
Workshop on the Evaluation of Software Defect Detection Tools
Sunday, June 12th, 2005

Co-located with PLDI 2005

Workshop co-chairs: William Pugh (University of Maryland) and Jim Larus (Microsoft Research)

Program chair: Dawson Engler (Stanford University)
Program Committee: Andy Chou, Manuvir Das, Michael Ernst, Cormac Flanagan, Dan Grossman, Jonathan Pincus, Andreas Zeller

Time What
8:30 am Discussion on Soundness

The Soundness of Bugs is What Matters, Patrice
Godefroid, Bell Laboratories, Lucent Technologies
Soundness and its Role in Bug Detection Systems,
Yichen Xie, Mayur Naik, Brian Hackett, Alex
Aiken, Stanford University

9:15 am break
9:30 am Research presentations

Locating Matching Method Calls by Mining
Revision History Data, Benjamin Livshits,
Thomas Zimmermann, Stanford University
Evaluating a Lightweight Defect Localization
Tool, Valentin Dallmeier, Christian Lindig,
Andreas Zeller, Saarland University

10:30 am break
10:45 am Invited talk on Deployment and Adoption, Manuvir Das,

Microsoft
11:15 am Discussion of Deployment and Adoption

The Open Source Proving Grounds, Ben Liblit,
University of Wisconsin-Madison
Issues in deploying SW defect detection tools,
David Cok, Eastman Kodak R&D
False Positives Over Time: A Problem in
Deploying Static Analysis Tools, Andy Chou,
Coverity

12 noon lunch
1:00 pm Research presentations

Model Checking x86 Executables with
CodeSurfer/x86 and WPDS++, Gogul
Balakrishnan, Thomas Reps, Nick Kidd, Akash
Lal, Junghee Lim, David Melski, Radu Gruian,
Suan Yong, Chi-Hua Chen, Tim Teitelbaum,
Univ. of Wisconsin
Empowering Software Debugging Through
Architectural Support for Program Rollback, Radu
Teodorescu, Josep Torrellas, UIUC Computer
Science
EXPLODE: A Lightweight, General Approach to
Finding Serious Errors in Storage Systems,
Junfeng Yang, Paul Twohey, Ben Pfaff, Can Sar,
Dawson Engler, Stanford University

Time What
2:30 pm break
2:45 pm Research presentations

Experience from Developing the Dialyzer: A Static
Analysis Tool Detecting Defects in Erlang
Applications, Kostis Sagonas, Uppsala University
Soundness by Static Analysis and False-alarm
Removal by Statistical Analysis: Our Airac
Experience, Yungbum Jung, Jaehwang Kim, Jaeho
Sin, Kwangkeun Yi, Seoul National University

3:45 pm break
4:00 pm Discussion of Benchmarking

Dynamic Buffer Overflow Detection, Michael
Zhivich, Tim Leek, Richard Lippmann, MIT
Lincoln Laboratory
Using a Diagnostic Corpus of C Programs to
Evaluate Buffer Overflow Detection by Static
Analysis Tools, Kendra Kratkiewicz, Richard
Lippmann, MIT Lincoln Laboratory
BugBench: A Benchmark for Evaluating Bug
Detection Tools, Shan Lu, Zhenmin Li, Feng Qin,
Lin Tan, Pin Zhou, Yuanyuan Zhou, UIUC
Benchmarking Bug Detection Tools. Roger
Thornton, Fortify Software
A Call for a Public Bug and Tool Registry, Jeffrey
Foster, Univ. of Maryland
Bug Specimens are Important, Jaime Spacco,
David Hovemeyer, William Pugh, University
Maryland
NIST Software Assurance Metrics and Tool
Evaluation (SAMATE) Project, Michael Kass,
NIST

5:00 pm Discussion of New Ideas

Deploying Architectural Support for Software
Defect Detection in Future Processors, Yuanyuan
Zhou, Josep Torrellas, UIUC
Using Historical Information to Improve Bug
Finding Techniques, Chadd Williams, Jeffrey
Hollingsworth, Univ. of Maryland
Locating defects is uncertain, Andreas Zeller,
Saarland University
Is a Bug Avoidable and How Could It Be Found?,
Dan Grossman, Univ. of Washington

5:45 pm wrap up and discussion of future workshops
6:00 pm done
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Soundness and its Role in Bug Detection Systems

Yichen Xie Mayur Naik Brian Hackett Alex Aiken

Computer Science Department
Stanford University
Stanford, CA 94305

The term soundness originated in mathematical logic: a
deductive system is sound with respect to a semantics if it
only proves valid arguments. This concept naturally extends
to the context of optimizing compilers, where static analysis
techniques were first employed. There, soundness means the
preservation of program semantics, which is the principal
requirement of a correct compiler.

In bug detection systems, soundness means the ability to
detect all possible errors of a certain class. Soundness is
a primary focus of many proposals for bug detection tools.
Tools that do not offer such guarantees are sometimes sum-
marily dismissed as being, well, unsound, without regard to
the tool’s effectiveness.

However, soundness has costs. Beyond the simplest prop-
erties, analysis problems are often statically undecidable and
must be approximated conservatively. These approxima-
tions may be expensive to compute or so coarse that a sub-
stantial burden is imposed on the user in analyzing spurious
warnings (so-called false positives) from the tool.

In our view, successful approaches to bug detection (and
program analysis in general) balance three desirable, but of-
ten competing, costs: soundness, or rather, the cost of false
negatives that result from being unsound; computational
cost; and usability, as measured in the total time invest-
ment imposed on a user. The question “Is soundness good

or bad?” does not make sense by itself. Rather, it can be dis-
cussed only in the context of particular applications where
these costs can be estimated.

This simple, “three cost” model allows us to make a few
observations and predictions about the future of bug detec-
tion tools.

First, we can expect in almost every application area that
widely used unsound tools will precede sound ones, because
imposing soundness as a requirement constrains the design
space sufficiently that it is simply more difficult and time
consuming to find design points that give acceptable usabil-
ity and computational cost. A good historical example is
static type systems, which can be regarded as the canonical
example of an analysis where soundness is very desirable.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
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The most widely used languages of the 1980’s (C and C++)
deliberately had unsound type systems because of perceived
usability and performance problems with completely sound
type systems. The first widely used language with a static
type system intended to be sound (Java) did not appear un-
til the mid-1990’s. As another example, the first successful
checkers for concurrency problems used dynamic analysis
techniques. Because they are dependent on test case cov-
erage, dynamic analyses are unsound almost by definition.
Today there is still no completely satisfactory static checker
for concurrency errors for any mainstream programming lan-
guage. We also note that sound systems are sometimes used
in an unsound way in practice by, for example, turning off
global alias analysis to reduce false positives.

Second, while sound systems will be slower to appear, they
will appear. One can expect widely used sound analyses in
two different classes of applications. In situations where the
extra cost of soundness is minimal there will be no reason
not to be sound. In applications where the cost of a single
missed bug is potentially catastrophic, users will be more
willing to sacrifice usability and performance for soundness.
Areas such as security critical, safety critical, and mission
critical applications are all likely targets for sound analyses.
In general, however, unless a sound analysis can approach
the performance and usability of unsound bug finding tools,
the sound analysis will be used mainly in applications where
the potential cost of unsoundness is highest.

Third, we expect most sound systems will assume at least
some user annotations. As mentioned above, most of the
analysis problems of practical interest are undecidable, and
it is usually impossible to compute both a sound and reason-
ably precise (i.e., nearly complete) analysis for such prob-
lems. However, it is a striking property of many analysis
applications that a small amount of additional information
dramatically lowers the cost from undecidable to, say, lin-
ear time. This phenomenon has been studied extensively in
the area of type theory, where the enormous difference in
many type systems between the computational complexity
of type inference (i.e., analysis with no annotations) and of
type checking (i.e., analysis with user annotations) is well
known. A little extra information can make many very hard
analysis problems quite straightforward. Despite the under-
standable reluctance to impose any extra work, no matter
how small, on users, we expect in most cases adding anno-
tations will be the best path to a practical sound system.
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Abstract

Developing an appropriate fix for a software bug often requires a
detailed examination of the code as well as generation of appro-
priate test cases. However, certain categories of bugs are usually
easy to fix. In this paper we focus on bugs that can be cor-
rected with aone-line code change. As it turns out, one-line
source code changes very often represent bug fixes. Moreover,
a significant fraction of previously known bug categories can be
addressed with one-line fixes. Careless use of file manipulation
routines, failing to callfree to deallocate a data structure, fail-
ing to usestrncpy instead ofstrcpy for safer string manipu-
lation, and using tainted character arrays as the format argument
of fprintf calls are all well-known types of bugs that can typi-
cally be corrected with a one-line change of the program source.

This paper proposes an analysis of software revision histo-
ries to find highly correlated pairs of method calls that naturally
form application-specific useful coding patterns. Potential pat-
terns discovered through revision history mining are passed to a
runtime analysis tool that looks for pattern violations. We focus
our pattern discovery efforts onmatching method pairs. Match-
ing pairs such as〈fopen, fclose〉, 〈malloc, free〉, as well
as〈lock, unlock〉-function calls require exact matching: fail-
ing to call the second function in the pair or calling one of the
two functions twice in a row is an error. We usecommon bug
fixesas a heuristic that allows us to focus on patterns that caused
bugs in the past. The user is presented with a choice of patterns
to validate at runtime. Dynamically obtained information about
which patterns were violated and which ones held at runtime is
presented to the user. This combination of revision history min-
ing and dynamic analysis techniques proves effective for both
discovering new application-specific patternsand for finding er-
rors when applied to very large programs with many man-years
of development and debugging effort behind them.

To validate our approach, we analyzed Eclipse, a widely-
used, mature Java application consisting of more than 2,900,000
lines of code. By mining revision histories, we have discovered
a total of 32 previously unknown highly application-specific
matching method pairs. Out of these, 10 were dynamically con-
firmed as valid patterns and a total of 107 previously unknown
bugs were found as a result of pattern violations.

The first author was supported in part by the National Science Founda-
tion under Grant No. 0326227. The second author was supported by the
Graduiertenkolleg “Leistungsgarantien für Rechnersysteme”.

1 Introduction

Much attention has lately been given to addressing application-
specific software bugs such as errors in operating system
drivers [1, 4], security errors [5, 8], and errors in reliability-
critical embedded software in domains such as avionics [2, 3].
These represent critical errors in widely used software and tend
to get fixed relatively quickly when found. A variety of static
and dynamic analysis tools have been developed to address these
high-profile bugs. However, many other errors are specific to in-
dividual applications or sets of APIs.

Repeated violations of these application-specific coding
rules, referred to aserror patterns, are responsible for a mul-
titude of errors. Error patterns tend to be re-introduced into
the code over and over by multiple developers working on the
project and are a common source of software defects. While
each pattern may be only responsible for a few bugs, taken to-
gether, the detrimental effect of these error patterns is quite se-
rious and they can hardly be ignored in the long term.

In this paper we propose an automatic way to extract likely
error patterns by mining software revision histories. Moreover,
to ensure that all the errors we find are relatively easy to confirm
and fix, we limit our experiments to errors that can be corrected
with a one-line change. When reporting a bug to the develop-
ment team, having a bug that is easy to fix usually improves
the chances that it will actually be corrected. It is worth notic-
ing that many well-known error patterns such as memory leaks,
double-free’s, mismatched locks, operations on operating sys-
tem resources, buffer overruns, and format string errors can of-
ten be addressed with a one-line fix. Our approach uses revision
history information to infer likely error patterns. We then exper-
imentally evaluate the error patterns we extract by checking for
their violations dynamically.

We have performed our experiments on Eclipse, a very large,
widely-used open-source Java application with many man-years
of software development behind it. By mining CVS revision his-
tories of Eclipse, we have identified 32 high-probability patterns
in Eclipse APIs, all of which were previously unknown to us.
While the user of our system has a choice as to which patterns
to check at runtime, in our experiments we limited ourselves to
patterns that were frequently encountered in our revision history
data. Out of these, 10 were dynamically confirmed as valid pat-
terns and 107 bugs were found as a result of pattern violations.
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1.1 Contributions
This paper makes the following contributions:

• We propose adata mining strategythat detects common
matching method pairs patterns in large software systems
by analyzing software revision histories. We also propose
an effective ranking technique for the patterns we discover
that uses one-line changes to favor previously fixed bugs.

• We propose adynamic analysis approachfor validating us-
age patterns and finding their violations. We currently uti-
lize an off-line approach that simplifies the matching ma-
chinery. Error checkers are implemented as simple pattern-
matchers on the resulting dynamic traces.

• We present anexperimental studyof our techniques as
applied to finding errors in Eclipse, a large, mature Java
application with many years of development behind it.
We identified 32 patterns in Eclipse sources and out of
these, 10 patterns were experimentally confirmed as valid.
We found more that 107 bugs representing violations of
these pattern with our dynamic analysis approach.

2 Revision History Mining
To motivate our approach to revision history mining, we start by
presenting a series of observations.

Observation 2.1 Given multiple software components that use
the same set of APIs, it should be possible to findcommon errors
specific to that API.

In fact, much of the research done on bug detection so far can
be thought of as focusing on specific classes of bugs pertain-
ing to particular APIs: studies of operating-system bugs provide
synthesized lists of API violations specific to operating system
drivers resulting in rules such as “do not call the interrupt dis-
abling functioncli() twice in a row” [4].

Observation 2.2 Method calls that are frequently added to
source code simultaneously often represent a usage pattern.

In order to locate common errors, we mine for frequent us-
age patterns in revision histories. Looking at incremental
changes between revisions as opposed to full snapshots of the
sources allows us to better focus our mining strategy. How-
ever, it is important to notice that not every patternmined

File Revision Added method calls

Foo.java 1.12 o1.addListener
o1.removeListener

Bar.java 1.47 o2.addListener
o2.removeListener
System.out.println

Baz.java 1.23 o3.addListener
o3.removeListener
list.iterator
iter.hasNext
iter.next

Qux.java 1.41 o4.addListener
1.42 o4.removeListener

Figure 1: Method calls added across different revisions.

SELECT l.Callee AS CalleeL, r.Callee AS CalleeR,
COUNT(∗) AS SupportCount

INTO pairs FROM items l, items r

WHERE l.FileId = r.FileId
AND l.RevisionId = r.RevisionId
AND l.InitialCallSequence = r.InitialCallSequence

GROUP BY l.Callee, r.Callee;

Figure 2: Find correlated pairs〈CalleeL, CalleeR〉 of methods shar-
ing the initial call sequence, calls to which are added in the same revision
of a file identified byFileId andRevisionId.

by considering revision histories is an actualusagepattern.
Figure 1 lists sample method calls that were added to revi-
sions of filesFoo.java, Bar.java, Baz.java, andQux.java.
All these files contain a usage pattern that says that meth-
ods {addListener, removeListener} must be precisely
matched. However, mining these revisions yields additional
patterns like{addListener, println} and {addListener,
iterator} that are definitelynot usage patterns.

2.1 Mining Approach
In order to speed-up the mining process, we pre-process the re-
vision history extracted from CVS and store this information in
a general-purpose database; our techniques are further described
in Zimmermann et al. [11]. This database contains method calls
that have been inserted in each revision. To determine the calls
inserted between two revisionsr1 andr2, we build abstract syn-
tax trees (ASTs) for bothr1 andr2 and compute the set of all
callsC1 andC2, respectively, by traversing the ASTs.C2 \ C1

is the set of calls inserted betweenr1 andr2.
After the revision history database is set-up, i.e., all calls that

were added are recorded in theitems table, mining is performed
using SQL queries. The query in Figure 2 producessupport
countsfor each method pair, which is the number of times the
two methods were added to revision history together. We per-
form filtering based on support counts to only consider method
pairs that have a sufficiently high support.

2.2 Pattern Ranking
Filtering the patterns based on their support count is not enough
to eliminate unlikely patterns. To better target user efforts, a
ranking of our results is provided. In addition to sorting pat-
terns by their support count, a common ranking strategy in data
mining is to look at the pattern’sconfidence. The confidence de-
termines how strongly a particular pair of methods is correlated
and is computed as

conf (〈a, b〉) =
support(〈a, b〉)
support(〈a, a〉)

Both support count and confidence are standard ranking ap-
proaches used in data mining; however, using problem-specific

SELECT DISTINCT Callee

INTO fixes

FROM (SELECT MIN(Callee)
FROM items GROUP BY FileId, RevisionId

HAVING COUNT(∗) = 1) t;

Figure 3: Find “fixed” methods, calls to which were added in at least
oneone-callcheck-ins. A one-call check-in adds exactly one call, as
indicated byCOUNT(∗) = 1.
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SELECT p.CalleeL, p.calleeR, SupportCount

FROM pairs p, fixes l, fixes r

WHERE p.calleeL = l.Callee
AND p.calleeR = r.Callee

Figure 4: Find pairs from the tablepairs, where both methods had
previously been fixed, i.e., are contained in the tablefixed.

knowledge yields a significantly better ranking of results. We
leverage the fact that in reality some patterns may be inserted
incompletely, e.g., by mistake or to fix a previous error. In Fig-
ure 1 this occurs in fileQux.java, whereaddListener and
removeListener were inserted independently in revisions 1.41
and 1.42. The observation below motivates a novel ranking strat-
egy we use.

Observation 2.3 Small changes to the repository such as one-
line additions are often bug fixes.

This observation is supported in part by anecdotal evidence and
also by recent research into the nature of software changes. A
recent study of the dynamic of small repository changes in large
software systems performed by Purushothaman et al. sheds a
new light on this subject [6]. Their paper points out that almost
50% of all repository changes were small, involving less than 10
lines of code. Moreover, among one-line changes, less than 4%
were likely to cause a later error. Furthermore, only less than
2.5% of all one-line changes wereperfectiveor adding function-
ality (rather thancorrective) changes, which implies that most
one-line check-ins are bug fixes.

We use this observation by marking method calls that are fre-
quently added in one-line fixes ascorrectiveand ranking pat-
terns by the number of corrective calls they contain. The SQL
query in Figure 3 creates tablefixes with all corrective meth-
ods, calls to which were added as one-line check-ins. Finally, as
shown in Figure 4, we find all method pairs wherebothmethods
are corrective. We favor these patterns by ranking them higher
than other patterns.

3 Dynamic Analysis
Similarly to previous efforts that looked at detecting usage
rules [9, 10], we use revision history mining to find common
coding patterns. However, we combine revision history mining
with a bug-detection approach. Moreover, our technique looks
for pattern violations at runtime, as opposed to using a static
analysis technique. This choice is justified by several consider-
ations outlined below.

Scalability. Our original motivation was to be able to analyze
Eclipse, which is one of the largest Java applications ever cre-
ated. The code base of Eclipse contains of more than 2,900,000
lines of code and 31,500 classes. Most of the patterns we are in-
terested in are spread across multiple methods and need a precise
interprocedural approach to analyze. Given the substantial size
of the application, precise whole-program flow-sensitive static
analysis can be prohibitively expensive.

Validating discovered patterns. A benefit of using dynamic
analysis is that we are able to “validate” the patterns we discover
through CVS history mining as real usage patterns by observing
how many times they occur at runtime. While dynamic analysis
is unable to prove properties that hold in all executions, patterns

that are matched many times with only a few violations represent
likely patterns. With static analysis, validating patterns would
not generally be possible unless flow-sensitivemustinformation
is available.

False positives. Runtime analysis does not suffer from false
positives because all pattern violations detected with our system
actually do occur. This significantly simplifies the process of
error reporting and addresses the issue of false positives.

Automatic error repair. Finally, only dynamic analysis pro-
vides the opportunity to fix the problem on the fly without any
user intervention. This is especially appropriate in the case of
matching method pair when the second method call is missing.
While we have not implemented automatic “pattern repair”, we
believe it to be a fruitful future research direction.

While we believe that dynamic analysis is more appropriate
than static analysis for the problem at hand, dynamic analysis
has a few well-known problems of its own. A serious shortcom-
ing of dynamic analysis is its lack of coverage. In our dynamic
experiments, we managed to find runtime use cases for some,
but not all patterns discovered through revision history mining.
Furthermore, the fact that a certain pattern appears to be a strong
usage pattern based on dynamic data should be treated as a a
suggestion, but not a proof.

We use an offline dynamic analysis approach that instruments
all calls to methods that may be included in the method pairs of
interest. We then post-process the resulting dynamic trace to
find properly matched or mismatched method pairs.

4 Preliminary Experience
In this section we discuss our practical experience of apply-
ing our system to Eclipse. Figure 5 lists matching pairs of
methods discovered with our mining technique.1 A quick
glance at the table reveals that many pairs follow a specific
naming strategy such aspre–post, add–remove, andbegin–
end. These pairs could have been discovered by simply pat-
tern matching on the method names. However, a large num-
ber of pairs have less than obvious names to look for, includ-
ing 〈HLock, HUnlock〉, 〈progressStart, progressEnd〉, and
〈blockSignal, unblockSignal〉. Finally, some pairs are very
difficult to recognize as matching method pairs and require a
detailed study of the API to confirm, such as〈stopMeasuring,
commitMeasurements〉, 〈suspend, resume〉, etc. Many more
potentially interesting matching pair patterns become available
if we consider lower support counts; for the experiments we
have only considered patterns with a support of five or more.

We also found some unexpected matching method pairs con-
sisting of a constructor call followed by a method call that at first
we thought ware caused by noise in the data. One such pair is
〈OpenEvent, fireOpen〉. This pattern indicates that all objects
of typeOpenEvent should be “consumed” by passing them into
methodfireOpen. Violations of this pattern may lead to re-
source and memory leaks, a serious problem in long-running
Java program such as Eclipse, which may be open at a devel-
oper’s desktop for days at a time [7].

