
Is a Bug Avoidable and How Could It Be Found?
Position Statement

Dan Grossman
March 2005

Using automated tools based on programming-language technologies to find software de-
fects (bugs) is a growing and promising field. As a research area less mature than related ones
such as compiler construction, there are not yet widely accepted benchmarks and evaluation
techniques. Though neither surprising nor necessarily bad, the lack of evaluation standards
begs the question of what criteria should guide the inevitable growth of standards by which
research on automated defect detection is judged. I contend that obvious metrics such as
number of bugs and seriousness of bugs found are insufficient: We should also consider the
technologies that led to the bug existing and whether other existing technologies could have
found the bug or rendered it irrelevant.

It is understood that a bug’s seriousness is relevant though difficult to quantify. In
particular, bugs that have little affect on program behavior, bugs that are more expensive to
fix than leave, and bugs for which experts dispute whether the bugs are real should rightfully
be devalued. Leaving such issues aside, let us assume an easy-to-use automated tool finds
serious bugs, the sort that developers acknowledge are errors, want to fix, can fix, do fix,
and believe the result is of value. I believe the research community today would deem such
work a contribution, but in the future the “bar will be raised” in at least two ways.

First, we will learn to devalue bugs that are easily avoidable with known technologies.
For example, suppose a static analysis finds double-free errors in C code, i.e., situations
where free is called more than once on the same object. Further suppose all applications
for which bugs were found were stand-alone desktop applications that ran as fast or faster
when recompiled to use conservative garbage collection. Were these bugs worth finding and
fixing? Should we require the analysis to prove useful on applications for which manual
memory management is considered necessary? As another example, suppose a modified
compiler uses sophisticated run-time data structures to track uninitialized memory and abort
a program if such memory is accessed. Further suppose the program would run without error
or performance loss if the compiler had simply initialized all memory to 0.

Second, we will learn that tools must provide an incremental benefit over the state-of-
the-art. Many tools exist; how is a new one better? It should find different bugs, find them
in a better way (perhaps faster or with less user intervention), or perhaps use a more elegant
approach to finding the same bugs. Would compiling the code with -Wall lead to exactly
one accurate warning for every bug found? Does the tool work only for ten-line programs
that are clearly incorrect when manually examined by an expert? Is the tool strictly less
powerful and more complicated than an existing tool?

In general, it may simply be that it is currently easy to succeed with automated tools
for defect detection because we assume the lowest possible baseline: We find bugs in what-
ever code is available, which was typically compiled without compiler warnings enabled and
without other tools applied to the code. It seems clear this will change, just as the compiler
optimization community must now show that a new optimization is neither made-irrelevant-
by nor trivially-encoded-with existing and widely used optimizations.


