Submitted to the Workshop on the Evaluation of Software Defect Detection Tools

Deploying Architectural Support for Software Defect Detection in Future Processors

Yuanyuan Zhou and Josep Torrellas
Department of Computer Science, University of Illinois at Urbana-Champaign
{yyzhou,torrellas} @cs.uiuc.edu

1 Motivation

Recent impressive advances in semiconductor technology are en-
abling the integration of ever more transistors on a single chip. This
trend provides a unique opportunity to enhance processor functional-
ity in areas other than performance, such as in easing software devel-
opment or enhancing software debugging.

Exploring architectural support for software debugging is a re-
search direction of great promise. First, it enables new tradeoffs in
the performance, accuracy, and portability of software defect detec-
tion tools, possibly allowing the detection of new types of defects
under new conditions. Secondly and most importantly, it opens up
a new possibility: on-the-fly software defect detection in production
runs. This last area has been under-explored due to the typically large
overheads of many software solutions.

Table 1 briefly summarizes the architectural supports for software
defect detection that our research group has recently proposed.

Architectural| Description Over-

Support head

ReEnact [1] | Extend the communication monitoring mecha- | 1%
nisms in thread-level speculation to detect and | to
characterize data races automatically on the fly. 13%

iWatcher [4] | Associate program-specified monitoring func- | 4%
tions with memory locations. When any such lo- | to
cation is accessed, the monitoring function is au- | 80%
tomatically triggered with low overhead without
going through the OS.

AccMon [3] | Detect general memory-related bugs by extracting | 0.24X
and monitoring the set of instruction PCs that nor- | to
mally access a given monitored object. 2.88X

SafeMem [2]| Exploit existing ECC memory technology to de- | 1%
tect memory corruption and prune false positives | to
in memory leak detection. 29%

Table 1: Architectural supports for software defect detection recently pro-
posed by our research group.

In general, using architectural support to detect software defects
provides several key advantages over software-only dynamic ap-
proaches:

(1) Performance. Architectural support can significantly lower the
overhead of dynamic monitoring if it eliminates the need for exten-
sive code instrumentation. Such instrumentation may even interfere
with compiler optimizations. Moreover, the hardware can be used
to speed up certain operations. For example, AccMon uses a hard-
ware Bloom filter to filter 80-99% of the accesses that would go to
a software monitor function. As shown in Table 1, hardware sup-
port enables dynamic detection of bugs with orders-of-magnitude less
overhead than commonly existing software-only tools.

(2) Accuracy. Architectural support enables ready access to execution
information that is often hard to obtain with software-only instrumen-
tation. An example is all the accesses to a monitored memory object
and only those — instrumentation-based tools need to check more
memory accesses due to pointer aliasing problems. This capability
is leveraged by iWatcher [4]. Another example of hard to obtain in-
formation is the exact interleaving of the accesses that caused a data
race in a multithreaded program running at production speeds. This
(r:ggeasbility is leverages by ReEnact [1] to detect production-run data

(3) Portability. Architectural support is typically language indepen-
dent, cross module (capable of checking for bugs in third-party li-
braries), and easy to use with low-level system code such as the oper-
ating system. Moreover, it can be designed to work with binary code
without recompilation.

2 Deployment Challenges and Plans

Due to the above advantages, it is highly desirable for software de-
velopers to be able to use architectural support to assist in detecting
software defects. Of course, to make this happen, we need the coop-
eration of processor design companies such as Intel, IBM, AMD, or
Sun Microsystems. To help improve the chances that one or more of
these companies finds it attractive to include architectural support for
software debugging in their processors, we put forward the following
suggestions:

(1) The research communities working on software defect detection
tools and on computer architecture can work together to identify (i)
what are important or difficult-to-catch bugs (e.g. data races) that
need architectural support? and (ii) what architectural extensions can
be added to exisiting processors to help detect these bugs?

The architectural supports that are more likely to succeed are those
that have one or several of the following features: simplicity, general-
ity, reconfigurability and leverage existing hardware. Simple designs
are those that require modest extensions to current processor hard-
ware, such as iWatcher or SafeMem. General designs are those that
can be used for multiple purposes, such as debugging and profiling,
as also exemplified by iWatcher. Reconfigurable designs can easily be
disabled, enabled or reconfigured for other purposes so that hardware
vendors can manufacture only one type of hardware but can configure
it for different users. Finally, designs that leverage existing hardware
and use it for other purposes are likely to be successful. For example,
SafeMem makes novel use of ECC memory for bug detection.

(2) Software companies such as Microsoft with significant leverage
on processor companies can push the latter to provide the necessary
architectural hooks in their processors. Software companies can also
be willing to buy some special “testing” processors (processors with
sophisticated bug detection support) that are priced higher than regu-
lar processors. Similarly, software companies can motivate customers
to buy such processors by offering them incentives such as lower li-
cense fees or better services.

(3) Interest in the topic of architectural support for software produc-
tivity and debuggability can be broadened through workshops, con-
ferences, and funding efforts in this area.

REFERENCES

[1] M. Prvulovic and J. Torrellas. ReEnact: Using Thread-Level Speculation
Mechanisms to Debug Data Races in Multithreaded Codes. In I1SCA, 2003.

[2] F. Qin, S. Lu, and Y. Zhou. SafeMem: Exploiting ECC-Memory for De-
tecting Memory Leaks and Memory Corruption During Production Runs.
In HPCA, Feb 2005.

[3] P. Zhou, W. Liu, F. Long, S. Lu, F. Qin, Y. Zhou, S. Midkiff, and J. Tor-
rellas. AccMon: Automatically Detecting Memory-Related Bugs via Pro-
gram Counter-based Invariants. In Micro, Dec 2004.

[4] P. Zhou, F. Qin, W. Liu, Y. Zhou, and J. Torrellas. iWatcher: Efficient
Architectural Support for Software Debugging. In ISCA, 2004.