1The methods in a pair are listed in the order they are supposed to be
executed. For brevity, we only list unqualified method names.
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METHOD PAIR 〈a, b〉 CONFIDENCE SUPPORT

Method a Method b conf ab × conf ba conf ab conf ba count

CORRECTIVERANKING
NewRgn DisposeRgn 0.75 0.92 0.22 49
kEventControlActivate kEventControlDeactivate 0.68 0.83 0.83 5
addDebugEventListener removeDebugEventListener 0.61 0.85 0.72 23
beginTask done 0.59 0.74 0.81 493
beginRule endRule 0.59 0.80 0.74 32
suspend resume 0.58 0.83 0.71 5
NewPtr DisposePtr 0.57 0.82 0.70 23
addListener removeListener 0.56 0.68 0.83 90
register deregister 0.53 0.69 0.78 40
malloc free 0.46 0.68 0.68 28
addElementChangedListener removeElementChangedListener 0.41 0.73 0.57 8
addResourceChangeListener removeResourceChangeListener 0.41 0.90 0.46 26
addPropertyChangeListener removePropertyChangeListener 0.39 0.54 0.73 140
start stop 0.38 0.59 0.65 32
addDocumentListener removeDocumentListener 0.35 0.64 0.56 29
addSyncSetChangedListener removeSyncSetChangedListener 0.34 0.62 0.56 24

REGULAR RANKING
createPropertyList reapPropertyList 1.00 1.00 1.00 174
preReplaceChild postReplaceChild 1.00 1.00 1.00 133
preLazyInit postLazyInit 1.00 1.00 1.00 112
preValueChange postValueChange 1.00 1.00 1.00 46
addWidget removeWidget 1.00 1.00 1.00 35
stopMeasuring commitMeasurements 1.00 1.00 1.00 15
blockSignal unblockSignal 1.00 1.00 1.00 13
HLock HUnlock 1.00 1.00 1.00 9
addInputChangedListener removeInputChangedListener 1.00 1.00 1.00 9
preAddChildEvent postRemoveChildEvent 1.00 1.00 1.00 8
preRemoveChildEvent postAddChildEvent 1.00 1.00 1.00 8
progressStart progressEnd 1.00 1.00 1.00 8
CGContextSaveGState CGContextRestoreGState 1.00 1.00 1.00 7
annotationAdded annotationRemoved 1.00 1.00 1.00 7
OpenEvent fireOpen 1.00 1.00 1.00 7
addInsert addDelete 1.00 1.00 1.00 7

Figure 5: Matching method pairs discovered through CVS history mining. The support count iscount , the confidence for{a} ⇒ {b} is conf ab ,
for {b} ⇒ {a} it is conf ba . The pairs are ordered byconf ab × conf ba .

4.1 Experimental Setup
In this section we describe our revision history mining and dy-
namic analysis setup. When we performed the pre-processing
on Eclipse, it took about four days to fetch all revisions over
the Internet because the complete revision data is about 6GB in
size and the CVS protocol is not well-suited for retrieving large
volumes of history. Computing inserted methods by analyzing
the ASTs and storing this information in a database took about
a day.

Figure 6 summarizes our dynamic results. Because the in-
cremental cost of checking for additional patterns at runtime is
generally low, when reviewing the patterns for inclusion in our
dynamic experiments, we were fairly liberal in our selection.
We usually either looked at the method names involved in the
pattern or briefly examined a few usage cases. We believe our
setup to be quite realistic, as we cannot expect the user to spend
hours poring over the patterns. Overall, 50% of all patterns we
chose turned out to be either usage or error patterns; had we been
more selective, a higher percentage of patterns would have been
confirmed dynamically. To obtain dynamic results, we ran each
application for a few minutes, which typically resulted in a few
hundred or thousand dynamic events being generated.

After we obtained the dynamic results, the issue of how to
count errors arose. A single pattern violation at runtime involves
one or more objects. We can obtain adynamic countby counting
how many different objects participated in a particular pattern
violation during program execution. The dynamic error count

is highly dependent on how we use the program at runtime and
can be easily influenced by, for example, rebuilding a project in
Eclipse multiple times. However, dynamic counts are not rep-
resentative of the work a developer has to do to fix an error, as
many dynamic violations can be caused by the same error in the
code. To provide a better metric on the number of errors found
in the application code, we also compute astatic count. This
is done by mapping each method participating in a pattern to a
static call site and counting the number of unique call site com-
binations that are seen at runtime. Static counts are obtained for
both validated and violated dynamic patterns.

Dynamic and static counts are shown in parts 2 and 3 of the
table, respectively. The rightmost section of the table shows a
classification of the patterns. We use information about how
many times each pattern is validated and how many times it is
violated to classify the patterns. Letv be the number of validated
instances of a pattern ande be the number of its violations. We
define an error thresholdα = min(v/10, 100). Based on the
validation and violation countsv ande, patterns can be loosely
classified into the following categories:

• Likely usage patterns: patterns with a sufficiently high
support that are mostly validated with relatively few errors
(e < α ∧ v > 5).

• Likely error patterns : patterns that have a significant
number of validated cases as well as a large number of
violations (α ≤ e ≤ 2v).

• Unlikely patterns: patterns that do not have many vali-
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METHOD PAIR 〈a, b〉 DYNAMIC EVENTS STATIC EVENTS PATTERN TYPE

Method a Method b Validated Errors Validated Errors Usage Error Unlikely

CORRECTIVERANKING

addDebugEventListener removeDebugEventListener 4 1 4 1 X
beginTask done 334 642 42 21 X
beginRule endRule 7 0 4 0 X
addListener removeListener 118 106 35 26 X
register deregister 1,279 313 6 7 X
addResourceChangeListener removeResourceChangeListener 25 4 19 4 X
addPropertyChangeListener removePropertyChangeListener 1,789 478 55 25 X
start stop 40 36 9 12 X
addDocumentListener removeDocumentListener 39 1 14 1 X

Result subtotals for the corrective ranking scheme: 3,635 1,581 188 97 2 5 2

REGULAR RANKING

preReplaceChild postReplaceChild 40 0 26 0 X
preValueChange postValueChange 63 2 11 2 X
addWidget removeWidget 1,264 16 5 2 X
preRemoveChildEvent postAddChildEvent 0 172 0 3 X
annotationAdded annotationRemoved 0 8 0 2 X
OpenEvent fireOpen 0 3 0 1 X

Result subtotals for the regular ranking scheme: 1,367 201 42 10 3 0 3

OVERALL TOTALS : 5,002 1,782 230 107 5 5 5

Figure 6: Result summary for the validated usage and error patterns in Eclipse.

dated cases or cause too many errors to be usage patterns
(e > 2v ∨ v ≤ 5).

About a half of all method pair patterns that we selected from
the filtered mined results were confirmed as likely patterns, out
of those 5 were usage patterns and 5 were error patterns.

Overall, corrective ranking was significantly more effective
than regular ranking schemes that are based on the product of
confidence values. The top half of the table that addresses
patterns obtained with corrective ranking contains 16 matching
method pairs; so does the second half that deals with the pat-
terns obtained with regular ranking. Looking at the subtotals for
each ranking scheme reveals 188 static validating instances with
corrective ranking vs only 42 for regular ranking; 97 static error
instances are found vs only 10 for regular ranking. Finally, 7 pat-
terns found with corrective ranking were dynamically confirmed
as either error or usage patterns vs 3 for regular ranking. This
confirms our belief that corrective ranking is more effective.

5 Conclusions
In this paper we presented an approach for discovering matching
method pair patterns in large software systems and finding their
violations at runtime. Our framework uses information obtained
by mining software revision repositories in order to find good
patterns to check. User input may be used to further restrict the
number of checked patterns. Checking of patterns occurs during
program execution, with the help of dynamic instrumentation.

We experimentally evaluated our system on Eclipse, a very
large Java application totalling more than 2,900,000 lines of
code shows that our approach is highly effective at finding a
variety of previously unknown patterns. Overall, we discovered
a total of 32 matching method pairs in our benchmarks. Out
of these, 5 turned out to be dynamically confirmed usage pat-
terns and 5 were frequently misused error patterns responsible
for many of the bugs. Our ranking approach that favors correc-
tive ranking overperformed the traditional data mining ranking

strategies at identifying good patterns. In our experiments, 1,782
dynamic pattern violations were responsible for a total of 107
dynamically confirmed errors in the source code.
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ABSTRACT
AMPLE locates likely failure-causing classes by comparing
method call sequences of passing and failing runs. A differ-
ence in method call sequences, such as multiple deallocation
of the same resource, is likely to point to the erroneous class.
In this paper, we describe the implementation of AMPLE as
well as its evaluation.

1. INTRODUCTION
One of the most lightweight methods to locate a failure-
causing defect is to compare the coverage of passing and
failing program runs: A method executed only in failing
runs, but never in passing runs, is correlated with failure
and thus likely to point to the defect. Some failures, though,
come to be only through a sequence of method calls, tied to
a specific object. For instance, a failure may occur because
some API is used in a specific way, which is not found in
passing runs.

To detect such failure-correlated call sequences, we have de-
veloped AMPLE1, a plugin for the development environment
Eclipse that helps the programmer to locate failure causes
in Java programs. AMPLE works by comparing the method
call sequences of passing JUnit test cases with the sequences
found in the failing test (Dallmeier et al., 2005). As a re-
sult, AMPLE presents a class ranking with those classes at
the top that are likely to be responsible for the failure. A
programmer looking for the bug thus is advised to inspect
classes in the presented order.

Figure 1 presents a programmer’s view of AMPLE as a plu-
gin for Eclispe. The programmer is working on the source
code for the AspectJ compiler for which a JUnit test case
has failed, as was reported in AspectJ bug report #30168.
AMPLE instruments the classes of AspectJ on the byte-code
level and runs the failing test for observation again, as well
a passing test case. As a result, it presents a class ranking

1Analyzing Method Patterns to Locate Errors

Weight of class. A 
heavy class in a 
failing test initiates  
many calls  that are 
absent in a passing 
test.

JUnit Test cases

Selected failed JUnit 
test case for AMPLE 
to analyze

Classes AMPLE 
considers suspects 
for the failure, 
ranked by weight.

Figure 1: The AMPLE plugin in Eclipse: based on
one passing and one failing JUnit test case, AM-

PLE presents a class ranking in the view Deviat-
ing Classes. High-ranking classes are suspect be-
cause their behavior deviated substantially between
passing and failing runs. The AspectJ bug #30168
shown was fixed in the class at position #10, out of
2,929 classes. Our improved ranking algorithm now
places the class at position #6.

in view Deviating Classes; each class is associated with a
weight—its likeliness to be responsible for the failure. The
actual bug was fixed in class ThisJoinPointVisitor, ranked
at position 6, out of 997 classes.

While such anecdotal evidence for the predictive power of
AMPLE is nice, we had to evaluate AMPLE in a more system-
atic way. In this paper, we briefly describe the implementa-
tion of AMPLE (Section 2), before discussing its evaluation
(Section 3) as well as related work (Section 4). In Section 5,
we describe our experiences from the evaluation, and make



suggestions for future similar evaluations.

2. AMPLE IN A NUTSHELL
AMPLE works on a hypothesis first stated by Reps et al.
(1997) and later confirmed by Harrold et al. (1998): faults
correlate with differences in traces between a correct and a
faulty run. A trace is a sequence of actions observed over
the lifetime of a program. AMPLE traces the control flow
of a class by observing the calls invoked from within its
methods. To rank classes, AMPLE compares the method
call sequences from multiple passing runs and one failing
run. Those classes that call substantially different methods
in the failing run than in a passing run are suspect. These
are ranked higher than classes that behave similarly in both
runs.

AMPLE captures for each object the sequence of methods
it calls. To gather such a trace, it instruments the program
on the byte-code level using BCEL (Dahm, 1999). However,
capturing the trace of calls for every object in a program is
unfeasable for a number of reasons: the amount of trace data
would lead to a high runtime overhead (Reiss and Renieris,
2001). While objects initiate calls they have no source-code
representation, only classes do. We therefore rather need
a characterization for classes. And finally, the differences
between traces need to be qualified, just comparing traces
for equality would be too coarse.

AMPLE’s solution to these issues are call-sequence sets. A
call-sequence set contains short sequences of consecutive calls
initiated by an object. A call-sequence set is computed from
a trace by sliding a window over it: given a string of calls
S = 〈m1, . . . , mn〉 and a window width k, the call-sequence
set P (S, k) holds the k-long substrings of S: P (S, k) = {w |
w is a substring of S ∧ |w| = k}. For example, consider a
window of size k = 2 slid over S and the resulting set of
sequences P (S, 2):

S = 〈abcabcdc〉 P (S, 2) = {ab, bc, ca, cd, dc}

Call-sequence sets have many advantages over traces: (1)
they are compact because a trace typically contains the
same substring many times; (2) call-sequence sets can be
aggregated: we obtain a characterization of a class by ag-
gregating the call-sequence sets of its objects; and (3), call-
sequence sets are meaningful to compare, in particular the
call-sequence sets from different runs of the same class.

To find classes whose behavior differs between passing and
failing runs, AMPLE computes a call-sequence set for each
class in the failing and passing runs. Looking at all call
sequences observed for a class, it finds some call sequences
common to all runs, some that occurred only in passing
runs, and others that occurred only in failing runs. Each
call sequence is weighted such that sequences that occur in
the failing run, but never or seldom in passing runs, are
assigned a larger weight than common call sequences.

Given these weights for sequences, a class is characterized by
its average call-sequence weight. Classes with a high average
sequence weight exhibit many call sequences only present
in the failing run, and thus are prime suspects. As a re-
sult, classes are ranked by decreasing average call-sequence
weight, as shown in Figure 1.

Version Classes LOC Faults Tests Drivers

1 16 4334 7 214 79
2 19 5806 7 214 74
3 21 7185 10 216 76
5 23 7646 9 216 76

total 24971 33

Table 1: Four versions of NanoXML, the subject of
our controlled experiment.

Call-sequences sets can be computed directly, without cap-
turing a trace first. The resulting runtime and memory over-
head varies widely, depending on the number of objects that
a program instantiates. We measured for the SPEC bench-
mark (SPEC, 1998) a typical runtime-overhead factor of 10
to 20, as well as a memory-overhead factor of two. While this
may sound prohibitive, it is comparable to the overhead of
a simpler coverage analysis with JCoverage (Morgan, 2004).
We also believe that statistical sampling, as proposed by Li-
blit et al. (2003), can reduce the overhead for programs that
instantiate many objects.

3. EVALUATION
For the systematic evaluation of AMPLE, we picked Nano-
XML as our test subject. NanoXML is a small, non-valida-
ting XML parser implemented in Java that Do et al. (2004)
have pre-packed as a test subject. It is intended for the eval-
uation of testing methods and can be obtained2 by other
researchers directly from Do and others, which ensures re-
producibility and comparability of our results.

The package provided by Do et al. includes the source code
of five development versions, each comprising between 16
and 22 classes (Table 1). Part of the package are 33 defects
that may be individually activated in the NanoXML source
code. These defects were either found during the develop-
ment of NanoXML, or seeded by Do and others.

The NanoXML package also contains over 200 test cases. Re-
lated test cases are grouped by test drivers, of which there
are about 75. Test cases and defects are related by a fault
matrix, which is also provided. The fault matrix indicates
for any test, which of the defects it uncovers. Because de-
velopment version 4 lacked a fault matrix, we could only use
the other four versions listed in Table 1 for the evaluation
of AMPLE.

3.1 Experimental Setup
The main question for our evaluation was: How well does
AMPLE locate the defect that caused a given failure? To
model this situation, we selected test cases from NanoXML

that met all of the following conditions:

• We let AMPLE analyze a version of NanoXML with one
known defect, which manifests itself in a faulty class.

• As failing run, we used a test case that uncovered the
known defect.

2from http://csce.unl.edu/~galileo/sir/



• As passing runs, we selected all test cases that did not
uncover the known defect.

• All test cases for passing and failing runs must belong
to the same driver. This limits the number of pass-
ing runs to those that are semantically related to the
failing run.

Altogether, we found 386 such situations, which therefore
lead to 386 class rankings. Each ranking included one class
with a known defect.

Note that AMPLE also works for test cases whose failure is
caused by a combination of bugs or bugs whose fix involves
more than one class. However, we did not evaluate these
settings.

3.2 Evaluation Results
To evaluate a class ranking, we consider a ranking as advice
for the programmer to inspect classes in the presented or-
der until she finds the faulty class. In the experiment, the
position of the known faulty class reflects the quality of the
ranking: the higher the faulty class is ranked, the better
the ranking. More precisely, we took the search length as
the measure of quality: the number of classes atop of the
faulty class in the ranking. This is the number of classes a
programmer must inspect before she finds the faulty class.

Table 2 shows the average search length values over 386
rankings for various window sizes k. The numbers in row
Object present the search length computed from sequence
sets as discussed in Section 2. For example, with a window
size k = 7, a programmer would have to inspect 1.98 classes
in vain before finding the faulty class.

The numbers in row Class stem from an alternative way
to compute sequence sets: rather than computing sequence
sets per object and joining them into one sequence set per
class, one sequence set per class is computed directly. This
should be problematic for threaded programs (which Nano-
XML isn’t)—details can be found in Dallmeier et al. (2005).

3.3 Discussion
A comparison with random guessing provides a partial an-
swer for how good the numbers in Table 2 are. On average, a
test run of NanoXML utilizes 19.45 classes, from which 10.56
are actually executed. Without any tool support or prior
knowledge, a programmer on average would have to inspect
half of these before finding the faulty class. This translates
into a search length of (10.56−1)/2 = 4.78 when considering
only executed classes, or 9.22 when considering all classes.
All observed search lengths are better than random guess-
ing, even under the assumption that the programmer could
exclude non-executed classes (which is unlikely without tool
support). Hence, AMPLE’s recommendations are useful.

The search length in Table 2 is minimal for window sizes
around 4 and 5. We have not analyzed this in detail but find
the following plausible: larger window sizes in general pro-
vide more useful context than smaller window sizes, which
leads to smaller search lengths. But large window sizes re-
quire objects to be long-lived in order to fill the window.
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Figure 2: Distribution of search length for Nano-
XML. Using a window size of 7, the defective class is
pinpointed (search length 0) in 38% of all test runs.

With larger window sizes fewer such objects exist, leading
to a higher search length. These two opposing forces seem
to balance out for window sizes around 4 and 5.

For the average search length to be meaningful, the search
length must be distributed normally. Since we could not
be sure of this, we examined the actual distribution of the
search length. Figure 2 shows the distribution for selected
window sizes and confirms the usefulness of AMPLE: with a
search length of 2, the faulty class can be found in 50% to
60% of all cases, and in 38% of all cases for k = 7, the faulty
class is right at the top of the ranking.

Does AMPLE perform better than existing techniques? This
question is much harder to answer because the technique
closest to ours works on the level of statements, rather than
classes: defect localization based on coverage in Tarantula
compares the statement coverage of passing and failing runs
(Jones et al., 2002). Statements executed more often in
failing runs than in passing runs are more likely to have
caused a failure. While this technique also assigns a weight
to source code entities, it does it at a much finer granularity,
which makes a direct comparison infeasible.

We have argued in Dallmeier et al. (2005) by analogy. A
window size of one is equivalent to coverage analysis: the
sequence-call set for a window size of k = 1 holds just the ex-
ecuted methods. Since the search length for all call-sequence
sets with a window size k ≥ 2 is smaller, the extra con-
text provided by a larger window is obviously useful. This
suggests that call-sequence sets outperform pure coverage
analysis.

We admit that suggesting entire classes for inspection is
quite coarse-grained. Individual methods could be suggested
for inspection by taking into account not the class, but the
method that invokes a call. This is planned for future work.

3.4 Does it Scale?
While we were satisfied with the results from our systematic
evaluation of NanoXML, we expected critics to find Nano-
XML too small a subject. After all, AMPLE saved us only the
inspection of less than three classes on average, compared
to random guessing. We therefore recently complemented
our evaluation with the AspectJ compiler as another test
subject (Dallmeier, 2005).



Window Size Random Guess

Subject Trace 1 2 3 4 5 6 7 8 9 10 Executed All

NanoXML Object 2.53 2.31 2.19 2.17 2.04 2.00 1.98 2.12 2.15 2.14 4.78 9.22
Class 2.53 2.35 2.22 2.14 2.03 2.04 2.03 2.02 2.22 2.25 4.78 9.22

AspectJ Object 32.4 31.8 30.8 10.2 8.6 23.4 22.6 23.8 24.4 24.0 209 272
Class 32.4 32.2 34.8 12.8 12.4 25.2 24.8 25.2 25.2 25.6 209 272

Table 2: Evaluation of class rankings. A number indicates the average search length: the number of classes
atop of the faulty class in a ranking. The two rightmost columns indicate these numbers for a random ranking
when (1) considering only executed classes, (2) all classes.

Size (LOC)

Bug ID Version Defective Class Class Fix

29691 1.1b4 org.aspectj.weaver.patterns.ReferencePointcut 294 4
29693 1.1b4 org.aspectj.weaver.bcel.BcelShadow 1901 8
30168 1.1b4 org.aspectj.ajdt.internal.compiler.ast.ThisJoinPointVisitor 225 20
43194 1.1.1 org.aspectj.weaver.patterns.ReferencePointcut 299 4
53981 1.1.1 org.aspectj.ajdt.internal.compiler.ast.Proceed 133 19

Table 3: Bugs in AspectJ used for the evaluation of AMPLE.

AspectJ is a compiler implemented in Java and consists in
version 1.1.1 of 979 classes, representing 112,376 lines of
code. Unlike NanoXML, it does not come pre-packed with a
set of defects, and therefore it was not possible to use it in a
systematic evaluation. But its developers have collected bug
reports and provide a source code repository which docu-
ments how bugs were fixed. From these we could reconstruct
passing and failing test cases for the further evaluation of
AMPLE.

In order to obtain results comparable with our evaluation
using NanoXML, we restricted ourself to bugs whose fixes
involved only one Java class; Table 3 shows the 5 bugs that
we found, and Table 2 the observed average search lengths
for window sizes up to 10.

The average search lengths in Table 2 confirm that AM-

PLE scales to large programs and works for real-world bugs.
Again, rankings for a window size of k = 1 perform worse
than wider windows. Compared with random guessing, AM-

PLE saves the programmer the inspection of 177 classes.

4. RELATED WORK
Locating defects that cause a failure is a topic of active re-
search that has proposed methods ranging from simple and
approximative to complex and precise.

Comparing multiple runs. The work closest to ours is
Tarantula by Jones et al. (2002). Like us, they compare
a passing and a failing run for fault localization, albeit at a
finer granularity: Tarantula computes the statement cov-
erage of C programs over several passing and one failing run.
While a direct comparison is difficult, we have argued by
analogy in Section 3.3 that sequence sets as a generalization
of coverage perform better.

Data anomalies. Rather than focusing on diverging con-
trol flow, one may also focus on differing data. Dynamic

invariants, pioneered by Ernst et al. (2001), is a predicate
for a variable’s value that has held for all program runs dur-
ing a training phase. If the predicate is later violated by
a value in another program run this may signal an error.
Learning dynamic invariants takes a huge machine-learning
apparatus; a more lightweight technique for Java was pro-
posed by Hangal and Lam (2002).

Isolating failure causes. To localize defects, one of the
most effective approaches is isolating cause transitions be-
tween variables, as described by Cleve and Zeller (2005).
Again, the basic idea is to compare passing and failing runs,
but in addition, the delta debugging technique generates
and tests additional runs to isolate failure-causing variables
in the program state (Zeller, 2002). Due to the systematic
generation of additional runs, this technique is precise, but
also demanding—in particular, one needs a huge apparatus
to extract and compare program states. In contrast, collect-
ing call sequences is far easier to apply and deploy.

5. CONCLUSIONS AND CONSEQUENCES
Like other defect detection tools, AMPLE can only make
an educated guess about where the defect in question might
be located. At a very fundamental level, this is true for any
kind of defect detection: If we define the defect as the part of
the code that eventually was fixed, no tool can exactly locate
a defect, as this would mean predicting future actions of the
programmer. With AMPLE, we make that guess explicit—
by ranking source code according to the assigned probability.

