes 939,745
snapshots with exception:

NullPointer 11,527
ClassCast 4,705
IndexOutOfBounds 3,345
OutOfMemory 2,680
ArrayIndexOutOfBound 2,268
StringIndexOutOfBound 2,124
NoSuchElement 2,123
StackOverflow 2,023

Figure 1: Marmoset Data from CMSC 132

sampling the snapshots where those errors occurred,
we were able to discover new bug patterns, imple-
ment them as static analysis rules, validate them on
student code and use them to find dozens of serious
bugs in production code.

We still have lots of work to do; we’ve only started
to collect code coverage information from our test
runs, and still have to integrate it into our analysis.
The correspondence between defects and exceptions
under test isn’t as direct as we would like, because
one fault can mask other faults, or faults can occur
in code not covered by any test.

Still, we are very excited about the data we are
collecting via the Marmoset project and would love
to talk to other researchers about sharing the data
we’ve collected and rolling the Marmoset system out
to other schools to allow them to start collecting data
for the Marmoset project as well.

2