Such a ranking has the advantage of providing a straight-
forward measure of the tool’s precision. The model behind
the ranking is that there is an ideal programmer who can
spot defects by looking at the code, and thus simply work
her way through the list until the “official” defect is found.
Thus, the smaller the search length, the better the tool.

To demonstrate the advance beyond the state of the art,



the ranking must obviously be better than a random rank-
ing (which we showed for AMPLE), but also be better than
a ranking as established by previously suggested techniques
(which we also showed for AMPLE, but using an analogon
rather than the real tool). This also requires that the test
suites are publicly available, and that the rankings, as ob-
tained by the tools, are fully published. This way, we can
establish a number of benchmarks by which we can compare
existing tools and techniques.

All this comes with a grain of salt: AMPLE starts with a
given failure. Hence, we know that a defect must exist some-
where in the code; the question is where to locate it. Static
analysis tools, in contrast, are geared towards the future,
and help preventing failures rather than curing them. For a
static analysis tool, the central issue is not so much where
a defect is located, but whether a code feature should be
flagged as defect or not.

Nonetheless, ranking is still a way to go here: Rather than
setting a threshold for defects and non-defects, a static anal-
ysis tool could simply assign each piece of code a computed
probability of being defective. If a caller and a callee do
not match, for instance, both could be flagged as potential
defects (although only one needs to be fixed). Again, such
a probability could end in a ranking of locations, which can
be matched against the “official” defects seeded into the test
subject, or against a history of “official” fixes: “If the pro-
grammer examines the 10% of the ranked locations, she will
catch 80% of the defects.” Again, these are figures which
can be compared for multiple defect detection tools.

While developing AMPLE, we found that such benchmarks
help a lot in directing our research—just like test-driven de-
velopment, we established a culture of “benchmark early,
benchmark often”. Comparing against other work is fun
and gives great confidence when defending the results. We
therefore look forward to the emergence of standard bench-
marks which will make this young field of defect detection
rock-solid and fully respected.

References
Holger Cleve and Andreas Zeller. Locating causes of pro-

gram failures. In Proc. 27th International Conference of
Software Engineering (ICSE 2005), St. Louis, USA, 2005.
To appear.

Markus Dahm. Byte code engineering with the JavaClass
API. Technical Report B-17-98, Freie Universität Berlin,
Institut für Informatik, Berlin, Germany, July 07 1999.
URL http://www.inf.fu-berlin.de/~dahm/JavaClass/

ftp/report.ps.gz.

Valentin Dallmeier. Detecting failure-related anomalies in
method call sequences. Diploma thesis, Universität des
Saarlandes, Fachbereich Informatik, Saarbrücken, Ger-
many, March 2005.

Valentin Dallmeier, Christian Lindig, and Andreas Zeller.
Lightweight defect localization for Java. In Andrew
Black, editor, European Conference on Object-Oriented
Programming (ECOOP), Lecture Notes in Computer Sci-
ence. Springer, July 2005. To appear. Also available from
http://www.st.cs.uni-sb.de/papers/dlz2004/.

Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. In-
frastructure support for controlled experimentation with
software testing and regression testing techniques. In In-
ternational Symposium on Empirical Software Engineer-
ing, pages 60–70, Redondo Beach, California, August
2004.

Michael D. Ernst, Jake Cockrell, William G. Griswold, and
David Notkin. Dynamically discovering likely program
invariants to support program evolution. IEEE Transac-
tions on Software Engineering, 27(2):1–25, February 2001.
A previous version appeared in ICSE ’99, Proceedings of
the 21st International Conference on Software Engineer-
ing, pages 213–224, Los Angeles, CA, USA, May 19–21,
1999.

Sudheendra Hangal and Monica S. Lam. Tracking down soft-
ware bugs using automatic anomaly detection. In Proceed-
ings of the 24th International Conference on Software En-
gineering (ICSE-02), pages 291–301, New York, May 19–
25 2002. ACM Press.

Mary Jean Harrold, Gregg Rothermel, Rui Wu, and Liu Yi.
An empirical investigation of program spectra. In ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering (PASTE’98), ACM SIG-
PLAN Notices, pages 83–90, Montreal, Canada, July
1998.

James A. Jones, Mary Jean Harrold, and John Stasko. Vi-
sualization of test information to assist fault localization.
In Proc. International Conference on Software Engineer-
ing (ICSE), pages 467–477, Orlando, Florida, May 2002.

Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jor-
dan. Bug isolation via remote program sampling. In Jr.
James B. Fenwick and Cindy Norris, editors, Proceedings
of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation (PLDI-03), volume
38, 5 of ACM SIGPLAN Notices, pages 141–154, New
York, June 9–11 2003. ACM Press.

Peter Morgan. JCoverage 1.0.5 GPL, 2004. URL http:

//www.jcoverage.com/.

Steven P. Reiss and Manos Renieris. Encoding program ex-
ecutions. In Proceedings of the 23rd International Confer-
ence on Software Engeneering (ICSE-01), pages 221–232,
Los Alamitos, California, May12–19 2001. IEEE Com-
puter Society.

Thomas Reps, Thomas Ball, Manuvir Das, and Jim Larus.
The use of program profiling for software maintenance
with applications to the year 2000 problem. In M. Jazayeri
and H. Schauer, editors, Proceedings of the Sixth Euro-
pean Software Engineering Conference (ESEC/FSE 97),
pages 432–449. Lecture Notes in Computer Science Nr.
1013, Springer–Verlag, September 1997.

SPEC. SPEC JVM98 benchmark suite. Standard Perfor-
mance Evaluation Corporation, 1998.

Andreas Zeller. Isolating cause-effect chains from computer
programs. In William G. Griswold, editor, Proceedings
of the Tenth ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering (FSE-02), volume 27, 6
of Software Engineering Notes, pages 1–10, New York,
November 18–22 2002. ACM Press.

http://www.inf.fu-berlin.de/~dahm/JavaClass/ftp/report.ps.gz
http://www.inf.fu-berlin.de/~dahm/JavaClass/ftp/report.ps.gz
http://www.st.cs.uni-sb.de/papers/dlz2004/
http://www.jcoverage.com/
http://www.jcoverage.com/


The Open Source Proving Grounds
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Open source software is an attractive target when devel-
oping and evaluating software defect detection tools. This
position paper discusses some of the benefits and chal-
lenges I have encountered as a researcher interacting with
the open source community.

The Cooperative Bug Isolation Project (CBI) explores
ways to identify and fix bugs in widely deployed software.
We use a mix of lightweight instrumentation and statisti-
cal modeling techniques to reveal failure patterns in large
numbers of end user runs. The ultimate validation of the
CBI approach comes when real data from real users helps
us find real bugs in real code. Thus, field deployment is
a key component of this project. CBI offers instrumented
binaries for several popular open source programs for any-
one to download and use.

An Open Marketplace of Code and Ideas

Most open source projects expose their entire develop-
ment process to the public. This includes much more than
just source code. Certainly, I can grab millions of lines of
code at any hour of the day or night. However, the more
disciplined projects also have revision histories, design
documents, regression test suites, bug tracking systems,
release schedules. . . all the trappings of “real” software
development, free for the taking. All of this comes with
no nondisclosure agreements, no lawyers, and no limits
on publication of potentially embarrassing defect data.

Furthermore, open source software has gained enough
market- and mind-share that it is seen as realistic. Sci-
entific progress demonstrated on open source software is
assumed to apply equally well to proprietary systems and
to software engineering in general. In the marketplace of
research, open source is now considered legitimate.

Openness also facilitates feedback of defect findings to
project developers. As CBI discovers bugs in target appli-
cations, we report them using the same bug tracking sys-
tems used by the developers themselves. Our bug reports
must compete with all others for developers’ attention. If
our reports are clear and describe important bugs, we gain
credibility and our patches are accepted gladly. Uninfor-
mative or unimportant reports languish. Thus, observing
how developers respond to the information we provide is

itself an important part of evaluating our tools. The trans-
parency of open source projects makes this process much
easier to observe.

At the same time, open source licenses mean we don’t
need developers’ permission, and there’s not much they
could do to either help or hinder our work. As one de-
veloper put it, if there’s even a tiny chance that CBI will
find a single bug, he’s all in favor of it, and in any case it
costs him nothing to let us try. A disadvantage stemming
from this openness is that open sourcedistributors are
only loosely connected to many open sourcedevelopers.
It has been difficult to convert developer enthusiasm into
a truly large scale deployment backed by any commercial
open source vendor such as Red Hat or Novell. Ultimately
the challenges here are no different from the challenges
faced in partnering with any large company. Even so, it
can come as a surprise that the lead developer on a project
has little or no influence on a third-party Linux vendor that
does not pay his salary and simply downloads his source
code just like everyone else.

Finding a User Community

Many open source projects feel that because they provide
source, they are under no obligation to provide compiled
binaries. However, these applications can be quite com-
plex with many dependencies that make them difficult for
end users to build. For research that includes dynamic
analysis of deployed software, this source/binary gap cre-
ates an opportunity for barter with end users. I spend the
time to build clean, tested, installable binary packages of
open source applications for CBI. In exchange, the users
who download these packages agree to provide me with
the raw data I need to do my research. Several people
have told me that they use CBI releases simply because
they are the easiest way to get the desired applications in-
stalled and running on their machines.

This approach to finding users has some disadvantages
as compared with piggybacking on a commercial release.
It is easy to get a few users this way, but hard to get truly
large numbers. All the traffic CBI accrues from down-
load links cannot come close to what Microsoft would
get by instrumenting even a small fraction of, say, shrink-
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wrapped Office 2003 CD’s. Anything requiring an ex-
plicit download and install naturally selects for a more
technical user base whose behavior may not be represen-
tative of software usage patterns in general. In spite of
these factors, the relative ease with which one can get a
small user community makes binary distribution of open
source applications an attractive option for research in-
volving deployed software.

Effects of Shortened Release Cycles

Open source projects typically release new versions ear-
lier and more often than their commercial equivalents.
This can be an advantage or a disadvantage from a re-
search perspective. Early releases make projects’ “dirty
laundry” more visible. When hunting for bugs, early re-
leases from young open source projects are a target-rich
environment. Feedback provided to developers can be
incorporated quickly; one project posted a new release
specifically in response to bugs reported by CBI. As noted
above, enthusiastic developer response is strong valida-
tion for any defect detection tool.

On the other hand, it can be difficult for software qual-
ity researchers to keep up with a moving target. CBI de-
pends on accumulating many examples of good and bad
runs. If new releases come out every few weeks, there is
little time to accumulate data for any single snapshot of
the code. However, if we stop tracking each new release,
then users eager to try the latest and greatest may wander
elsewhere. With access to many binary providers, as well
as the source itself, users have no strong reason to stay
in one place. Commercial providers have a more captive
audience. Combined with longer release cycles, this gives
researchers operating in a commercial environment more
time to collect data for analysis.

Conclusions

In hindsight, I have found that working with open source
makes it easier to get started, but perhaps harder to get fin-
ished. The barriers to entry are low, making it very easy
to try out any crazy scheme that comes to mind. A tool
can sail or sink based on its technical merits, and feed-
back from real developers is a fast and direct validation
channel. On the other hand, the decentralized nature of
open source development means there is no clearly de-
fined decision maker. There is no one who can declare
by executive fiat that his engineering team will henceforth
use my tools on all their millions of lines of code. Small
deployments are easy to arrange, but large ones are diffi-
cult. Researchers working outside a commercial environ-
ment should keep these trade-offs in mind as they consider
using open source as a proving grounds for their work.
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In any technology, there is a large gap between a research prototype and a working, useful product; this is no less 
true with tools that embody complex, novel software technology.   The various software defect detection tools 
available today, typically as some variation of open source software, exemplify this.  The most successful are 
backed by a sizable research group with long-term research objectives that use the tool as a platform; the deploying 
of the tool requires considerable investment of time in careful coding, testing, documentation, and release 
procedures that does not necessarily benefit the academic research enterprise.  Nevertheless, groups are often 
sufficiently passionate about the technology to invest the effort; however, this alone does not generate user demand 
for a product. 
 
From an industrial software developer’s point of view, a new tool must pass muster in two key user experience 
dimensions in order to be successful: usefulness and usability; furthermore a software development organization 
must have confidence in the tool supplier’s longevity in order to adopt the tool. 
 
Usefulness is a measure of the added value the tool supplies a user.  It is not necessarily a measure of breadth of the 
tool, although tools such as IDEs that are meant to be working environments must be relatively complete.  Indeed a 
tool that has all-encompassing claims may well generate suspicion rather than curiosity.  Rather a defect detection 
tool must have these features: 
 
It must be reasonably accurate in its output.  From the user’s perspective, the issue is not so much one of technical 
criteria like soundness and completeness; instead, the user’s measure will be the fraction of false positives present 
and false negatives missed in the total output.  False positives, in which a tool claims a code fragment to be a defect 
when the code is in fact valid, are noise to the user.  The user must still assess (with the potential for error) each 
defect report and decide whether or not it is valid.  Too high a fraction of useless reports will cause the user to see 
less benefit in the results of the tool overall.  On the other hand, false negatives are defects that the tool fails to 
detect.  The impact of false negatives can be mitigated if it can be clearly stated what types of defects the tool 
expects to address.  False negatives within the domain of the tool, however, will reduce the trust the user has in the 
tool overall, since the user will need to invest duplicate manual effort in finding those errors. 
 
Secondly, the tool must address the bulk of the important defect areas for the user.  Importance can be measured in 
terms of user effort: important defect classes consume large fractions of the user’s development and debugging time, 
because of the combination of the defect’s frequency and the average effort to diagnose and correct each defect.  
Experimental case studies of actual programmer experience on large scale projects would be useful to determine 
which defect classes are the most problematic in the overall software engineering effort on typical projects. 
 
And third, it must have time and space performance and stability consistent with the benefit provided. 
 
Usability, or ease-of-use, describes the ease with which a user, particularly a novice user, can obtain useful results 
from a tool.  There are a number of components to keep in mind: 
- Out-of-the-box experience: how easy is it to install, configure and obtain results on a user example the very first 
time?  Is the tool self-contained, or does one need to download and configure other tools first? 
- Resource investment profile: how much time, money and effort must a user invest in order to obtain a small 
amount of initial benefit or invest incrementally to obtain increasing benefit?  Can results be obtained on small 
portions of a large project? Can the tool be layered alongside of the user’s existing working environment? 
- Perspicuity: how clear are the reports provided by the tool?  Do they actually save work?  Can false positives, once 
evaluated, be annotated so that those false reports are not regenerated on subsequent invocations of the tool and the 
work of repeated defect report assessment avoided. 
 
Finally, there is increasing willingness to adopt academic and open source tools that do not become part of a final 
commercial product.  However, a software development organization has a need for confidence that the tool 
supplier will continue to support, correct, improve, and release the tool.  This typically weighs against academic and 
open source tool suppliers and in favor of commercial tool vendors, even in the face of license fees, even though 
license fees place a considerable hurdle in the path of informal initial trial. 



False Positives Over Time: A Problem in Deploying Static Analysis Tools 
Andy Chou, Coverity Inc., andy@coverity.com 

 
All source code analyzers generate false positives, or issues which are reported but are not really defects.  False 
positives accumulate over time because developers fix real defects but tend to leave false positives in the source 
code.  Several methods are available to mitigate this problem, some of which are shown in the following table 
(especially important advantages or disadvantages are labeled with (*)): 
 
Technique Advantages Drawback(s) 
Add annotations to the 
source code that indicate 
the location of false 
positives, which the tool 
can then use to suppress 
messages. 

• Persistent across code changes 
and renamed files (*) 

• Seamlessly propagate between 
different code branches via 
version control systems 

• Also works for real bugs that 
users don’t want to fix 

• Some users are unwilling to add 
annotations to source code, even in 
comments (*) 

• Remain in the code even if analysis is 
changed to not find the false positives 

• Adding annotations to third party code is 
usually undesirable 

Allow users to override 
analysis decisions that lead 
to false positives. 

• Eliminates entire classes of false 
positives with same root cause (*) 

• Flexible: can be done using source 
annotations or tool configuration 

• Difficult for users to understand (*) 
• Changing analysis decisions can have 

unexpected side-effects, such as missing 
other bugs 

Change the source code to 
get the tool to “shut up.” 

• No changes to tool • Not always obvious how to change the code 
to make the false positive go away (*) 

• Might not be possible to change the code in 
an acceptable way 

Stop using the tool, or turn 
off specific types of checks 
causing the false positives. 

• Simple 
• Minimize cost of dealing with 

false positive-prone analyses (*) 

• Lost opportunity to discover real bugs 

Rank errors using some 
criteria, or otherwise use 
statistical information to 
identify likely bugs vs. 
likely false positives. 

• (mostly) Automatic 
• Adapts to application-specific 

coding conventions (*) 

• Does not deal with all false positives 
• Larger development organizations want to 

distribute bugs to be inspected; each 
developer gets a small number of bugs to 
inspect, making ranking less useful (*) 

• Users don’t like deciding when to stop; 
they fear missing bugs while 
simultaneously loathing false positives. 

• Users usually want “rank by severity” not 
“rank by false positive rate” 

Annotate the output of the 
tool to mark false positives, 
then use this information in 
future runs to avoid re-
reporting the same issues. 

• No changes to code 
• Works for almost any type of 

static analysis (*) 
 

• Need heuristics to determine when false 
positives are the “same” in the presence of 
code changes (*) 

• False positives may re-appear depending on 
the stability of the merging heuristic (*) 

 
These are not the only ways of attacking this problem.  Very little work has been done on classifying and evaluating 
these techniques, yet they are critical to the adoption of static analysis in industry.  Some observations from Coverity 
customers include: 

• Users are unwilling to add annotations unless the tool has already shown to be an efficient bug-finder. 
• Users are usually unwilling to change source code to eliminate false positive warnings. 
• Ranking errors by “likely to be a bug” can help pull real bugs to the forefront, but users have a hard time 

deciding where the cutoff should be.  Users also dislike having no cutoff at all, because they will often 
query for bugs in a specific location of interest, where only a handful of results are found and ranking is not 
useful.  Ranking by estimated severity of bug is more often useful. 

• If users annotate tool output so the tool gains “memory,” the heuristic used to determine that previous 
results are the “same” as new results must be robust.  Users very much dislike false positives coming back. 
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Abstract. This paper presents a tool set for model checking x86 executables. The members of the tool set are CodeSurfer/x86,
WPDS++, and the Path Inspector. CodeSurfer/x86 is used to extract a model from an executable in the form of a weighted
pushdown system. WPDS++ is a library for answering generalized reachability queries on weighted pushdown systems. The
Path Inspector is a software model checker built on top of CodeSurfer and WPDS++ that supports safety queries about the
program’s possible control configurations.

1 Introduction

This paper presents a tool set for model checking x86 executables. The tool set builds on (i) recent advances in static
analysis of program executables [2], and (ii) new techniques for software model checking and dataflow analysis [5,
26, 27, 21]. In our approach, CodeSurfer/x86 is used to extract a model from an x86 executable, and the reachability
algorithms of the WPDS++ library [20] are used to check properties of the model. The Path Inspector is a software
model checker that automates this process for safety queries involving the program’s possible control configurations
(but not the data state). The tools are capable of answering more queries than are currently supported by the Path
Inspector (and involve data state); we illustrate this by describing two custom analyses that analyze an executable’s
use of the run-time stack.

Our work has three distinguishing features:

– The program model is extracted from the executable code that is run on the machine. This means that it auto-
matically takes into account platform-specific aspects of the code, such as memory-layout details (i.e., offsets of
variables in the run-time stack’s activation records and padding between fields of a struct), register usage, exe-
cution order, optimizations, and artifacts of compiler bugs. Such information is hidden from tools that work on
intermediate representations (IRs) that are built directly from the source code.

– The entire program is analyzed—including libraries that are linked to the program.
– The IR-construction and model-extraction processes do not assume that they have access to symbol-table or de-

bugging information.

Because of the first two properties, our approach provides a “higher fidelity” tool than most software model checkers
that analyze source code. This can be important for certain kinds of analyses; for instance, many security exploits
depend on platform-specific features, such as the structure of activation records. Vulnerabilities can escape notice
when a tool does not have information about adjacency relationships among variables.

Although the present tool set is targeted to x86 executables, the techniques used [2, 27, 21] are language-independent
and could be applied to other types of executables.

The remainder of the paper is organized as follows: Sect. 2 illustrates some of the advantages of analyzing ex-
ecutables. Sect. 3 sketches the methods used in CodeSurfer/x86 for IR recovery. Sect. 4 gives an overview of the
model-checking facilities that the tool set provides. Sect. 5 discusses related work.

2 Advantages of Analyzing Executables

This section presents some examples that show why analysis of an executable can provide more accurate information
than an analysis that works on source code.

One example of a mismatch between the program’s intent and the compiler’s generated code can be seen in the
following lines of source code taken from a login program [18]:

memset(password, ’ 	 0’, len);
free(password);


Portions of this paper are based on a tool-demonstration paper of the same title that will appear at CAV 2005.



The login program (temporarily) stores the user’s password—in clear text—in a dynamically allocated buffer pointed
to by pointer variable password. To minimize the lifetime of sensitive information (in RAM, in swap space, etc.),
the source-code fragment shown above zeroes-out the buffer pointed to by password before returning it to the
heap. Unfortunately, a compiler that performs useless-code elimination may reason that the program never uses the
values written by the call on memset and therefore the call on memset can be removed, thereby leaving sensitive
information exposed in the heap [18]. This vulnerability is invisible in the source code; it can only be detected by
examining the low-level code emitted by the optimizing compiler.

A second example where analysis of an executable does better than typical source-level analyses involves pointer
arithmetic and function pointers. Consider the following piece of code:

int (*f)(void);
int diff = (char*)&f2 - (char*)&f1; // The offset between f1 and f2
f = &f1;
f = (int (*)()))(char*)f + diff); // f now points to f2
(*f)(); // indirect call;

Existing source-level analyses (that we know of) are ill-prepared to handle the above code. The common assumption
is that pointer arithmetic on function pointers leads to undefined behavior, so either (a) they assume that the indirect
function call might call any function; or (b) they simply ignore the arithmetic and assume that the indirect function call
calls f1 (on the assumption that the code is ANSI-C compliant). In contrast, the value-set analysis (VSA) algorithm
[2] used in CodeSurfer/x86 correctly identifies f2 as the invoked function. Furthermore, VSA can detect when pointer
arithmetic results in a function pointer that does not point to the beginning of a function; the use of such a func-
tion pointer to perform a function “call” is likely to be a bug (or else a very subtle, deliberately introduced security
vulnerability).

A third example involves a function call that passes fewer arguments than the procedure expects as parameters.
(Many compilers accept such (unsafe) code as an easy way of implementing functions that take a variable number
of parameters.) With most compilers, this effectively means that the call-site passes some parts of one or more local
variables of the calling procedure as the remaining parameters (and, in effect, these are passed by reference—an
assignment to such a parameter in the callee will overwrite the value of the corresponding local in the caller.) An
analysis that works on executables can be created that is capable of determining what the extra parameters are [2],
whereas a source-level analysis must either make a cruder over-approximation or an unsound under-approximation.
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Fig. 1. Example of unexpected behavior due to the application
of an optimization. The box at the top right shows two variants
of code generated by an optimizing compiler for the prolog of
callee. Analysis of the second of these reveals that the vari-
able local always contains the value 5.

A final example is shown in Fig. 1. The C code
on the left uses an uninitialized variable (which
triggers a compiler warning, but compiles success-
fully). A source-code analyzer must assume that
local can have any value, and therefore the value
of v in main is either 1 or 2. The assembly listings
on the right show how the C code could be com-
piled, including two variants for the prolog of func-
tion callee. The Microsoft compiler (cl) uses
the second variant, which includes the following
strength reduction:

The instruction sub esp,4 that allo-
cates space for local is replaced by a
push instruction of an arbitrary register
(in this case, ecx).

In contrast to an analysis based on source code, an
analysis of an executable can determine that this
optimization results in local being initialized to
5, and therefore v in main can only have the value
1.
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3 Recovering Intermediate Representations from x86 Executables

To recover IRs from x86 executables, CodeSurfer/x86 makes use of both IDAPro [19], a disassembly toolkit, and
GrammaTech’s CodeSurfer system [12], a toolkit for building program-analysis and inspection tools. Fig. 2 shows
how the components of CodeSurfer/x86 fit together.
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Fig. 2. Organization of CodeSurfer/x86 and companion tools.

An x86 executable is first
disassembled using IDAPro.
In addition to the disassem-
bly listing, IDAPro also pro-
vides access to the following
information: (1) procedure
boundaries, (2) calls to li-
brary functions using an algo-
rithm called the Fast Library
Identification and Recogni-
tion Technology (FLIRT) [15],
and (3) statically known mem-
ory addresses and offsets.
IDAPro provides access to
its internal resources via an
API that allows users to cre-
ate plug-ins to be executed by
IDAPro. We created a plug-
in to IDAPro, called the Con-
nector, that creates data struc-
tures to represent the information that it obtains from IDAPro. The IDAPro/Connector combination is also able to
create the same data structures for dynamically linked libraries, and to link them into the data structures that represent
the program itself. This infrastructure permits whole-program analysis to be carried out—including analysis of the
code for all library functions that are called.

Using the data structures in the Connector, we implemented a static-analysis algorithm called value-set analysis
(VSA) [2]. VSA does not assume the presence of symbol-table or debugging information. Hence, as a first step, a
set of data objects called a-locs (for “abstract locations”) is determined based on the static memory addresses and
offsets provided by IDAPro. VSA is a combined numeric and pointer-analysis algorithm that determines an over-
approximation of the set of numeric values and addresses (or value-set) that each a-loc holds at each program point.
A key feature of VSA is that it tracks integer-valued and address-valued quantities simultaneously. This is crucial for
analyzing executables because numeric values and addresses are indistinguishable at execution time.

IDAPro does not identify the targets of all indirect jumps and indirect calls, and therefore the call graph and
control-flow graphs that it constructs are not complete. However, the information computed during VSA can be used
to augment the call graph and control-flow graphs on-the-fly to account for indirect jumps and indirect calls.

VSA also checks whether the executable conforms to a “standard” compilation model—i.e., a runtime stack is
maintained; activation records (ARs) are pushed onto the stack on procedure entry and popped from the stack on
procedure exit; a procedure does not modify the return address on stack; the program’s instructions occupy a fixed
area of memory, are not self-modifying, and are separate from the program’s data. If it cannot be confirmed that the
executable conforms to the model, then the IR is possibly incorrect. For example, the call-graph can be incorrect if
a procedure modifies the return address on the stack. Consequently, VSA issues an error report whenever it finds a
possible violation of the standard compilation model; these represent possible memory-safety violations. The analyst
can go over these reports and determine whether they are false alarms or real violations.

Once VSA completes, the value-sets for the a-locs at each program point are used to determine each point’s sets of
used, killed, and possibly-killed a-locs; these are emitted in a format that is suitable for input to CodeSurfer. CodeSurfer
then builds a collection of IRs, consisting of abstract-syntax trees, control-flow graphs (CFGs), a call graph, a system
dependence graph (SDG) [17], VSA results, the sets of used, killed, and possibly killed a-locs at each instruction, and
information about the structure and layout of global memory, activation records, and dynamically allocated storage.
CodeSurfer supports both a graphical user interface (GUI) and an API (as well as a scripting language) to provide
access to these structures.
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4 Model-Checking Facilities

Model checking [11] involves the use of sophisticated pattern-matching techniques to answer questions about the
flow of execution in a program: a model of the program’s possible behavior is created and checked for conformance
with a model of expected behavior (as specified by a user query). In essence, model-checking algorithms explore
the program’s state-space and answer questions about whether a bad state can be reached during an execution of the
program.

For model checking, the CodeSurfer/x86 IRs are used to build a weighted pushdown system (WPDS) [5, 26, 27,
21] that models possible program behaviors. Weighted pushdown systems are a model-checking technology that is
similar to what is used in MOPS, a software model checker that has demonstrated the ability to find subtle security
vulnerabilities in large code bases [6]. However, in contrast to the ordinary (unweighted) pushdown systems used in
MOPS, the techniques available in the CodeSurfer/x86 tool set [27, 21] are capable of representing the (logically)
infinite set of data valuations that may arise during program execution. This capability allows the CodeSurfer/x86 tool
set to address certain kinds of security queries that cannot be answered by MOPS.

4.1 WPDS++ and Stack-Qualified Dataflow Queries

WPDS++ [20] is a library that implements the symbolic reachability algorithms from [27, 21] on weighted pushdown
systems. We follow the standard approach of using a pushdown system (PDS) to model the interprocedural control-
flow graph (one of CodeSurfer/x86’s IRs). The stack symbols correspond to program locations; there is only a single
PDS state; and PDS rules encode control flow as follows:

Rule Control flow modeled
��������� 	
������� Intraprocedural CFG edge ��	
�
��������� 	
������������������� Call to � from � that returns to �������� � 	
����� Return from a procedure at exit node �

Given a configuration of the PDS, the top stack symbol corresponds to the current program location, and the rest of
the stack holds return-site locations—much like a standard run-time execution stack.

Encoding the interprocedural control-flow as a pushdown system is sufficient for answering queries about reachable
control states (as the Path Inspector does; see Sect. 4.2): the reachability algorithms of WPDS++ can determine if an
undesirable PDS configuration is reachable [6]. However, WPDS++ also supports weighted PDSs. These are PDSs
in which each rule is weighted with an element of a (user-defined) semiring. The use of weights allows WPDS++ to
perform interprocedural dataflow analysis by using the semiring’s extend operator to compute weights for sequences
of rule firings and using the semiring’s combine operator to take the meet of weights generated by different paths
[27, 21]. (When the weights on rules are conservative abstract data transformers, an over-approximation to the set of
reachable concrete configurations is obtained, which means that counterexamples reported by WPDS++ may actually
be infeasible.)

The CodeSurfer/x86 IRs are a rich source of opportunities to check properties of interest using WPDS++. For
instance, WPDS++ has been used to implement an illegal-stack-manipulation check: for each node � in procedure � ,
this checks whether the net change in stack height is the same along all paths from entry � to � that have perfectly
matched calls and returns (i.e., along “same-level valid paths”). In this analysis, a weight is a function that represents
a stack-height change. For instance, push ecx and sub esp,4 both have the weight ! height " height #%$ . Extend
is (the reversal of) function composition; combine performs a meet of stack-height-change functions. (The analysis is
similar to linear constant propagation [29].) When a memory access performed relative to � ’s activation record (AR)
is out-of-bounds, stack-height-change values can be used to identify which a-locs could be accessed in ARs of other
procedures.

VSA is an interprocedural dataflow-analysis algorithm that uses the “call-strings” approach [30] to obtain a degree
of context sensitivity. Each dataflow fact is tagged with a call-stack suffix (or call-string) to form (call-string, dataflow-
fact) pairs; the call-string is used at the exit node of each procedure to determine to which call site a (call-string,
dataflow-fact) pair should be propagated. The call-strings that arise at a given node � provide an opportunity to perform
stack-qualified dataflow queries [27] using WPDS++. CodeSurfer/x86 identifies induction-variable relationships by
using the affine-relation domain of Müller-Olm and Seidl [24] as a weight domain. A post & query builds an automaton
that is then used to find the affine relations that hold in a given calling context—given by call-string cs—by querying
the post & -automaton with respect to a regular language constructed from cs and the program’s call graph.
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4.2 The Path Inspector

The Path Inspector provides a user interface for automating safety queries that are only concerned with the possible
control configurations that an executable can reach. It uses an automaton-based approach to model checking: the query
is specified as a finite automaton that captures forbidden sequences of program locations. This “query automaton” is
combined with the program model (a WPDS) using a cross-product construction, and the reachability algorithms of
WPDS++ are used to determine if an error configuration is reachable. If an error configuration is reachable, then
witnesses (see [27]) can be used to produce a program path that drives the query automaton to an error state.

The Path Inspector includes a GUI for instantiating many common reachability queries [14], and for displaying
counterexample paths in the disassembly listing.3 In the current implementation, transitions in the query automaton
are triggered by program points that the user specifies either manually, or using result sets from CodeSurfer queries.
Future versions of the Path Inspector will support more sophisticated queries in which transitions are triggered by
matching an AST pattern against a program location, and query states can be instantiated based on pattern bindings.
Future versions will also eliminate (many) infeasible counterexamples by using transition weights to represent abstract
data transformers (similar to those used for interprocedural dataflow analysis).

5 Related Work

Several others have proposed techniques to obtain information from executables by means of static analysis [22, 13, 9,
8, 10, 4, 3]. However, previous techniques deal with memory accesses very conservatively; e.g., if a register is assigned
a value from memory, it is assumed to take on any value. VSA does a much better job than previous work because
it tracks the integer-valued and address-valued quantities that the program’s data objects can hold; in particular, VSA
tracks the values of data objects other than just the hardware registers, and thus is not forced to give up all precision
when a load from memory is encountered. This is a fundamental issue; the absence of such information places severe
limitations on what previously developed tools can be applied to.

The basic goal of the algorithm proposed by Debray et al. [13] is similar to that of VSA: for them, it is to find
an over-approximation of the set of values that each register can hold at each program point; for us, it is to find an
over-approximation of the set of values that each (abstract) data object can hold at each program point, where data
objects include memory locations in addition to registers. In their analysis, a set of addresses is approximated by a set
of congruence values: they keep track of only the low-order bits of addresses. However, unlike VSA, their algorithm
does not make any effort to track values that are not in registers. Consequently, they lose a great deal of precision
whenever there is a load from memory.

Cifuentes and Fraboulet [9] give an algorithm to identify an intraprocedural slice of an executable by following the
program’s use-def chains. However, their algorithm also makes no attempt to track values that are not in registers, and
hence cuts short the slice when a load from memory is encountered.

The work that is most closely related to VSA is the data-dependence algorithm for executables proposed by Amme
et al. [1]. However, that algorithm performs only an intraprocedural analysis, and it is not clear that the algorithm fully
accounts for dependences between memory locations.

Several people have developed techniques to analyze executables in the presence of additional information, such as
the source code, symbol-table information, or debugging information [22, 28]. For many security-related applications,
these are not appropriate assumptions.

Christodorescu and Jha used model-checking techniques to detect malicious-code variants [7]. Given a sam-
ple of malicious code, they extract a parameterized state machine that will accept variants of the code. They use
CodeSurfer/x86 (with VSA turned off) to extract a model of each program procedure, and determine potential matches
between the program’s code and fragments of the malicious code. Their technique is intraprocedural, and does not an-
alyze data state.

Other groups have used run-time program monitoring and checkpointing to perform a systematic search of a
program’s dynamic state space [16, 23, 25]. Like our approach, this allows for model checking properties of the low-
level code that is actually run on the machine. However, because the dynamic state space can be unbounded, these
approaches cannot perform an exhaustive search. In contrast, we use static analysis to perform a (conservative) ex-
haustive search of an abstract state space.

3 We assume that source code is not available, but the techniques extend naturally if it is: one can treat the executable code as just
another IR in the collection of IRs obtainable from source code. The mapping of information back to the source code would be
similar to what C source-code tools already have to perform because of the use of the C preprocessor.
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Abstract

This paper proposes the use of processor support for pro-
gram rollback, as a key primitive to enhance software de-
bugging in production-run environments. We discuss how
hardware support for program rollback can be used to
characterize bugs on-the-fly, leverage code versioning for
performance or reliability, sandbox device drivers, collect
monitoring information with very low overhead, support
failure-oblivious computing, and perform fault injection. To
test our ideas, we built an FPGA prototype. We run several
buggy applications on top of a version of Linux.

1. Introduction

Dynamic bug-detection tools (e.g., [9, 13]) face major
challenges when targetingproduction-run environments. In
such environments, bug monitoring and detection have to
be done with very low overhead. In addition, it is often
desirable to provide graceful recovery from bugs, so that
the system can continue to work.

One way to accomplish these goals is to provide hard-
ware support in the processor for low-overhead software
bug characterization, and for graceful recovery from bugs.
For this, we propose a hardware primitive that quickly un-
does (rolls back) sections of code. When a certain suspi-
cious event that may be a bug has been detected, the hard-
ware rolls the program thousands of instructions back with
very little overhead. At that point, several options are pos-
sible. We can either choose to re-execute the same section
of code or to jump off to another section where additional
monitoring can be done. If we choose the former, we can
re-execute the code section with the same input data set but
with more instrumentation enabled, so that we can further
characterize the bug. Alternatively, we can re-execute the
section with a different input or algorithm, to skip the bug
altogether.

To test these ideas, we have implemented such a hard-
ware extension to a simple processor prototyped using FP-
GAs (Field Programmable Gate Arrays). In this paper, we
describe the operation and software interface of our proto-
type. In addition,, we describe some of the uses that such
hardware support can have in helping software debugging.
Such uses are to fully characterize a bug on-the-fly, leverage
code versioning, sandbox the kernel’s device drivers, col-
lect and sample information with very low overhead, sup-
port failure-oblivious computing, and perform fault injec-
tion, among other issues.

This paper also evaluates the FPGA-based prototype
we built [16]. The extensions added include hold-
ing speculative data in the cache, register checkpointing,
and software-controlled transitions between speculativeand
non-speculative execution. We experiment with several
buggy applications running on top of a version of Linux.
Overall, we show that this rollback primitive can be very
effective in production-run environments.

2 System overview

The system we propose allows the rollback and re-
execution of large sections of code (typically up to tens of
thousands of instructions) with very low overhead. This is
achieved through a few relatively simple changes to an ex-
isting processor.

We have implemented two main extensions: (1) the
cache can hold speculative data and, on demand, quickly
commit it or discard it all, and (2) the register state can
be quickly checkpointed into a special storage and restored
from there on demand. These two operations are done in
hardware. When entering speculative execution, the hard-
ware checkpoints the registers and the cache starts buffer-
ing speculatively written data. During speculative execu-
tion, speculative data in the cache gets marked as such and
is not allowed to be displaced from the cache. When transi-
tioning back to normal execution, any mark of speculative



data is deleted and the register checkpoint is discarded. Ifa
rollback is necessary, the speculatively written data is inval-
idated and the register state is restored from the checkpoint.

2.1 Speculative Execution Control

The speculative execution can be controlled either in
hardware or in software. There are benefits on both sides
and deciding which is best is dependent on what specula-
tion is used for.

2.1.1 Hardware Control

If we want the system to always execute code speculatively
and be able to guarantee a minimum rollback window, the
hardware control is more appropriate. As the program runs,
the cache buffers the data generated and always marks them
as speculative. There are always twoepochsof speculative
data buffered in the cache at a time, each one with a corre-
sponding register checkpoint. When the cache is about to
get full, the earliest epoch is committed, and a new check-
point is created. With this support, the program can always
roll back at least one of the two execution epochs (a number
of instructions that filled roughly half of the L1 data cache).

2.1.2 Software Control

If, on the other hand, we need to execute speculatively only
some sections of code, and the compiler or user is able to
identify these sections, it is best to expose the speculation
control to the software. This approach has two main bene-
fits: more flexibility is given to the compiler and a smaller
overhead is incurred since only parts of the code execute
speculatively.

In this approach, the software explicitly marks the be-
ginning and the end of the speculative section withBE-
GIN SPEC and END SPEC instructions. When aBE-
GIN SPECinstruction executes, the hardware checkpoints
the register state and the cache starts buffering data written
to the cache, marking them as speculative.

If, while executing speculatively, a suspicious event that
may be a bug is detected, the software can set a specialRoll-
backregister. Later, whenEND SPECis encountered, two
cases are possible. If the Rollback register is clear, the cache
commits the speculative data, and the hardware returns to
the normal mode of execution. If, instead, the Rollback
register is set, the program execution is rolled back to the
checkpoint, and the code is re-executed, possibly with more
instrumentation or different parameters.

If the cache runs out of space before theEND SPECin-
struction is encountered, or the processor attempts to per-
form an uncacheable operation (such as an I/O access), the

processor triggers an exception. The exception handler de-
cides what to do, one possibility being to commit the current
speculative data and continue executing normally.

3 Using Program Rollback for Software De-
bugging

The architectural support presented in this work provides
a flexible environment for software debugging and system
reliability. In this section, we list some its possible uses.

3.1 An Integrated Debugging System

The system described here is part of a larger debugging
effort for production-run codes that includes architectural
and compiler support for bug detection and characteriza-
tion. In this system, program sections execute in one of
three states:normal, speculativeor re-execute. While run-
ning in speculative mode, the hardware guarantees that the
code (typically up to about tens of thousands of instructions)
can be rolled back with very low overhead and re-executed.
This is used for thorough characterization of code sections
that are suspected to be buggy.

The compiler [6] is responsible for selecting which sec-
tions of code are more error-prone and thus, should be exe-
cuted in speculative mode. Potential candidates are func-
tions that deal with user input, code with heavy pointer
arithmetic, or newer, less tested functions. The program-
mer can also assist by indicating the functions that he or she
considers less reliable.

In addition, a mechanism is needed to detect potential
problems, and can be used as a starting point in the bug de-
tection process. Such a mechanism can take many forms,
from a simple crash detection system to more sophisticated
anomaly detection mechanisms. Examples of the latter in-
clude software approaches like Artemis [3] or hardware
approaches like iWatcher [19].

Artemis is a lightweight run-time monitoring system that
uses execution contexts (values of variables and function
parameters) to detect anomalous behavior. It uses training
data to learn the normal behavior of an application and will
detect unusual situations. These situations can act as a trig-
ger for program rollbacks and re-executions for code char-
acterization.

iWatcher is an architecture proposed for dynamically
monitoring memory locations. The main idea of iWatcher
is to associate programmer-specified monitoring functions
with monitored memory objects. When a monitored object
is accessed, the monitoring function associated with this ob-
ject is automatically triggered and executed by the hardware
without generating an exception to the operating system.
The monitoring function can be used to detect a wide range
of memory bugs that are otherwise difficult to catch.
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We provide two functions, namelyenter spec to be-
gin speculative execution andexit spec to end it with
commit or rollback. In addition, we have a function
proc state() used to probe the state of the processor.
A return value of0 means normal mode,1 means specula-
tive mode, and2 means re-execute mode (which follows a
rollback).

The following code shows how these functions are
used. exit spec takes one argument,flag, that con-
trols whether speculation ends with commit or rollback.
If an anomaly is detected, the software immediately sets
the flag variable. When the execution finally reaches
exit spec, a rollback is triggered. The execution re-
sumes from theenter spec point.

num=1;
...
/* begin speculation */
enter_spec();
...
/* heavy pointer arithmetic */
p=m[a[*x]]+&y;
if (err) flag=1;
...
/* info collection */
/* only in re-execute mode */
if (proc_state()==REEXECUTE) {
collect_info();

}
exit_spec(flag);
/* end speculation */
num++;
...

The compiler inserts code in the speculative section to
collect relevant information about the program execution
that can help characterize a potential bug. This code is only
executed if the processor is in re-execute mode (procstate()
returns 2).

Figure 1 shows the three possible execution scenarios
for the example given above. Case (a) represents normal
execution: no error is found, theflag variable remains
clear and, whenexit spec(flag) is reached, specula-
tion ends with commit.

In case (b), an abnormal behavior that can lead to a bug
is encountered.Flag is set when the anomaly is detected
and, later, when execution reachesexit spec(flag),
the program rolls back to the beginning of the speculative
region and continues in re-execute mode. This can be re-
peated, possibly even inside a debugger, until the bug is
fully characterized.Flag can be set as a result of a failed
assertion or data integrity test.

Finally, in case (c) the speculative state can no longer fit
in the cache. The overflow is detected by the cache con-
troller and an exception is raised. The software is expected
to handle this case. The example assumes that the excep-
tion handler commits the speculative data. When the execu-
tion reaches theexit spec(flag) instruction, the state

...

...

...

...

...

...

p = m[a[*x]]+&y;

...

...

...
p = m[a[*x]]+&y;

...

roll
back

overflow
cache

p = m[a[*x]]+&y;

(b)
RollbackCommit

enter_spec();

exit_spec(flag);

enter_spec();

exit_spec(flag);

enter_spec();

exit_spec(flag);

Non−speculative executionSpeculative execution

num = 1; num = 1; num = 1;

if (err) flag = 1;
...

 if (err) flag =1

num++; num++;

(a) No error (flag=0) Error (flag=1)
Early commit

(c) Exeption

 if (err) flag = 1;;

num++;

...

Figure 1. Speculative execution ends with
commit (a), a rollback (b), or an early com-
mit due to cache overflow (c).

of the processor is first checked. Since the processor is no
longer speculative (due to the early commit), the instruction
is simply ignored.

3.2 Other Uses of Program Rollback

3.2.1 Code Versioning

Code versioning, or N-version programming [8] is a tech-
nique that involves generating multiple, different versions
of the same code. It can be used for performance or reli-
ability. When targeting performance, a compiler generates
a main version that is aggressively optimized, and poten-
tially sometimes incorrect. Using our hardware, this ver-
sion can be executed speculatively, with some verification
code in place. If the function fails or produces an incorrect
result as indicated by the verification code, the processor is
rolled back, and a second, unoptimized but safe version of
the code is executed.

In the same way, when targeting reliability, we can have
two versions of the same function that are safe, have similar
performance, but use different functional units in the pro-
cessor. Each version includes some verification code that
checks that the computation was correct. We can first run
the first function and its verification code. If the verification
code fails, we then run the second function and its verifi-
cation code. Since the functions use different parts of the
processor, they are unlikely to both fail.

3.2.2 OS Kernel and Driver Debugging

One of the major challenges in OS reliability is to ensure
correct execution of the OS kernel in the presence of faulty
drivers. In fact, in Linux, the frequency of coding errors
is seven times higher for device drivers than for the rest
of the kernel [1]. Several solutions have been proposed to
this problem including many that involve isolating the ker-
nel from the device drivers with some protection layer [15].
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In general, these solutions require major changes to OS de-
sign and implementation and can introduce significant over-
heads.

We propose a simpler solution with potentially very low
overhead that takes advantage of the rollback support im-
plemented in the hardware.

In general, the kernel and driver code interact through in-
terface functions, and maintain data structures in both ker-
nel and driver memory. In a system like ours, function calls
from kernel to driver or vice-versa could be executed spec-
ulatively. If an error is detected, the changes made to kernel
memory would then be rolled back. The idea is to prevent
the kernel from becoming corrupted or even crashing due to
a faulty driver. A cleanup procedure could then be called to
shut down the driver and either attempt to reinitialize it or
report the error to the user.

The current system cannot roll back any I/O operations.
This is because we currently buffer only cacheable data.
However, we can still roll back the processor in case of a
fault. Any communication with the faulty device is lost but
the processor is restored to the state before the device ac-
cess began. If the device somehow corrupted the kernel,
the correct state can still be recovered from the checkpoint.
The fault model for a system like this would target kernel
integrity rather than guaranteeing the correct operation of
individual devices.

3.2.3 Lightweight Information Collection and Sam-
pling

Detecting bugs in production code can be challenging be-
cause it is hard to obtain substantial information about pro-
gram execution. It is hard to collect relevant information
without incurring a large overhead. Previous solutions to
this problem have suggested using statistical sampling to
obtain execution information with small overheads [7].

We propose using our system to perform lightweight col-
lection of execution information based on anomaly detec-
tion. In this case, the processor would always execute in
speculative state. When an anomaly is detected (an unusual
return value, a rarely executed path, etc.), the processor is
rolled back as far as its speculative window allows and then
re-executed. Upon re-execution, instrumentation presentin
the code is turned on, and the path that led to the anoma-
lous execution recorded. This allows more precise infor-
mation about anomalous program behavior than statistical
sampling would. Also, because the additional code is rarely
executed, the overhead should be very low.

3.2.4 Failure-Oblivious Computing

A failure-oblivious system [12] enables programs to con-
tinue executing through memory errors. Invalid memory

accesses are detected, but, instead of terminating the exe-
cution or raising an exception, the program discards the in-
valid writes and manufactures values for invalid reads, en-
abling the program to continue execution.

A failure-oblivious system can greatly benefit from our
rollback support. When a read results in an invalid access,
the system enters speculative mode, generates a fake value,
and uses it in order to continue execution. It is unknown
however, whether the new value can be used successfully
or, instead, will cause further errors. Since the code that
uses the fake value executes speculatively, it can roll back
if a new error is detected. Then, the program can use a
different predicted value and re-execute the code again, or
finally raise an exception.

3.2.5 Fault Injection

Our rollback hardware can also be used as a platform for
performing fault injection inproduction systems. It offers
a way of testing the resilience of systems to faulty code, or
testwhat ifconditions, without causing system crashes. The
code that is injected with faults is executed speculatively, to
determine what effect it has on the overall system. Even
if the fault propagates, the code can be rolled back and the
system not allowed to crash. The process can be repeated
multiple times, with low overhead, to determine how a sys-
tem behaves in the presence of a wide array of faults.

4 Evaluation

4.1 FPGA infrastructure

As a platform for our experiments, we used a synthesiz-
able VHDL implementation of a 32-bit processor [4] com-
pliant with the SPARC V8 architecture.

The processor has an in-order, single-issue, five stage
pipeline. This system is part of a system-on-a-chip infras-
tructure that includes a synthesizable SDRAM controller,
PCI and Ethernet interfaces. The system was synthesized
using Xilinx ISE v6.1.03. The target FPGA chip is a Xilinx
Virtex II XC2V3000 running on a GR-PCI-XC2V develop-
ment board [10].

On top of the hardware, we run a version of the SnapGear
Embedded Linux distribution [2]. SnapGear Linux is a full
source package, containing kernel, libraries and application
code for rapid development of embedded Linux systems. A
cross-compilation tool-chain for the SPARC architecture is
used for the compilation of the kernel and Linux applica-
tions.

To get a sense of the hardware overhead imposed by our
scheme, we synthesize the processor core with and with-
out the support for speculative execution. We look at the
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utilization of the main resources in FPGA chips, the Con-
figurable Logic Blocks (CLBs). Virtex II CLBs are orga-
nized in an array and are used to build the combinatorial
and synchronous logic components of the design. The CLB
overhead of our scheme is small (less than 4.5% on average)
[16].

4.2 Speculative execution of buggy applications

We run experiments, using standard Linux applications
that have known (reported) bugs. For these applications, we
want to determine whether we can speculatively execute a
section of dynamic instructions that is large enough to con-
tain both the bug and the location where the bug is caught
by a detection mechanism like iWatcher [19]. Some param-
eters of the experimental setup are given in Table 1.

We assume that the compiler has identified the suspi-
cious region of code that should be executed speculatively.
We also assume the existence of a detection mechanism
(such as iWatcher), which can tell us that a bug has oc-
curred. We want to determine if, under these circumstances,
we can roll back the buggy section of code in order to char-
acterize the bug thoroughly by enabling additional instru-
mentation.

We use five buggy programs from the open-source com-
munity. The bugs were introduced by the original pro-
grammers. They represent a broad spectrum of memory-
related bugs. The programs are:gzip, man, polymorph,
ncompress and tar. Gzip is the popular compression utility,
man is a utility used to format and display on-line manual
pages,polymorphis a tool used to convert Windows style
file names to something more portable for UNIX systems,
ncompressis a compression and decompression utility, and
tar is a tool to create and manipulate archives.

In the tests we use the bug-exhibiting inputs to generate
the abnormal runs. All the experiments are done under re-
alistic conditions, with the applications running on top ofa
version of Linux running on our hardware.

Table 1. Main parameters of the experimental
setup.

Processor LEON2, SPARC V8 compliant
Clock frequency 40MHz
Instruction cache 8KB
Data cache 32KB
RAM 64MB
Windowed register file 8 windows× 24 registers each
Global registers 8 registers

Table 2 shows that the buggy sections were success-
fully rolled back in most cases, as shown in column four.
This means that the system executed speculatively the entire

buggy section, performed a rollback when the end specula-
tion instruction was reached, and then re-executed the entire
section. On the other hand, a failed rollback (polymorph)
means that before reaching the end speculation instruction,
a condition is encountered that forces the early commit of
the speculative section. Rollback is no longer possible in
this case.

The fifth column shows the number of dynamic instruc-
tions that were executed speculatively. Notice that in the
case ofpolymorphthe large number of dynamic instructions
causes the cache to overflow the speculative data, and forces
an early commit.

5 Related work

Some of the hardware presented in this work builds on
extensive work on Thread-Level Speculation (TLS) (e.g.
[5, 14]). We employ some of the techniques first proposed
for TLS to provide lightweight rollback and replay capabil-
ities. TLS hardware has also been proposed as a mechanism
to detect data races on-the-fly [11].

Previous work has also focused on various methods
for collecting information about bugs. The “Flight Data
Recorder” [17] enables off-line deterministic replay of ap-
plications and can be used for postmortem analysis of a bug.
It has a significant overhead that could prevent its use in
production codes.

There is other extensive work in the field of dynamic
execution monitoring. Well-known examples include tools
like Eraser [13] or Valgrind [9]. Eraser targets detection of
data races in multi-threaded programs. Valgrind is a dy-
namic checker to detect general memory-related bugs such
as memory leaks, memory corruption and buffer overflow.
Most of these systems have overheads that are too large to
make them acceptable in production code.

There have also been proposals for hardware support for
detecting bugs, such as iWatcher [19] and AccMon [18].
These systems offer dynamic monitoring and bug detection
capabilities that are sufficiently lightweight to allow their
use on production software. This work is mostly comple-
mentary to ours. In fact we assume some of the detection
capabilities of iWatcher when evaluating our system.

6 Conclusions and future work

This work shows that with relatively simple hardware
we can provide powerful support for debugging production
codes. We show it by building a hardware prototype of the
envisioned system, using FPGA technology. Finally, we run
experiments on top of Linux running on this system.

The hardware presented in this work is part of a compre-
hensive debugging infrastructure. We are working toward
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Application Bug location Bug description Successful Speculative
rollback instructions

ncompress-4.2.4 compress42.c: Input file name longer than 1024 Yes 10653
line 886 bytes corrupts stack return address

polymorph-0.4.0 polymorph.c: Input file name longer than 2048 No 103838
lines 193 and 200 bytes corrupts stack return address

tar-1.13.25 prepargs.c: Unexpected loop bounds Yes 193
line 92 causes heap object overflow

man-1.5h1 man.c: Wrong bounds checking Yes 54217
line 998 causes static object corruption

gzip-1.2.4 gzip.c: Input file name longer than 1024 Yes 17535
line 1009 bytes overflows a global variable

Table 2. Speculative execution in the presence of bugs.

integrating compiler support to identify vulnerable code re-
gions as well as to instrument the code with speculation
control instructions.

We have presented several uses of this hardware for de-
bugging, including to characterize bugs on-the-fly, leverage
code versioning for performance or reliability, sandbox de-
vice drivers, collect monitoring information with very low
overhead, support failure-oblivious computing, and perform
fault injection. We will be implementing some of these
techniques in the near future.
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ABSTRACT
File systems, RAID systems, and applications that require
data consistency, among others, assure data integrity by
carefully forcing valuable data to stable storage. Unfortu-
nately, verifying that a system can recover from a crash to a
valid state at any program counter is very difficult. Previous
techniques for finding data integrity bugs have been heavy-
weight, requiring extensive effort for each OS and file system
to be checked. We demonstrate a lightweight, flexible, easy-
to-apply technique by developing a tool called Explode and
show how we used it to find 25 serious bugs in eight Linux
file systems, Linux software RAID 5, Linux NFS, and three
version control systems.

1. INTRODUCTION
Many systems prevent the loss of valuable data by care-

fully forcing it to stable storage. Applications such as ver-
sion control and mail handling systems ensure data integrity
via file system synchronization services. The file system in
turn uses synchronous writes, journaling, etc. to assure in-
tegrity. At the block device layer, RAID systems use re-
dundancy to survive disk failure. At the application layer,
software based on these systems is often trusted with the
only copy of data, making data loss irrevocable and arbi-
trarily serious. Unfortunately, verifying that a system can
recover from a crash to a valid state at any program counter
is very difficult.

Our goal is to comprehensively test real systems for data
persistence errors, adapting ideas from model checking. Tra-
ditional model checking [5] requires that the implementor
rewrite the system in an artificial modeling language. A
later technique, called implementation-level model checking,
eliminates this requirement [19, 18, 21] by checking code di-
rectly. It is tailored to effectively find errors in system code,
not verify correctness. To achieve this goal, it aggressively
deploys unsound state abstractions to trade completeness
for effectiveness. One major disadvantage of this technique

∗This research was supported by NSF grant CCR-0326227
and 0121481, DARPA grant F29601-03-2-0117, an NSF Ca-
reer award and Stanford Graduate Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

is that it cannot check software without source code and re-
quires porting the entire OS to run on top of a model checker,
which necessitates many intrusive, non-portable modifica-
tions. Checking a new OS or a different version of the same
OS requires a new port. Even checking new file systems
often requires about a week of effort.

This paper describes our improved approach that reme-
dies these problems. We reduce the infrastructure needed
for checking a system to a single device driver, which can be
run inside of a stock kernel that runs on real hardware. This
lightweight approach makes it easy to check new file sys-
tems (and other storage systems): simply mount and run.
Checking a new OS is just a matter of implementing a device
driver.

Our approach is also very general in that it rarely limits
the types of checks that can be done: if you can run a pro-
gram, you can check it. We used Explode to check CVS
and Subversion, both open source version control systems,
and BitKeeper, a commercial version control system, find-
ing bugs in all three. At the network layer, we checked the
Linux NFS client and server. At the file system layer, we
checked 8 different Linux file systems. Finally, at the block
device layer, we checked the Linux RAID 5 implementation.
Explode can find errors even in programs for which we do
not have the source, as we did with BitKeeper.

Explode can check almost all of the myriad ways the stor-
age layers can be stacked on one another, as shown on the
left side of Figure 1. This ability has three benefits. First,
Explode can reuse consistency checks for one specific layer
to check all the layers below it. For example, once we imple-
ment a consistency check for a file system on top of a single
disk, we can easily plug in a RAID layer and check that
RAID does not compromise this guarantee. Second, testing
entire stacks facilitates end-to-end checking. Data consis-
tency is essentially end-to-end: in a multi-layer system, if
one layer is broken, the entire system is broken. Simply
verifying that a single layer is correct may have little prac-
tical value for end-to-end consistency, and it may require a
huge amount of manual effort to separate this layer from
the system and build a test harness for it. Third, we can
cross-check different implementations of one layer and local-
ize errors. For example, if a bug occurs with an application
on top of 7 out of 8 file systems, the application is proba-
bly buggy, but if it occurs on only one file system, that file
system is probably buggy.

The contributions of this paper can be summarized as
follows:
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Figure 1: A snapshot of the Explode system with
a stack of storage systems being tested on the left
and the recovery tools being run on the right after
Explode “crashes” the system to generate a recovery
scenario.

• A lightweight, minimally invasive approach for check-
ing storage systems.

• Model checking every layer in a complex storage stack
from RAID at the bottom to version control systems
running over NFS at the top.

• A series of new file system specific checks for catch-
ing bugs in the data synchronization facilities used by
applications to ensure data integrity.

This paper is organized as follows. Section 2 gives an
overview of the checking system. Section 3 discusses the
new challenges for our approach. Section 4 explains the basic
template work needed to check a given subsystem, and how
to apply this template to different storage systems. Finally,
Section 5 discusses related work and Section 6 concludes.

2. SYSTEM OVERVIEW
Explode has three parts: a user-land model checking li-

brary (MCL), a specialized RAM disk driver (RDD), and a
test driver. We briefly describe each of them, highlighting
their most important functions and interactions. Figure 2
shows an overview.

MCL is similar in design to our prior implementation-level
model checking work [19, 18, 21]. It provides a key mech-
anism to enumerate all possible choices at a given “choice
point,” which is a program point where abstractly a pro-
gram can do multiple actions. For example, dynamic mem-
ory allocation can either succeed or fail. When such an allo-
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Figure 2: Explode overview with a local file file sys-
tem as an example storage system. Components of
Explode are shaded.

cator is properly instrumented, Explode can explore both
branches.

RDD provides the needed infrastructure so Explode can
explore all possible behaviors for a running Linux kernel,
using the “choice point” mechanism provided by MCL. It
exports a log of buffer cache operations, allows Explode

to schedule a kernel thread to run, and provides a generic
interface to install and remove “choice points” inside a run-
ning kernel. We defer the discussion of why we need this
functionality to §3.2.

The test driver exercises storage system operations on our
specialized RAM disks to trigger potential disk writes. It
also performs system-specific consistency checks once Ex-

plode is done simulating crash-recovery. To simulate all
possible crashes, Explode clones current disks, applies all
possible subsets of the potential disk writes1 to the disk
clones, and invokes system-specific utilities to recover them,
as noted previously. Figure 1 shows how Explode “crashes”
and recovers a running stack of a storage system.

3. IMPLEMENTATION
As mentioned in the introduction, our current approach

is much more lightweight and general than our previous ap-
proach. However, this approach also poses new challenges,
discussed in the following sections.

3.1 State Checkpoint and Restore
One challenge in checking live storage systems is how to

checkpoint and restore storage system states. State check-
pointing and restoring is essential for exploring all possible
behaviors of a system. Our previous work [21] runs an en-
tire kernel on top of a model checker, which makes check-
pointing and restoring states as easy as copying the entire
kernel memory and simulated disks. Since extracting rele-
vant kernel data from a live system is difficult, we no longer
checkpoint the kernel memory. Instead, to checkpoint a file
system state, we store the sequence of choices that led to
the current state, starting from the initial pristine disk. To

1In practice, if the set of potential writes grows larger than
a user specified limit, Explode no longer tests all subsets
but randomly tests a few.



restore a state, we unmount the current disk, then mount a
copy of the initial pristine disk and replay all the previously
made choices. Storage systems have the convenient property
that unmounting a file system clears its in-memory state,
and replaying the same set of operations on a pristine stor-
age system is deterministic in terms of the content contained
in the storage system. MCL also allows users to selectively
checkpoint non-pristine disks, given that all the dirty blocks
are flushed to disk.

This method for state checkpointing and restoration is
identical to the state compression technique used in tradi-
tional model checking where each state is represented by
a trace starting from the initial state to the current state.
Unlike traditional model checking where state compression
is simply a time/space tradeoff, it is essential to Explode

because it is the only practical method for a live kernel.

3.2 Exploring All Kernel Behaviors
With MCL we can explore the choice points we can see.

However, kernel choice points are often not exposed to user-
land. RDD provides three key mechanisms to expose these
kernel choice points to user-land, so Explode can explore
all possible kernel behaviors.

First, RDD monitors all buffer cache operations and stores
them in a temporal log. Explode retrieves this log using an
ioctl command provided by RDD and replays it to recon-
struct the set of all possible disk images that could result
from a crash. We use temporal logging instead of getting the
set of dirty buffers directly from the kernel because Linux
2.6, the OS we tested, has a complicated unified buffer and
page cache that makes the latter very difficult.

Second, our driver provides a general interface for in-
stalling and removing “choice points” within the kernel.
Practically, Explode uses this mechanism to induce arti-
ficial errors at critical places in the kernel. RDD provides
a new ioctl that allows a process to request a failure for
the nth kernel choice point in its next system call. Using
this mechanism for each system call, Explode fails the first
choice point, then the second, and so on until all the choice
points have been tested in turn. We could use this mech-
anism to fail more than one choice point at a time, but in
our experience kernel developers are not interested in bugs
resulting from multiple, simultaneous failures.

Third, our driver allows Explode to schedule any ker-
nel thread to run. Storage systems often have background
threads to commit disk I/O. Controlling such threads allows
Explode to explore more system behaviors. As an added
benefit, this makes our error traces deterministic. Without
this feature Explode would still find errors but it would be
unable to present traces to the user which would reliably
trigger the bug when replayed. Our driver implements this
function by simply setting a thread to have a very high pri-
ority. Although in theory this method is not guaranteed to
run the thread in all cases, in practice it works reliably.

4. CHECKING STORAGE SYSTEMS
Explode can check almost any storage system that runs

on Linux, be it a file system, a RAID system, a network file
system, a user-land application that handles data, or any
combination thereof.

Checking a new storage system at the top of the stack
is often a matter of providing Explode utilities to set up,
tear down and recover the storage system, and writing a

FS mount sync sync fsync O SYNC

ext2 ✘ ✓ ✘ ✘
ext3 ✓ ✓ ✓ ✓
ReiserFS ✘ ✓ ✘ ✘
JFS ✘ ✓ ✘ ✘
MSDOS ✘ ✘ n/a n/a
VFAT ✘ ✘ n/a n/a
HFS+ ✘ ✘ ✘ ?
XFS ✘ ✓ ✓ ?

Table 1: Sync checking results. ✓: no errors found;
✘: one or more errors found; n/a: could not com-
plete test; ?: not run due to lack of time.

test driver to mutate the storage system and check its con-
sistency. One nice feature is that one test driver can exercise
every storage system below it in the storage hierarchy.

This section discusses how we checked different storage
systems in detail. For each of them, we first list its setup,
tear-down, and recovery utilities, then describe how the test
driver mutates the storage system and what consistency
checks are performed. Lastly, we show the errors we found.

4.1 Checking File Systems
To set up a file system, Explode needs to create a new

file system (mkfs) and mount it. To tear it down, Explode

simply unmounts it. Explode uses fsck to repair the FS
after a crash.

Explode’s FS test driver enumerates topologies contain-
ing less than a user-specified number of files and directories.
At each step the test driver either modifies the file system
topology, by creating, deleting, or moving a file or directory,
or a file’s contents, by writing in or truncating a file. To
avoid being swamped by many different file contents, the FS
test driver only writes out 5 different possible file contents
chosen to require varying numbers of indirect and doubly
indirect blocks.

To avoid wasting time re-checking similar topologies, we
memoize file systems that have isomorphic directory struc-
ture and identical file contents, disregarding file names and
most metadata.

To check FS-specific crash recovery, FS developers need to
provide Explode with a model of how the file system should
look after crash recovery. Following the terminology in [21],
we call this model the StableFS. It describes what has been
committed to stable storage. We call the user-visible, in-
memory state of the file system the VolatileFS, because it
has not necessarily been committed to stable storage.

Without an FS-specific StableFS, Explode checks that
the four basic sync services available to applications that
care about consistency honor their guarantees. These ser-
vices are: synchronous mount, which guarantees that after
an FS operation returns, the StableFS and the VolatileFS
are identical; sync, which guarantees that after sync re-
turns, the StableFS and the VolatileFS are identical; fsync,
which guarantees that the data and metadata of a given file
are identical in both the StableFS and VolatileFS; and the
O SYNC flag for open, which guarantees that the data of the
opened file is identical in both the StableFS and VolatileFS.

Table 1 summarizes our results. Surprisingly, 7 of the 8
file systems we tested have synchronous mount bugs – ext3
being the only tested file system with synchronous mount
correctly implemented. Most file systems implement sync



correctly, except MSDOS, VFAT and HFS+. Crash and
fsck on MSDOS and VFAT causes these file systems to con-
tain directory loops, which prevents us from checking fsync

and O SYNC on them. Intuitively, fsync is more complicated
than sync because it requires the FS to carefully flush out
only the data and metadata of a particular file. Our results
confirm this intuition, as the fsync test fails on three widely
used file systems: ext2, ReiserFS and JFS. The JFS fsync

bug is quite interesting. It can only be triggered when sev-
eral mkdir and rmdir operations are followed by creating and
fsyncing a file and its enclosing directories. After a crash
this causes the file data to be missing. JFS developer Dave
Kleikamp quickly confirmed the bug and provided a fix. The
problem resided in the journal-replay code, triggered by the
reuse of a directory inode by a regular file inode, so that
reproducing the bug requires the journal to contain changes
to the inode both as a directory and as a file.

Note that when we say a service is “correct” we simply
mean Explode did not find an error before we stopped it
or all the possible topologies for a given number of file sys-
tem objects were enumerated. We found most bugs within
minutes of starting our test runs, although some took tens
of minutes to discover.

4.2 Checking RAID
We tested the Linux software implementation of RAID 5

along with its administration utility mdadm. To set up a test
run, we assembled several of our special RAM disks into a
RAID array. To tear down, we disabled the RAID array.
Crash recovery for RAID was not complex: we simply fsck

the file system running on top of RAID. To recover from a
disk failure, we used the mdadm command to replace failed
disks. Read failures in individual disks in the RAID array
were simulated using the kernel choice point mechanism dis-
cussed in §3.2.

We reused our file system checker on top of the RAID
block device. The consistency check we performed was that
the loss of any one disk in a RAID 5 array should not
lead to data loss—the disk’s contents can always be recon-
structed by computing the exclusive-or of the n−1 remaining
disks [20].

Explode found that the Linux RAID implementation
does not reconstruct bad sectors when a read error occurs.
Instead, it simply marks the disk faulty, removes it from the
RAID array, and returns an I/O error. Explode also found
that when two sector read errors happen on different disks,
requiring manual maintenance, almost all maintenance oper-
ations fail. Disk write requests also fail in this case, render-
ing the RAID array unusable until the machine is rebooted.
Software RAID developer Neil Brown confirmed that the
above behaviors were undesirable and should be fixed with
high priority.

4.3 Checking NFS
We used Explode to check Linux’s Network File System

version 3 (NFSv3) and its in-kernel NFS server. To set up
an NFS partition, we export a local FS as an NFS partition
over the loopback interface. To tear it down, we simply
unmount it. We use the fsck for the local file system to
repair crashed NFS partitions. Currently we do not model
network failures.

As NFS is a file system built on top of other file systems
we are able to leverage our existing FS test driver to test

the Linux NFS implementation. We can also reuse our con-
sistency checker for synchronously mounted file systems as
NFS should have identical crash recovery guarantees [4]

We found one inconsistency in NFS, in which writing to
a file, then reading the same file through a hard link in a
different directory yields inconsistent data. This was due to
a Linux NFS security feature called “subtree checking” that
adds the inode number of the file’s containing directory to
the file handle. Because the two links are in different direc-
tories, their file handles differ, causing the client to cache
their data separately. This bug was not known to us un-
til Explode found it, but the NFS developers pointed us
to a manpage describing subtree checking. The manpage
said that the client had to rename a file to trigger it, but
the checker did not do so. The NFS developers then clar-
ified that the manpage was inaccurate. It described what
could be done, not what Linux NFS actually implemented
(because it was too difficult).

We found additional data integrity bugs in specific file
systems exported as NFS, including JFS and ext2.

4.4 Checking Version Control
We tested the popular version control systems CVS, Sub-

version, and BitKeeper. We found serious errors that can
cause committed data to be permanently lost in all three.
Our test driver checks out a repository, does a local modifi-
cation, commits the changes, and simulates a crash on the
block device that stores the repository. It then runs fsck

and the version control system’s recovery tool (if any), and
checks the resulting repository for consistency.

The errors in both CVS and BitKeeper are similar: nei-
ther attempts to sync important version control files to disk,
meaning an unfortunate crash can permanently lose commit-
ted data. On the other hand, Subversion carefully fsyncs
important files in its database directory, but forgets to sync
others that are equally important. (Adding a sync call fixes
the problem for all three systems.)

If our system was not modular enough to allow us to
run application checkers on top of arbitrary file systems we
would have missed bugs in both BitKeeper and Subversion.
On ext3 fsync causes all prior operations to be committed to
the journal, and by default also guarantees that data blocks
are flushed to disk prior to their associated metadata, hiding
bugs inside applications. This ability to cross-check different
file systems is one of the key strengths in our system.

To demonstrate that Explode works fine with software
to which we do not have source, we further checked Bit-
Keeper’s atomic repository syncing operations “push” and
“pull.” These operations should be atomic: either the merge
happens as a whole or not at all. However, Explode found
traces where a crash during a “pull” can badly corrupt the
repository in ways that its recovery tool cannot fix.

5. RELATED WORK
In this section, we compare our approach to file system

testing techniques to software model checking efforts and
other generic bug finding approaches.

File system testing tools. There are many file system
testing frameworks that use application interfaces to stress
a “live” file system with an adversarial environment. These
testing frameworks are non-deterministic and less compre-
hensive than our approach, but they are more lightweight
and work “out of the box.” We view stress testing as com-



plementary to our approach — there is no reason not to
both test a file system and then test with Explode (or vice
versa). In fact, our approach can be viewed as deterministic,
comprehensive testing.

Software Model Checking. Model checkers have been
previously used to find errors in both the design and the
implementation of software systems [16, 15, 17, 2, 19, 18,
21, 6, 1]. Verisoft [15] is a software model checker that sys-
tematically explores the interleavings of a concurrent C pro-
gram. Unlike the technique we use, Verisoft does not store
states at checkpoints and thereby can potentially explore
a state more than once. Verisoft relies heavily on partial
order reduction techniques that identify (control and data)
independent transitions to reduce the interleavings explored.
Determining such independent transitions is extremely diffi-
cult in systems with tightly coupled threads sharing a large
amount of global data. As a result, Verisoft would not per-
form well for these systems, including the storage systems
checked in this paper.

Java PathFinder [2] uses related techniques to system-
atically check concurrent Java programs by checkpointing
states. It relies on a specialized virtual machine that is tai-
lored to automatically extract the current state of a Java
program. The techniques described in this paper are appli-
cable to Java PathFinder as well.

Generic bug finding. There has been much recent work
on bug finding, including both better type systems [9, 14,
12] and static analysis tools [8, 1, 7, 3, 10, 13]. Roughly
speaking, because static analysis can examine all paths and
only needs to compile code in order to check it, it is rela-
tively better at finding errors in surface properties visible in
the source (“lock is paired with unlock”) [11]. In contrast,
model checking requires running code, which makes it much
more strenuous to apply (days or weeks instead of hours)
and only lets it check executed paths. However, because it
executes code it can more effectively check the properties im-
plied by code, e.g. that the log contains valid records, that
cvs commit will commit versioned user data to stable stor-
age. Based on our experience with static analysis, the most
serious errors in this paper would be difficult to find with
that approach. But, as with testing, we view static analysis
as complementary to our lightweight model checking—it is
easy enough to apply that there is no reason not to apply it
and then use lightweight model checking.

6. CONCLUSION
This paper demonstrated that ideas from model check-

ing offer a promising approach to investigating crash recov-
ery errors and that these ideas can be leveraged with much
less work than previous, heavyweight implementation-level
model checkers. This paper introduced a lightweight, gen-
eral approach to finding such errors using a minimally inva-
sive kernel device driver. We developed an implementation,
Explode, that runs on a slightly modified Linux kernel on
raw hardware and applied it to a wide variety of storage sys-
tems, including eight file systems, Linux software RAID 5,
Linux NFS client and server, and three version control pack-
ages, including one for which we did not have source code.
We found serious data loss bugs in all of them, 25 in all. In
the future we plan on extending Explode in two directions:
checking more comprehensively by exploring better search
heuristics, and checking other mission critical storage sys-
tems such as databases.
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Abstract
We describe some of our experiences from developing the Dialyzer
defect detection tool and overseeing its use in large-scalecom-
mercial applications of the telecommunications industry written in
Erlang. In particular, we mention design choices that in ouropin-
ion have contributed to Dialyzer’s acceptance in its user commu-
nity, things that have so far worked quite well in its setting, the
occasional few that have not, and the lessons we learned fromin-
teracting with a wide, and often quite diverse, variety of users.

1. Introduction
Programmers occasionally make mistakes, even functional pro-
grammers do. This latter species is by choice immune to some
of the more typical kinds of software defects such as buffer over-
runs or accessing memory which has been freed, but cannot escape
many other kinds of programming errors, even the more mundane
ones such as simple typos. To catch some of these errors earlyin
the development phase, many functional programmers preferusing
statically typed languages such as ML or Haskell. These languages
impose a static type discipline on programs and report obvious type
violations during compilation. Static typing is not a panacea and
does have some drawbacks. First of all, the errors that are caught
are limited by the power of the currently employed type system; for
example, none of the employed type systems statically catches di-
vision by zero errors or using a negative integer as an array index.
Another drawback is that static typing often imposes quite strin-
gent rules on what is considered a type-correct program (forexam-
ple, type systems often require that each variable has a typewhich
can be uniquely determined by constructors) and forces a program
development model with a fair amount of constraints (e.g., ML re-
quires that the module structure of an application is hierarchical and
that there are no calls to functions with unknown type signatures).

Mainly due to reasons such as those described above, some
programmers feel more at ease practicing a different religion. They
adopt a morelaissez-fairestyle of programming and choose to
program in dynamically typed functional languages, like Lisp or
Scheme, instead. Erlang [1] is such a language. In fact, it isnot
only dynamically typed but it also extends pattern matchingby
allowing type guards in function heads and in case statements. It
is also a concurrent language which is used by large companies
in the telecommunications industry to develop large-scale(several
hundred thousand lines of code) commercial applications.

The Erlang/OTP development environment Since defect detec-
tion tools are only additional weapons in the war against software
bugs, we briefly describe the surroundings of our tool. The de-
velopment environment of the Erlang/OTP system from Ericsson1

1 OTP stands for Open Telecom Platform; seewww.erlang.org.

strongly encourages rapid prototyping and performing unittesting
early on in the development cycle. Like many functional language
implementations, the Erlang/OTP system comes with an interac-
tive shell where Erlang modules can be loaded and the functions in
them can easily be tested on an individual basis by simply issuing
calls to them. If an exception occurs at any point, it is caught and
presented to the user together with a stack trace which showsthe
sequence of calls leading to the exception. Many errors are elimi-
nated in this way. Of course, testing of multi-thousand (andoften
million) LOC commercial applications such as e.g. the software of
telecom switches is not limited to unit testing to catch exceptions
but is much more thorough and systematic; for one such example
see [7]. However, testing, no matter how thorough, cannot ofcourse
detect all software defects. Tools that complement testing, such as
static analyzers, have their place in software developmentregard-
less of language. Erlang is no exception to this.

2. Dialyzer: A brief overview
The Dialyzer [5] is a lightweight static analysis tool that identifies
some software defects such as obvious type errors, unreachable
code, redundant tests, virtual machine bytecode which is unsafe,
etc. in single Erlang modules or entire applications. Because not all
of defects identified by Dialyzer are software bugs, we thereafter
collectively refer to them as codediscrepancies.2

Dialyzer starts its analysis either from Erlang source codeor
from the virtual machine bytecode that the Erlang/OTP compiler
has produced and reports to its user the functions where the discrep-
ancies occur and an indication of what each discrepancy is about.

Characteristics Notable characteristics of Dialyzer are:

• Currently Dialyzer isa push-button technology and completely
automatic. In particular it accepts Erlang code “as is” and does
not require any annotations from the user, it is very easy to
customize, and supports various modes of operation (GUI vs.
command-line, module-local vs. application-global analysis,
using analyses of different power, focusing on certain types of
discrepancies only, etc.)

• Its analysis iscomplete— though of course not guaranteed to
find all errors. In particular, Dialyzer’s analysis reportsno false
positives; more on this below.

• Its basic analysis is typicallyquite fast. On a 2GHz Pentium 4
laptop it “dialyzes” about 800 lines of Erlang code per second.

Basic functionality explained using an example The simplest
way of using Dialyzer is via the command line. The command:

dialyzer --src -r dir

2 DIALYZER stands for DIscrepancy AnaLYZer of ERlang programs.



will find, recursively, all.erl Erlang source files underdir and
will collectively analyze them for discrepancies. (The--src option
is needed because, for historical reasons, analysis startsfrom virtual
machine bytecode by default. The command with the--src option
omitted, will analyze all.beam bytecode files underdir.)

We illustrate some of the kinds of discrepancies that Dialyzer is
capable of identifying by the following, quite factitious,example.
Assume that we are analyzing a bunch of modules, among them
m1 andm2, and thatm2 contains a functionbar (denotedm2:bar)
called by functionfoo in modulem1. Because Dialyzer constructs
the inter-modular function dependency graph, functionm2:bar
will be analyzed first. In doing so, let us assume that type inference
determines that functionm2:bar, when not throwing an exception,
returns a result of the following type:

’gazonk’ | {’ok’, 0 | 42 | ’aaa’ | [{’ok’, }]}

i.e., its result is either the atom’gazonk’ or a pair (i.e., a 2-tuple)
whose first element is the atom’ok’ and its second element is
either the integer0, or the integer42, or the atom’aaa’, or a
list of pairs whose first element is the atom’ok’. (The use of an
underscore in the second element denotes the universal typeany.)

First of all, note that this is a type which will not be derivedby
the inferencers that statically typed language commonly employ.
Type inferencers like those of e.g. ML would typically collapse the
integers0 and42 to the built-ininteger type and would not allow
mixing primitive types such as integers and atoms without having
them wrapped in appropriate constructors. More importantly, they
would never derive an unconstrained type (such as the typeany) at
some position.

So, how come Dialyzer’s type inferencer comes up with theany
type for the second element of pairs in the list? This can happen for
various reasons:

• The most common reason is that the source code of function
m2:bar does not contain enough information to determine the
type of the second element of these pairs.3 It may indeed be
the case that the function is polymorphic in this position, or
more likely that this position is not constrained by information
derived by or supplied to the analysis. The latter can happenif
the second element of these pairs is manipulated by a function
in some other modulem3 that Dialyzer knows nothing about
becausem3 was not included in the analysis. (Type analyzers
for statically typed languages would never tolerate this situation
and simply give up here.)

• The analysis has decided to over-approximate, throughwiden-
ing, the inferred type. This can happen either to ensure termina-
tion or for performance reasons.

Given the return type form2:bar shown above, when analyzing the
code of functionm1:foo — shown with numbered discrepancies as
Program 1 — Dialyzer will report the following:

1. The call to the built-in functionlist to atom, if reached, will
raise a runtime exception since it is called with an argument
which is an atom rather than a list. (The programmer is ob-
viously confused here; for example, perhaps the intention was
to use the functionatom to list instead.) In a similar man-
ner, type clashes in calling other analyzed functions whichare
not necessarily language built-ins (e.g.m2:bar) will be identi-
fied. This is the kind of type errors that any static type analyzer
would also be able to detect.

2. The case clause guarded byis integer(Num), Num < 0will
never succeed because its guard will never evaluate to true.The
complete case clause is thus redundant. This is something that
most static type analyzers would not be able to catch, for rea-

3 Erlang programs contain no type declarations or any explicit type information.

Program 1 Code snippet which is full of discrepancies.
-module(m1).

.

.

.
foo(. . .) ->

case (m2:bar(. . .) = Bar) of
Atom when is atom(Atom) ->

. . ., List = list to atom(Atom) 1, . . .;

{’ok’, 42} ->
{’answer’, 42};

{’ok’, Num} when is integer(Num), Num < 0 2 ->

{’error’, "Negative integer - not handled yet"};

{’ok’, [H|T] = List} when size(List) 3 > 1 ->

. . .;

{’ok’, [Bar|T]} 5 ->

. . .;

{’EXIT’, R} 4 ->

io:format("Caught exception; reason: ∼p∼n", [R])
end, % end of the case statement

.

.

.

sons explained above. Strictly, this is not an error but having
redundant code like that scattered in the program is a strong
indication for programmer confusion — programmers rarely
fancy writing redundant code; see also [8]. Our experience is
that such discrepancies quite often indicate places where bugs
may creep, or may be the remains of obsolete interfaces; per-
haps some time agom2:bar was returning pairs with negative
integers in their second element but not anymore. Such discrep-
ancies indicate code that can be eliminated, which often simpli-
fies the interface between functions. Note that in this case all the
callers ofm1:foo would also have to handle the 2-tuple where
the first element is’error’ besides’answer’. In any case, re-
porting to the user that this case clause will never succeed is a
true statement prompting the user for some action. In our opin-
ion, it cannot be considered a false positive; it is not a side-effect
of inaccuracy in the analysis due to e.g. over-approximation or
path-insensitivity.

3. The guardsize(List) will fail since its argument is a list and
in Erlang thesize function only accepts tuples and binaries as
its argument, not lists. (The corresponding function for lists is
called length and this is a common programming mistake.)
The problem here is that this defect will remain undetected
at runtime because, for good reasons, all exceptions in guard
contexts are intercepted and silenced; the semantics ofwhen
guards in Erlang dictates this. Testing has therefore very little
chance of discovering this error. (The only method is to find out
that the. . . code in the body of the case clause never executes).

4. The case clause with pattern{’EXIT’, R} will never match.
This may seem obvious given the return type ofm2:bar, but
it indicates another common Erlang programming error. The
programmer probably intended to handle exceptions here, but
forgot to protect the call tom2:bar with a catch construct;
i.e., write the case statement as:

case catch m2:bar(. . .) of

which would then match the 2-tuple{’EXIT’, R} in the case
whenm2:bar threw an exception. (Catch-based exceptions in
Erlang are wrapped in a 2-tuple whose first element is the atom
’EXIT’ and the second element is a symbolic representation of
the reason, which typically includes a detailed stack trace.)



5. This one is subtle. The patternP = {’ok’, [Bar|T]} is actu-
ally type-correct, but the pattern matching of the term returned
by m2:bar and assigned to the variableBar will never match
with the patternP , with Bar being a sub-term of it. We are not
aware of any type checker that would catch this error.

On the other hand, notice that Dialyzer willnot warn that the case
statement has no catch-all clause (similar to C’sdefault) or that
the {’ok’, 0} return fromm2:bar is not handled. This is done
so as to minimize irrelevant ‘noise’ from the tool. In this respect,
Dialyzer differs from tools such aslint [4].

As mentioned, the example code we just presented is factitious,
albeit only slightly so. Dialyzer has yet to find a single function
that contains all these discrepancies in its code at the sametime,
but all of them, even 5, are examples of discrepancies that Dialyzer
actually found in well-tested, commonly-used code of commercial
products. Besides these, Dialyzer is also capable of identifying
some other software defects in Erlang programs (e.g., possibly
unsafe bytecode generated by older versions of the Erlang/OTP
compiler and misuses of certain language constructs), but their
illustration is beyond the scope of this short experience paper.

Dialyzer is of course not guaranteed to report all software de-
fects — not even all type errors — that an Erlang application might
contain. In fact, because Dialyzer’s analysis is not path-sensitive,
Dialyzer currently suppresses all discrepancies that might be due
to losing information when joining the analysis results from differ-
ent paths. This is in contrast to other defect detection tools that do
report false positives due to inaccuracies or heuristics inanalyses
they employ.

Dialyzer comes with an extensive set of options that allow its
user to focus on certain types of discrepancies only and employ
analyses of varying precision vs. time complexity trade-offs. It also
comes with a graphical user interface in which the user is able
to inspect the information that led to the identification of some
discrepancy of interest.

For more up-to-date information, see also Dialyzer’s homepage:
www.it.uu.se/research/group/hipe/dialyzer/

3. Dialyzer’s usage so far
Even before its first public release, Dialyzer was applied torela-
tively large code bases, both by us and more commonly by Erlang
application developers. We have been working closely with devel-
opers of the AXD301 and GPRS4 projects at Ericsson, and with a
T-Mobile team in the U.K. which also uses Erlang for some of its
product development. An early account of the effectivenessof an
internal and significantly less powerful version of the toolappears
in [5].

The first releases of Dialyzer, versions 1.0.*, featured analysis
starting from virtual machine bytecode only and the tool only had
a GUI mode. We were somewhat (positively) surprised to receive
numerous user requests to develop a command-line version of
the tool so that Dialyzer becomes more easily integrated to the
purelymake-based build environment of some projects.5 Once this
happened, we even received extensions to the tool’s functionality
contributed by users that made it into the next release. For example,
the code that supports the-r (add files recursively) option was

4 GPRS: General Packet Radio Service.
5 We thought that when academic projects gotreal users, it was supposed to be the
other way around: the users would demand a GUI! More seriously, this is somewhat
contrary to experience reported in literature. For example[2] reports that a significant
portion of the effort is spent in explaining defects in a user-friendly way (presumably
aided by a GUI). This probably does tell something about the habits of the Erlang
programmer community, which is mostly Unix-centered, but we will not try to analyze
it further.

a user contribution; before that, users were forced to manually
specify all files and directories to include in the analysis.

At the time of this writing, some of the code bases analyzed
by Dialyzer are open-source community programs (e.g., the code
of the Wings 3D subdivision graphics modeler,6 of the Yaws web
server,7 and of theesdl graphical user interface library8). However,
the majority of Dialyzer’s uses are large commercial applications
from the telecommunications domain. Among them is the code
base of the AXD301 ATM switch consisting of about 2,000,000
lines of Erlang code, where by now Dialyzer has identified a signif-
icant number (many hundreds) of software defects that have gone
unnoticed after years of extensive testing. It is also continuously
being used in the Erlang/OTP R10 (release 10) system to elimi-
nate numerous bugs that previous releases contained in someof its
standard libraries. We also know that Dialyzer is being usedon the
code of some of Nortel’s products, but we do not have any further
information on it.

At least in the commercial projects, Dialyzer is typically run as
part of a centralized (often nightly) build. Perhaps because of this,
many Dialyzer users typically complain that Dialyzer’s identifica-
tion of discrepancies is not as clear and concise as the messages
they are used to getting from the Erlang/OTP compiler. Although
it is indeed the case that currently there is plenty of room for im-
provement in Dialyzer’s presentation of the identified discrepan-
cies, it is clear that for many of the discrepancies simple one-line
explanations of the form"line 42: unused variable X" will
never be possible. Some of the discrepancies identified are com-
plex, involve interactions of functions from various modules, and it
is not always clear how to assign blame. As a simple example, note
discrepancy 4 of Program 1: Dialyzer will currently complain that:

The clause matching involving ’EXIT’ will never match;
argument is of type ’ok’

while the culprit is probably a missingcatch construct after the
case. As a more involved example, for discrepancy 2, Dialyzer will
report that the guard will always fail. But perhaps functionm2:bar
should return negative integers in this tuple position after all.9

Finding why inter-modular type inference determines thatm2:bar
only returns the numbers0 and42 in that tuple position might not
be at all trivial — especially to users who are not familiar with type
systems.

4. Experiences and lessons learned
Requests for better explanations of identified discrepancies aside,
Dialyzer has been extremely successful. It has managed to identify
a significant number of software defects that have remained unde-
tected after a long period of extensive testing. For example, because
of the high level of reliability required from telecom switches, the
developers of AXD301, a team consisting of about 200 people,has
over a period of more than eight years spent a considerable per-
centage of their effort on testing. Still Dialyzer managed to identify
many discrepancies and often serious bugs. As another example,
certain bugs in Erlang/OTP standard libraries managed to survive
over many releases of the system, despite being in commonly used
modules of the system. Although this may sound a bit contradic-
tory, it has a simple explanation. Many of the bugs were in error-
handling code or code paths of the library modules which werenot
executed frequently enough.

6 Seewww.wings3d.com/.
7 Yaws: Yet Another Web Server; seeyaws.hyber.org/.
8 Erlang OpenGL/SDL API and utilities; seesourceforge.net/projects/esdl.
9 Worse yet, there might even be a comment in its code to the effect that m2:bar
possibly returns a negative integer. Some programmers currently trust comments more
than output from static analyzers... but we are working on slowly changing this!



remote dirty select(Tab, [{HeadPat, , }] = Spec, [H|T]) when tuple(HeadPat), size(HeadPat) > 2, H =< size(Spec) ->

. . . % code for the body of this clause
remote dirty select(. . .) ->

.

.

. % code for this and other clauses below handling select queries with general specifications

Figure 1. Code from themnesia database with a guard that will always fail making the body ofthe first clause unreachable.

Observations Some qualitative observations can be made:

• The vast majority of (at least non-trivial) defects identified by
Dialyzer are due to the interaction between multiple functions;
a significant number of them span across module boundaries.
This is mainly due to the fact that Erlang is great for testing
functions on an individual basis (or in small sets), but currently
provides little support for specifying and ensuring properuse of
functions in other modules.

• Probably due to the reason described above, we did not observe
the usual inverse correlation between the age of some piece
of code and the number of discrepancies in it, at least not di-
rectly. The problem is that callers of some function may be
significantly older than the callee and as the callee’s interface
evolves, the callers possibly remain unchanged. Having redun-
dant clauses handling return values that were perhaps returned
long ago but not anymore, is an extremely common discrep-
ancy. As mentioned, such code is typically harmless but often
desperately in need for cleanups. Doing so, simplifies the code
where the discrepancy occurs and exposes opportunities forfur-
ther simplifications elsewhere, often significant ones.

• Even in dynamically typed languages such as Erlang, the code
that is frequently executed does not have type errors. As a result,
Dialyzer tends to find most discrepancies off the commonly ex-
ecuted paths. Commonly executed paths are often reasonably
well-tested and most discrepancies have already been elimi-
nated. On the other hand, exception- or error-handling code,
code that handles timeouts in concurrent programs, etc. does
not always have this property.

• Quite often, fixing even simple discrepancies in some particular
piece of code exposes more serious ones in code which lies in
close proximity to the code which is fixed.

Most of these observations are not very surprising and in line with
those of other researchers in the area.

Myths On the other hand, our experience so far has made us
seriously doubt the validity of the following common beliefs:

1. Software defects identified by a static analysis tool are shal-
low. Occasionally one might see such a statement, especially in
comparisons between static analysis and model checking tech-
niques; see e.g. [3]. It is of course very hard to dispute sucha
statement, as its validity depends on what one considers as a
“shallow” defect, but we will try to do so anyway.

Figure 1 shows a small code segment from the code of
Mnesia [6], a database management system distributed as part
of Erlang/OTP. It also shows an actual discrepancy identified
by Dialyzer, which is now fixed. On the surface, the indi-
cated discrepancy is indeed shallow; a simple misuse of a li-
brary predicate (usingsize on a list rather thanlength).
Viewed from this prism, there is indeed nothing “deep” here:
the programmer made a silly mistake. Because the function
remote dirty select is quite commonly used, what is sur-
prising in this case is that this mistake managed to remain un-
noticed over many Erlang/OTP releases. The subtlety of the
problem was actually in the other clauses for the function. This
bug was not identified because this clause was there for opti-

mization purposes (in order to handle the common case of a
single-element specification list fast). The subsequent clauses
also provided the functionality of the first clause, but using
a more general (handling specification lists of any size) and
thus more expensive mechanism. It is very difficult to identify
such performance-related software defects by means of (even
exhaustive) testing. It is not clear to us that such softwarede-
fects, for which the correctness criterion cannot be specified us-
ing a simple formula whose validity can be checked by model-
checking techniques, are of the “shallow” kind.

2. Software defects, once identified, are soon fixed.Coming from
academia, one is a bit shocked to discover that the “real world”
is somehow different. Fixing bugs, no matter how serious, is
not always a developer’s top-priority, because program devel-
opment in the real world follows a different model than that
of open-source projects managed by small teams of individu-
als. Software evolution in big commercial projects goes hand-
in-hand with filling bug reports, sending them to the developer
who is responsible for the maintainance of the piece of code
containing the bug, caring about backwards compatibility even
when the functionality is crippled, and often having to invest
a non-trivial amount of effort in order to modify or extend ex-
isting regression test suites, which are typically not maintained
by programmers but by a separate testing team. (Our experi-
ence here is actually in line with that of other researchers;see
e.g. [2, 3].)

In fact, we even seriously doubt that an automatic classifi-
cation of the seriousness of defects would help here. As a con-
crete example, we reported 18 discrepancies that Dialyzer iden-
tified in some library of Erlang/OTP to the library’s maintainer,
which incidentally was not the original author. Most of them
were fixed pretty soon, but one in particular — which was the
most serious — was not. In fact, it remained unfixed for quite
some time. The reason for this was that it would involve seri-
ous redesign of the code and this might significantly change the
behaviour of the library.

3. Only programs written in low-level languages such as C se-
riously benefit from defect detection tools.Not many serious
developers believe this statement anyway, but often one of the
arguments used in favour of high-level languages is that these
languages avoid common programmer errors. Although this is
a very true statement in some contexts (for example, one does
not have the possibility to free memory once, let alone twice, in
a garbage-collected language), it often fails to point out the fact
that any language, no matter how high a level of abstraction
it offers, has silly pitfalls and traps for developers, and these
are often directly connected, and difficult to separate from, the
language’s strengths. We hold that software defect detection
tools, especially lightweight ones, have their place in sofware
development independently of the programming environment
and language which is employed.

Final remarks Dialyzer is a static analysis tool identifying dis-
crepancies — out of which some of them are serious bugs — in
Erlang applications. We believe that the following, perhaps unique
characteristics, have played a crucial role in Dialyzer’s acceptance
by its user community:



• The tool is extremely lightweight and requires absolutely no
code changes or user-supplied annotations in order to be useful.

• The tool has so far tried its best to keep down the level of ‘noise’
which it generates, often at the expense of failing to reportac-
tual bugs. For the first versions of Dialyzer, one desired feature
was to never issue a warning that could be perceived as mislead-
ing or be such that the user would find it extremely difficult to
interpret. For example, we noticed that when analyzing virtual
machine bytecode which has been generated using aggressive
inlining, it would probably be difficult for naı̈ve users to in-
terpret the discrepancies. The approach we took was to simply
suppress all discrepancies found in inline-compiled bytecode.

Although some might no doubt find this approach a bit extreme,
we felt it was important for Dialyzer to succeed in gaining the
developers’ trust and be integrated in a non-disruptive wayin the
development process (i.e., without requiring any methodological
changes from the users). Of course, this is only step number one.
Once the developers’ attitude and expectation level has been raised
sufficiently, we intend to provide options that lift some of these
restrictions.
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ABSTRACT
We present our experience of combining, in a realistic set-
ting, a static analysis for soundness and a statistical analysis
for false-alarm removal. The static analyzer is Airac that
we have developed in the abstract interpretation framework
for detecting bu®er overruns in ANSI + GNU C programs.
Airac is sound (¯nding all bugs) but with false alarms. Airac
raised, for example, 1009 bu®er-overrun alarms in commer-
cial C programs of 636K lines and 183 among the 1009
alarms were true. We addressed the false alarm problem
by computing a probability of each alarm being true. We
used Bayesian analysis and Monte Carlo method to estimate
the probabilities and their credible sets. Depending on the
user-provided ratio of the risk of silencing true alarms to
that of false alarming, the system selectively present the
analysis results (alarms) to the user. Though preliminary,
the performance of the combination lets us not hastily trade
the analysis soundness for a reduced number of false alarms.

1. Introduction
When one company’s software quality assurance depart-

ment started working with us to build a static analyzer that
automatically detects bu®er overruns1 in their C softwares,
they challenged us on three aspects: they hoped the ana-
lyzer 1) to be sound, detecting all possible bu®er overruns;
2) to have a “reasonable” cost-accuracy balance; 3) not to
assume a particular set of programming style about the C
programs to analyze. Building a C bu®er-overrun analyzer
that satis¯es all the three requirements was a big challenge.
In the literature, we have seen impressive static analyzers,
but their application targets allow them to drop one of the
three aspects [6, 3, 10, 8, 9].

In this article, we present our response that consists of
two things: a sound analyzer named Airac and a statisti-
cal analysis engine on top of it. Airac collects all the true
bu®er-overrun points in C programs yet always with false
alarms. The soundness is maintained, and the analysis ac-

∗An extended version of this paper will be presented
in SAS 2005. This work was supported by Brain Korea
21 of Korea Ministry of Education and Human Resource
Development, and by National Security Research Institute
of Korea Ministry of Information and Communication.
1Bu®er overruns happen when an index value is out of the
target bu®er size. They are common bugs in C programs
and are main sources of security vulnerability. From 1/2[2]
to 2/3[1] of security holes are due to bu®er overruns.

curacy is stretched to a point where the analysis cost remains
acceptable. The statistical engine, given the analysis results
(alarms), estimates the probability of each alarm being true.
Only the alarms that have true-alarm probabilities higher
than a threshold are reported to the user. The threshold is
determined by the user-provided ratio of the risk of silencing
true alarms to that of raising false alarms.

2. Airac, a Sound Analyzer
Automatically detecting bu®er overruns in C programs is

not trivial. Arbitrary expressions from simple arithmetics
to values returned by function calls can be array indices.
Pointers pointing bu®ers can be aliased and they can be
passed over as function parameters and returned from func-
tion calls. Bu®ers and pointers are equivalent in C. Contents
of bu®ers themselves also can be used as indexes of arrays.
Pointer arithmetic complicates the problem once more.

Airac’s sound design is based on the abstract interpreta-
tion framework[4, 5]. To ¯nd out all possible bu®er overruns
in programs, Airac has to consider all states which can occur
during programs executions. Airac computes sound approx-
imation of program state at every program point and reports
all possible bu®er overruns by examining the approximate
program states.

For a given program, Airac computes a map from flow
edges to abstract machine states. The abstract machine
state consists of abstract stack, abstract memory and ab-
stract dump. Abstract stack, abstract memory and abstract
dump are maps of which range domains consist of abstract

values. We use interval domain bZ for abstract numeric val-
ues. [a, b] ∈ bZ represents an integer interval that has a as
minimum and b as maximum. And this interval means a
set of numeric values between a and b. To represent in¯nite
interval, we use −∞ and +∞. [−∞,+∞] means all integer
values. An abstract array (an abstract pointer to an array)
is a triple which consists of its base location, its size interval,
and an o®set interval. We use allocation sites to denote ab-
stract memory locations. An integer array which is allocated
at l and has size s is represented as 〈l, [s, s], [0, 0]〉.

2.1 Striking a Cost›Accuracy Balance
Airac has many features designed to decrease false alarms

or to speed-up analysis and all techniques don’t violate the
analysis soundness.

2.1.1 Accuracy Improvement
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Time #Airac Alarms #Real
Software #Lines

(sec) #Bu®ers #Accesses bugs
GNU S/W tar-1.13 20,258 576.79s 24 66 1

bison-1.875 25,907 809.35s 28 50 0
sed-4.0.8 6,053 1154.32s 7 29 0
gzip-1.2.4a 7,327 794.31s 9 17 0
grep-2.5.1 9,297 603.58s 2 2 0

Linux kernel vmax302.c 246 0.28s 1 1 1
version xfrm user.c 1,201 45.07s 2 2 1
2.6.4 usb-midi.c 2,206 91.32s 2 10 4

atkbd.c 811 1.99s 2 2 2
keyboard.c 1,256 3.36s 2 2 1
af inet.c 1,273 1.17s 1 1 1
eata pio.c 984 7.50s 3 3 1
cdc-acm.c 849 3.98s 1 3 3
ip6 output.c 1,110 1.53s 0 0 0
mptbase.c 6,158 0.79s 1 1 1
aty128fb.c 2,466 0.32s 1 1 1

Commercial software 1 109,878 4525.02s 16 64 1
Softwares software 2 17,885 463.60s 8 18 9

software 3 3,254 5.94s 17 57 0
software 4 29,972 457.38s 10 140 112
software 5 19,263 8912.86s 7 100 3
software 6 36,731 43.65s 11 48 4
software 7 138,305 38328.88s 34 147 47
software 8 233,536 4285.13s 28 162 6
software 9 47,268 2458.03s 25 273 1

Table 1: Analysis speed and accuracy of Airac

We use the following techniques to improve the analysis
accuracy of Airac:

• Unique Renaming Memory locations are abstracted
by allocation sites. In Airac, sites of variable declara-
tions are represented by variable name and other sites
are assigned unique labels. So to prevent interferences
among variables, Airac renames all variables to have
unique names.

• Narrowing After Widening The height of integer
interval domain is in¯nite. Widening operator[4] is
essential for the analysis termination. But this opera-
tor decreases accuracy of analysis result. Narrowing is
used for recovering accuracy.

• Flow Sensitive Analysis Destructive assignment is
always allowed except for within cyclic flow graphs.

• Context Pruning We can con¯ne interval values us-
ing conditional expressions of branch statements. Airac
uses these information to prune interval values and this
pruning improve analysis accuracy.

• Polyvariant Analysis Function-inlining e®ect by la-
beling function-body expressions uniquely to each call-
site: the number of di®erent labels for an expression is
bound by a value from user. This method is weakened
within recursive call cycles.

• Static Loop Unrolling Loop-unrolling e®ect by la-
beling loop-body expressions uniquely to each itera-
tion: the number of di®erent labels for an expression
is bound by a value from the user.

2.1.2 Cost Reduction
When the ¯xpoint iteration reaches the junction points,

we have to check the partial orders of abstract machines
and we also commit the join(t) operations. These tasks
take most of analysis time. The speed of the analysis highly
depends on how we handle such operations e±ciently.

We developed techniques to reduce time required for par-
tial order checking and join operation.

• Stack Obviation We transform the original programs
whose e®ects on stack are reflected by the memory.
And this transformation makes Airac avoid scanning
abstract stacks during ordering abstract machines.

• Selective Memory Join Airac keeps track of in-
formation that indicates changed entries in abstract
memory. Join operation is applied only to those changed
values.

• Wait-at-Join For program points where many data
flows join, Airac delays the computation for edges start-
ing from the current point until all computations for
the incoming edges are done.

3. Performance of Airac
This section presents Airac’s performance. Numbers that

are before the statistical engine sift out alarms that are prob-
ably false.

Airac is implemented in nML2 and tested to analyze GNU
softwares, Linux kernel sources and commercial softwares.

2Korean dialect of ML programming language.
http://ropas.snu.ac.kr/n
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Figure 1: Airac’s scalability

The commercial softwares are all embedded softwares. Airac
found some fatal bugs in these softwares which were under
development. Table 1 shows the result of our experiment.
“#Lines” is the number of lines of the C source ¯les be-
fore preprocessing them. “Time” is the user CPU time in
seconds. “#Bu®ers” is the number of bu®ers those may
be overrun. “#Accesses” is the number of bu®er-access ex-
pressions that may overrun. “#Real Bugs” is the number
of bu®er accesses that are con¯rmed to be able to cause real
overruns. Two graphs in Figure 1 show Airac’s scalability
behavior. X axis is the size (number of lines) of the input
program to analyze and Y axis is the analysis time in sec-
onds. (b) is a microscopic view of (a)’s lower left corner.
Experiment was done in a Linux system with a Pentium4
3.2GHz CPU and 4GB of RAM.

We found some examples in real codes that Airac’s accu-
racy and soundness shines:

• In GNU S/W tar-1.13 program rmt.c source, Airac de-
tected the overrun point inside the get string func-
tion to which a bu®er pointer is passed:

static void
get_string (char *string)
{

int counter;

for (counter = 0;
counter < STRING_SIZE;
counter++) {

.....
}
string[counter] = ’\0’;

// counter == STRING_SIZE
}

int
main (int argc, char *const *argv)
{

char device_string[STRING_SIZE];
......
get_string(device_string);
......

}

• Airac catched errors in the following simple cases, for
which syntactic pattern matching or unsound analyzer
are likely to fail to detect.

– Function pointer is used for calculating an index
value:

int incr(int i) { return i+1;}
int decr(int i) { return i-1;}

main() {
int (*farr[]) (int) = {decr, decr, incr};
int idx = rand()%3;
int arr[10];
int num = farr[idx](10);
arr[num] = 10; //index:[9, 11]

}

– Index variable is increased in an in¯nite loop:

main() {
int arr[10];
int i = 0;
while(1){

*(arr + i) = 10; //index:[0, +Inf]
i++;

}
}

– Index variable is passed to a function by param-
eter and updated in the function:

simpleCal(int idx) {
int arr[10];
idx += 5;
idx += 10;
arr[idx]; //index:[17, 17]

}
main() {

simpleCal(2);
}

4. Sifting›out False Alarms
By Statistical Post Analysis

We use Bayesian approach [7] to compute the probability
of alarms being true. Let ⊕ denote the event an alarm raised
is true and ª the event an alarm is false. Si denotes a single
symptom is observed in the raised alarm and ~S is a vector of
such symptoms. P (E) denotes the probability of an event
E, and P (A | B) is the conditional probability of A given
B. Bayes’ rule is used to predict the probability of a new
event from prior knowledge. In our case, we accumulate
the number of true and false alarms having each speci¯c
symptom from alarms already veri¯ed and classi¯ed to be
true or false by humans. From this knowledge we compute

3
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(a) Frequency of probability being true in true and false alarms.
False alarms are counted in negative numbers. 74.83% of false
alarms have probability less than 0.25.

(b) Cumulative percentage of observed alarms starting from prob-
ability 1 and down.

Figure 2: Experiment results

the probability of a new alarm with some symptoms being
a true one.

To compute the Bayesian probability, we need to de¯ne
symptoms featuring alarms and gather them from already
analyzed programs and classi¯ed alarms. We de¯ned symp-
toms both syntactically and semantically. Syntactic symp-
toms describe the syntactic context before the alarmed ex-
pressions. The syntactic context consists of program con-
structs used before the alarmed expressions. Semantic symp-
toms are gathered during Airac’s ¯xpoint computation phase.
For such symptoms, we de¯ned symptoms representing whether
context pruning was applied, whether narrowing was ap-
plied, whether an interval value has in¯nity and so forth.

From the Bayes’ theorem, probability P (⊕ | ~S) of an

alarm being true that has symptoms ~S can be computed
as the following:

P (⊕ | ~S) =
P (~S | ⊕)P (⊕)

P (~S)
=

P (~S | ⊕)P (⊕)

P (~S | ⊕)P (⊕) + P (~S | ª)P (ª)
.

By assuming each symptom in ~S occurs independently under
each class, we have

P (~S | c) =
Y

Si∈
~S

P (Si | c) where c ∈ {⊕,ª}.

Here, P (Si | c) is estimated by Bayesian analysis from our
empirical data. We assume prior distributions are uniform
on [0, 1]. Let p be the estimator of the probability P (⊕) of
an alarm being true. P (Si | ⊕) and P (Si | ª) are estimated
by θi and ηi respectively. Assuming that each Si are inde-
pendent in each class, the posterior distribution of P (⊕ | ~S)
taking our empirical data into account is established as fol-
lowing:

ψ̂j =
(
Q

Si∈
~S θi) · p

(
Q

Si∈
~S θi) · p+ (

Q
Si∈

~S ηi) · (1 − p)
(1)

where p, θi and ηi have beta distributions as

p ∼ Beta(N(⊕) + 1, n−N(⊕) + 1)
θi ∼ Beta(N(⊕, Si) + 1, N(⊕,¬Si) + 1)
ηi ∼ Beta(N(ª, Si) + 1, N(ª,¬Si) + 1)

and N(E) is the number of events E counted from our em-
pirical data.

Now the estimation of p, θi,ηi are done by Monte Carlo
method. We randomly generate pi, θij , ηij values N times
from the beta distributions and compute N instances of ψj .

Then the 100(1−2α)% credible set of ψ̂ is (ψjα·N
, ψj(1−α)·N

)
where ψj1 < ψj2 < · · · < ψjN

. We take the upper bound

ψj(1−α)·N
for ψ̂. After obtaining the upper bound ψ̂ of prob-

ability being true for each alarm, we have to decide whether
we should report the alarm or not. To choose a reasonable
threshold, user supplies two parameters de¯ning the mag-
nitude of risk: rm for not reporting true alarms and rf for
reporting false alarms.

⊕ ª
risk of reporting 0 rf

risk of not reporting rm 0

Given an alarm whose probability being true is ψ, the ex-
pectation of risk when we raise an alarm is rf · (1 − ψ),
and rm · ψ when we don’t. To minimize the risk, we must
choose the smaller side. Hence, the threshold of probability
to report the alarm can be chosen as:

rm · ψ ≥ rf · (1 − ψ) ⇐⇒ ψ ≥
rf

rm + rf

.

If the probability of an alarm being true can be greater than
or equal to such threshold, i.e. if the upper bound of ψ̂ is
greater than such threshold, then the alarm should be raised
with 100(1−2α)% credibility. For example, user can supply
a1 = 3, a2 = 1 if (s)he believes that not alarming for true
errors have risk 3 times greater than raising false alarms.
Then the threshold for the probability being true to report
becomes 1/4 = 0.25 and whenever the estimated probability
of an alarm is greater than 0.25, we should report it. For
a sound analysis, to miss a true alarm is considered much
riskier than to report a false alarm, so it is recommended to
choose the two risk values a1 À a2 to keep more soundness.

We have done some experiments with our samples of pro-
grams and alarms. Some parts of the Linux kernel and pro-
grams that demonstrate classical algorithms were used for
the experiment. For a single experiment, samples were ¯rst
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divided into learning set and testing set. 50% of the alarms
were randomly selected as learning set, and the others for
testing set. Each symptom in the learning set were counted
according to whether the alarm was true or false. With
these pre-calculated numbers, ψ̂ for each alarm in the test-
ing set was estimated using the 90% credible set constructed
by Monte Carlo method. Using Equation (1), we computed
2000 ψj ’s from 2000 p’s and θi’s and ηi’s, all randomly gen-
erated from their distributions. We can view alarms in the
testing set as alarms from new programs, since their symp-
toms didn’t contribute to the numbers used for the estima-
tion of ψ̂.

Figure 2 was constructed from the data generated by re-
peating the experiment 15 times. For the histogram (a) on
the left, dark bars indicate true alarms and lighter ones are
false. 74.83% (≈1504/2010) of false alarms have probability
less than 0.25, so that they can be sifted out. For users who
consider the risk of missing true error is 3 times greater than
false alarming, almost three quarters of false alarms could
be sifted out, or preferably just deferred.

For a sound analysis, it is considered much riskier to miss
a true alarm than to report a false one, so it is recommended
to choose the two risk values rm À rf to keep more sound-
ness. For the experiment result Figure 2 presents, 31.40%
(≈146/465) of true alarms had probability less than or equal
to 0.25, and were also sifted out with false alarms. Although
we do not miss any true alarm by lowering the threshold
down to 0.07 (rm/rf ≈ 13) for this case, it does not guar-
antee any kind of soundness in general. However, to obtain
a sound analysis result, one can always set rf = 0, i.e. al-
lowing none of the alarms to be sifted out.

We can rank alarms by their probability to give e®ec-
tive results to user. This ranking can be used both with
and without the previous sifting-out technique. By ordering
alarms, we let the user handle more probable errors ¯rst.
Although the probable of true alarms are scattered over 0
through 1, we can see that most of the false alarms have
small probability. Hence, sorting by probability and showing
in decreasing order will e®ectively give true alarms ¯rst to
the user. (b) of Figure 2 shows the cumulative percentage of
observed alarms starting from probability 1 and down. Only
15.17% (=305/2010) of false alarms were mixed up until the
user observes 50% of the true alarms, where the probability
equals 0.3357.

5. Conclusion
Our Airac experience encourages us to conclude that in a

realistic setting it is not inevitable to trade the soundness
for a reduced number of false alarms. By striking a cost-
accuracy balance of a sound analyzer, we can ¯rst achieve
an analyzer that is itself useful with small false-alarm rate in
most cases (as the experiment numbers showed for analyzing
Linux kernels). Then, by a careful design of a Bayesian anal-
ysis of the analyzer’s false-alarm behaviors, we can achieve
a post-processing engine that sifts out false alarms from the
analysis results.

Though the Bayesian analysis phase still has the risk of
sifting out true alarms, it can reduce the risk at the user’s
desire. Given the user-provided ratio of the risk of silencing
true alarms to that of false alarming, a simple decision the-
ory determines the threshold probability that an alarm with
a lower probability is silenced as a false one. Because the
underlying analyzer is sound, if the user is willing to, (s)he

can receive a report that contain all the real alarms. For
Airac, when the risk of missing true alarms is three times
greater than that of false alarming, three quarters of false
alarms could be sifted out. Moreover, if user inspects alarms
having high probability ¯rst, only 15% of the false ones get
mixed up while 50% of the trues are observed.

The Bayesian analysis’ competence heavily depends on
how we de¯ne symptoms. Since the inference framework
is known to work well, better symptoms and feasible size
of pre-classi¯ed alarms is the key of this approach. We
think promising symptoms are tightly coupled with anal-
ysis’ weakness and/or its preciseness, and some fair insight
into the analysis is required to de¯ne them. However, since
general symptoms, such as syntactic ones, are tend to reflect
the programming style, and such patterns are well practiced
within organizations, we believe local construction and use
of the knowledge base of such simple symptoms will still be
e®ective. Furthermore, we see this approach easily adapt-
able to possibly any kind of static analysis.

Another approach to handling false alarms is to equip the
analyzer with all possible techniques for accuracy improve-
ment and let the user choose a right combination of the
techniques for her/his programs to analyze. The library of
techniques must be extensive enough to specialize the ana-
lyzer for as wide spectrum of the input programs as possi-
ble. This approach lets the user decide how to control false
alarms, while our Bayesian approach lets the analysis de-
signer decide by choosing the symptoms based on the knowl-
edge about the weakness and strength of his/her analyzer.
We see no reason we cannot combine the two approaches.
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ABSTRACT
The capabilities of seven dynamic buffer overflow detec-
tion tools (Chaperon, Valgrind, CCured, CRED, Insure++,
ProPolice and TinyCC) are evaluated in this paper. These
tools employ different approaches to runtime buffer over-
flow detection and range from commercial products to open-
source gcc-enhancements. A comprehensive testsuite was
developed consisting of specifically-designed test cases and
model programs containing real-world vulnerabilities. In-
sure++, CCured and CRED provide the highest buffer over-
flow detection rates, but only CRED provides an open-source,
extensible and scalable solution to detecting buffer over-
flows. Other tools did not detect off-by-one errors, did not
scale to large programs, or performed poorly on complex
programs.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication; D.2.5 [Software Engineering]: Testing and De-
bugging; K.4.4 [Computers and Society]: Electronic Com-
merce Security
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Security, buffer overflow, dynamic testing, evaluation, ex-
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Figure 1: Cumulative exploits in commonly used
server software.

1. INTRODUCTION
Today’s server software is under constant scrutiny and

attack, whether for fun or for profit. Figure 1 shows the cu-
mulative number of exploits found in commonly used server
software, such as IIS, BIND, Apache, sendmail, and wu-ftpd.
The stars indicate appearances of major worms, such as
Lion, CodeRed and Welchia. As the data demonstrates, new
vulnerabilities are still found, even in code that has been
used and tested for years. A recent analysis by Rescorla [18]
agrees with this observation, as it shows that vulnerabilities
continue to be discovered at a constant rate in many types
of software.

Buffer overflows enable a large fraction of exploits tar-
geted at today’s software. Such exploits range from arbi-
trary code execution on the victim’s computer to denial of
service (DoS) attacks. For 2004, CERT lists 3,780 vulnera-
bilities [3], while NIST reports that 75% of vulnerabilities in
its ICAT database are remotely exploitable, of which 21%
are due to buffer overflows [15]. Detecting and eliminating
buffer overflows would thus make existing software far more
secure.

There are several different approaches for finding and pre-
venting buffer overflows. These include enforcing secure
coding practices, statically analyzing source code, halting
exploits via operating system support, and detecting buffer
overflows at runtime [5]. Each approach has its advantages;
however, each also suffers from limitations. Code reviews, no
matter how thorough, will miss bugs. Static analysis seems



like an attractive alternative, since the code is examined
automatically and no test cases are required. However, cur-
rent static analysis tools have unacceptably high false alarm
rates and insufficient detection rates [24]. Operating system
patches, such as marking stack memory non-executable, can
only protect against a few types of exploits.

Dynamic buffer overflow detection and prevention is an
attractive approach, because fundamentally there can be
no false alarms. Tools that provide dynamic buffer over-
flow detection can be used for a variety of purposes, such
as preventing buffer overflows at runtime, testing code for
overflows, and finding the root cause of segfault behavior.

One disadvantage of using this approach to find errors in
source code is that an input revealing the overflow is re-
quired, and the input space is generally very large. There-
fore, dynamic buffer overflow detection makes the most sense
as part of a system that can generate these revealing inputs.
This evaluation is part of a project to create a grammar-
based dynamic program testing system that enables buffer
overflow detection in server software before deployment. Such
a testing system will use the dynamic buffer overflow detec-
tion tool to find buffer overflows on a range of automatically-
generated inputs. This will enable a developer to find and
eliminate buffer overflows before the faults can be exploited
on a production system. A similar testing approach is used
in the PROTOS project at the University of Oulu [13].

This paper focuses on evaluating the effectiveness of cur-
rent dynamic buffer overflow detection tools. A similar eval-
uation has been conducted by Wilander et al. [22], but it
focused on a limited number of artificial exploits which only
targeted buffers on the stack and in the bss section of the
program. Our evaluation reviews a wider range of tools and
approaches to dynamic buffer overflow detection and con-
tains a more comprehensive test corpus.

The test corpus consists of two different testsuites. Sec-
tion 3 presents the results for variable-overflow testsuite,
which consists of 55 small test cases with variable amounts
overflow, specifically designed to test each tool’s ability to
detect small and large overflows in different memory regions.
Section 4 presents the results for 14 model programs con-
taining remotely exploitable buffer overflows extracted from
bind, wu-ftpd and sendmail.

The rest of the paper is organized as follows: Section 2
presents an overview of the tools tested in this evaluation,
Sections 3 and 4 present descriptions and results for two dif-
ferent testsuites, Section 5 describes performance overhead
incurred by the tools in this evaluation, and Section 6 sum-
marizes and discusses our findings.

2. DYNAMIC BUFFER OVERFLOW
DETECTION TOOLS

This evaluation tests modern runtime buffer overflow de-
tection tools including those that insert instrumentation at
compile-time and others that wrap the binary executable
directly. This section presents a short description of each
tool, focusing on its strengths and weaknesses.

A summary of tool characteristics is presented in Table 1.
A tool is considered to include fine-grained bounds checking
if it can detect small (off-by-one) overflows. A tool compiles
large programs if it can be used as a drop-in replacement for
gcc and no changes to source code are needed to build the
executable; however, minimal changes to the makefile are

acceptable. The time of error reporting specifies whether
the error report is generated when the error occurs or when
the program terminates. Since program state is likely to
become corrupted during an overflow, continuing execution
after the first error may result in incorrect errors being re-
ported. Instrumentation may also be corrupted, causing
failures in error checking and reporting. If a tool can pro-
tect the program state by intercepting out-of-bounds writes
before they happen and discarding them, reporting errors at
termination may provide a more complete error summary.

2.1 Executable Monitoring Tools
Chaperon [16] is part of the commercial Insure toolset

from Parasoft. Chaperon works directly with binary exe-
cutables and thus can be used when source code is not avail-
able. It intercepts calls to malloc and free and checks heap
accesses for validity. It also detects memory leaks and read-
before-write errors. One limitation of Chaperon is that fine-
grained bounds checking is provided only for heap buffers.
Monitoring of buffers on the stack is very coarse. Some
overflows are reported incorrectly because instrumentation
can become corrupted by overflows. Like all products in the
Insure toolset, it is closed-source which makes extensions
difficult.

Valgrind [12] is an open-source alternative to Chaperon.
It simulates code execution on a virtual x86 processor, and
like Chaperon, intercepts calls to malloc and free that allow
for fine-grained buffer overflow detection on the heap. After
the program in simulation crashes, the error is reported and
the simulator exits gracefully. Like Chaperon, Valgrind suf-
fers from coarse stack monitoring. Also, testing is very slow
(25 – 50 times slower than running the executable compiled
with gcc [12]), since the execution is simulated on a virtual
processor.

2.2 Compiler-based Tools
CCured [14] works by performing static analysis to de-

termine the type of each pointer (SAFE, SEQ, or WILD). SAFE
pointers can be dereferenced, but are not subject to pointer
arithmetic or type casts. SEQ pointers can be used in pointer
arithmetic, but cannot be cast to other pointer types, while
WILD pointers can be used in a cast. Each pointer is in-
strumented to carry appropriate metadata at runtime - SEQ
pointers include upper and lower bounds of the array they
reference, and WILD pointers carry type tags. Appropriate
checks are inserted into the executable based on pointer
type. SAFE pointers are cheapest since they require only
a NULL check, while WILD pointers are the most expensive,
since they require type verification at runtime.

The main disadvantage of CCured is that the programmer
may be required to annotate the code to help CCured de-
termine pointer types in complex programs. Since CCured
requires pointers to carry metadata, wrappers are needed to
strip metadata from pointers when they pass to uninstru-
mented code and create metadata when pointers are received
from uninstrumented code. While wrappers for commonly-
used C library functions are provided with CCured, the de-
veloper will have to create wrappers to interoperate with
other uninstrumented code. These wrappers introduce an-
other source of mistakes, as wrappers for sscanf and fscanf

were incorrect in the version of CCured tested in this eval-
uation; however, they appear to be fixed in the currently-
available version (v1.3.2).



Tool Version OS Requires
Source

Open
Source

Fine-grained
Bounds
Checking

Compiles
Large
Programs

Time of Error
Reporting

Wait for
segfault

N/A Any No Yes No Yes Termination

gcc 3.3.2 Linux No Yes No Yes Termination
Chaperon 2.0 Linux No No No* Yes Occurrence
Valgrind 2.0.0 Linux No Yes No* Yes Termination

CCured 1.2.1 Linux Yes Yes Yes No Occurrence
CRED 3.3.2 Linux Yes Yes Yes Yes Occurrence
Insure++ 6.1.3 Linux Yes No Yes Yes Occurrence
ProPolice 2.9.5 Linux Yes Yes No Yes Termination
TinyCC 0.9.20 Linux Yes Yes Yes No Termination

Table 1: Summary of Tool Characteristics (* = fine-grained bounds checking on heap only)

C Range Error Detector (CRED) [19] has been de-
veloped by Ruwase and Lam, and builds on the Jones and
Kelly “referent object” approach [11]. An object tree, con-
taining the memory range occupied by all objects (i.e. ar-
rays, structs and unions) in the program, is maintained dur-
ing execution. When an object is created, it is added to
the tree and when it is destroyed or goes out of scope, it is
removed from the tree. All operations that involve point-
ers first locate the “referent object” – an object in the tree
to which the pointer currently refers. A pointer operation
is considered illegal if it results in a pointer or references
memory outside said “referent object.” CRED’s major im-
provement is adhering to a more relaxed definition of the
C standard – out-of-bounds pointers are allowed in pointer
arithmetic. That is, an out-of-bounds pointer can be used
in a comparison or to calculate and access an in-bounds ad-
dress. This addition fixes false alarms that were generated in
several programs compiled with Jones and Kelly’s compiler,
as pointers are frequently tested against an out-of-bounds
pointer to determine a termination condition. CRED does
not change the representation of pointers, and thus instru-
mented code can interoperate with unchecked code.

Two main limitations of CRED are unchecked accesses
within library functions and treatment of structs and arrays
as single memory blocks. The former issue is partially mit-
igated through wrappers of C library functions. The latter
is a fundamental issue with the C standard, as casting from
a struct pointer to a char pointer is allowed. When type
information is readily available at compile time (i.e. the
buffer enclosed in a struct is accessed via s.buffer[i] or
s ptr->buffer[i]), CRED detects overflows that overwrite
other members within the struct. However, when the buffer
inside a struct is accessed via an alias or through a type
cast, the overflow remains undetected until the boundary of
the structure is reached. These problems are common to
all compiler-based tools, and are described further in Sec-
tion 2.3.

Insure++ [16] is a commercial product from Parasoft
and is closed-source, so we do not know about its inter-
nal workings. Insure++ examines source code and inserts
instrumentation to check for memory corruption, memory
leaks, memory allocation errors and pointer errors, among
other things. The resulting code is executed, and errors are
reported when they occur. Insure’s major fault is its perfor-
mance overhead, resulting in slowdown factor of up to 250
as compared to gcc. Like all tools, Insure’s other limitation
stems from the C standard, as it treats structs and arrays

as single memory blocks. Since the product is closed-source,
extensions are difficult.

ProPolice [8] is similar to StackGuard [6], and outper-
formed it on artificial exploits [22]. It works by inserting
a “canary” value between the local variables and the stack
frame whenever a function is called. It also inserts appro-
priate code to check that the “canary” is unaltered upon
return from this function. The “canary” value is picked
randomly at compile time, and extra care is taken to re-
order local variables such that pointers are stored lower in
memory than stack buffers.

The “canary” approach provides protection against the
classic “stack smashing attack” [1]. It does not protect
against overflows on the stack that consist of a single out-
of-bounds write at some offset from the buffer, or against
overflows on the heap. Since ProPolice only notices the er-
ror when the “canary” has changed, it does not detect read
overflows or underflows. The version of ProPolice tested dur-
ing this evaluation protected only functions that contained
a character buffer, thus leaving overflows in buffers of other
types undetected; this problem has been fixed in later ver-
sions by including -fstack-protector-all flag that forces
a “canary” to be inserted for each function call.

Tiny C compiler (TinyCC) [2] is a small and fast C
compiler developed by Fabrice Bellard. TinyCC works by
inserting code to check buffer accesses at compile time; how-
ever, the representation of pointers is unchanged, so code
compiled with TinyCC can interoperate with unchecked code
compiled with gcc. Like CRED, TinyCC utilizes the “ref-
erent object” approach [11], but without CRED’s improve-
ments. While TinyCC provides fine-grained bounds check-
ing of buffer accesses, it is much more limited than gcc in
its capabilities. It failed to compile large programs such as
Apache with the default makefile. It also does not detect
read overflows, and terminates with a segfault whenever an
overflow is encountered, without providing an error report.

2.3 Common Limitations of Compiler-based
Tools

There are two issues that appear in all of the compiler-
based tools – unchecked accesses within library functions
and treatment of structs and arrays as single memory blocks.
The former problem is partially mitigated by creating wrap-
pers for C library functions or completely reimplementing
them. Creating these wrappers is error-prone, and many
functions (such as File I/0) cannot be wrapped.

The latter problem is a fundamental issue with the C stan-



dard of addressing memory in arrays and structs. According
to the C standard, a pointer to any object type can be cast
to a pointer to any other object type. The result is defined
by implementation, unless the original pointer is suitably
aligned to use as a resultant pointer [17]. This allows the
program to re-interpret the boundaries between struct mem-
bers or array elements; thus, the only way to handle the
situation correctly is to treat structs and arrays as single
memory objects. Unfortunately, overflowing a buffer inside
a struct can be exploited in a variety of attacks, as the same
struct may contain a number of exploitable targets, such as
a function pointer, a pointer to a longjmp buffer or a flag
that controls some aspect of program flow.

3. VARIABLE-OVERFLOW TESTSUITE
EVALUATION

The variable-overflow testsuite evaluation is the first of
two evaluations included in this paper. This testsuite is a
collection of 55 small C programs that contain buffer over-
flows and underflows, adapted from Misha Zitser’s evalua-
tion of static analysis tools [24]. Each test case contains
either a discrete or a continuous overflow. A discrete buffer
overflow is defined as an out-of-bounds write that results
from a single buffer access, which may affect up to 8 bytes
of memory, depending on buffer type. A continuous buffer
overflow is defined as an overflow resulting from multiple
consecutive writes, one or more of which is out-of-bounds.
Such an overflow may affect an arbitrary amount of mem-
ory (up to 4096 bytes in this testsuite), depending on buffer
type and length of overflow.

Each test case in the variable-overflow testsuite contains
a 200-element buffer. The overflow amount is controlled at
runtime via a command-line parameter and ranges from 0
to 4096 bytes. Many characteristics of buffer overflows vary.
Buffers differ in type (char, int, float, func *, char *)
and location (stack, heap, data, bss). Some are in contain-
ers (struct, array, union, array of structs) and elements are
accessed in a variety of ways (index, pointer, function, array,
linear and non-linear expression). Some test cases include
runtime dependencies caused by file I/O and reading from
environment variables. Several common C library functions
((f)gets, (fs)scanf, fread, fwrite, sprintf, str(n)cpy,
str(n)cat, and memcpy) are also used in test cases.

3.1 Test Procedure
Each test case was compiled with each tool, when re-

quired, and then executed with overflows ranging from 0
to 4096 bytes. A 0-byte overflow is used to verify a lack of
false alarms, while the others test the tool’s ability to detect
small and large overflows. The size of a memory page on the
Linux system used for testing is 4096 bytes, so an overflow
of this size ensures a read or write off the stack page, which
should segfault if not caught properly. Whenever the test
required it, an appropriately sized file, input stream or envi-
ronment variable was provided by the testing script. There
are three possible outcomes of a test. A detection signifies
that the tool recognized the overflow and returned an error
message. A segfault indicates an illegal read or write (or an
overflow detection in TinyCC). Finally, a miss signifies that
the program returned as if no overflow occurred.

Table 1 describes the versions of tools tested in our eval-
uation. All tests were performed on a Red Hat Linux re-

lease 9 (Shrike) system with dual 2.66GHz Xeon CPUs.
The standard Red Hat Linux kernel was modified to en-
sure that the location of the stack with respect to stacktop
address (0xC0000000) remained unchanged between execu-
tions. This modification was necessary to ensure consistent
segfault behavior due to large overflows.

3.2 Variable-overflow Testsuite Results
This section presents a summary of the results obtained

with the variable-overflow testsuite. The graph in Figure 2
shows the fraction of test cases in the variable-overflow test-
suite with a non-miss (detection or segfault) outcome for
each amount of overflow. Higher fractions represents better
performance. All test cases, with the exception of the 4 un-
derflow test cases, are included on this graph even though
the proportional composition of the testsuite is not repre-
sentative of existing exploits. Nonetheless, the graph gives
a good indication of tool performance. Fine-grained bounds
checking tools are highlighted by the “fine-grained” box at
the top of the graph.

The top performing tools are Insure++, CCured and CRED,
which can detect small and large overflows in different mem-
ory locations. TinyCC also performs well on both heap and
stack-based overflows, while ProPolice only detects contin-
uous overflows and small discrete overflows on the stack.
Since the proportion of stack-based overflows is larger than
that of heap-based overflows in our testsuite, ProPolice is
shown to have a relatively high fraction of detections. Chap-
eron and Valgrind follow the same shape as gcc, since these
tools only provide fine-grained detection of overflows on the
heap. This ability accounts for their separation from gcc on
the graph.

As the graph demonstrates, only tools with fine-grained
bounds checking, such as Insure++, CCured and CRED
are able to detect small overflows, including off-by-one over-
flows, which can still be exploitable. For tools with coarse
stack monitoring, a large increase in detections/segfaults oc-
curs at the overflow of 21 bytes, which corresponds to over-
writing the return instruction pointer. The drop after the
next 4 bytes corresponds to the discrete overflow test cases,
as they no longer cause a segfault behavior. ProPolice ex-
hibits the same behavior for overflows of 9–12 bytes due
to a slightly different stack layout. Tools with fine-grained
bounds checking also perform better in detecting discrete
overflows and thus do not exhibit these fluctuations. For
very large overflows, all tools either detect the overflow or
segfault, which results in fraction of non-miss outcomes close
to 1, as shown on the far right side of the graph.

4. REAL EXPLOIT EVALUATION
Previously, we evaluated the ability of a variety of tools

employing static analysis to detect buffer overflows [25].
These tools ranged from simple lexical analyzers to abstract
interpreters [9, 10, 20, 21, 23]. We chose to test these tools
against fourteen historic vulnerabilities in the popular In-
ternet servers bind, sendmail, and wu-ftpd. Many of the
detectors were unable to process the entire source for these
programs. We thus created models of a few hundred lines
that reproduced most of the complexity present in the orig-
inal. Further, for each model, we created a patched copy in
which we verified that the overflow did not exist for a test
input that triggered the error in the unpatched version. In
that evaluation, we found that current static analysis tools



Figure 2: Combined fraction of detections and segfaults vs the amount of overflow in bytes. A box highlights
tools with fine-grained bounds checking capabilities.

either missed too many of these vulnerable buffer overflows
or signaled too many false alarms to be useful. Here, we
report results for seven dynamic overflow detectors on that
same set of fourteen models of historic vulnerabilities. This
provides a prediction of their performance on real overflows
that occur in open-source servers.

4.1 Test Procedure
During testing, each unpatched model program was com-

piled with the tool (if necessary) and executed on an input
that is known to trigger the overflow. A detection signifies
that the tool reported an overflow, while a miss indicates
that the program executed as if no overflow occurred. A
patched version of the model program was then executed on
the same input. A false alarm was recorded if the instru-
mented program still reported a buffer overflow.

4.2 Real Exploit Results
Table 2 presents the results of this evaluation, which agree

well with those on the variable-overflow testsuite. Three
of the dynamic overflow detectors that provide fine-grained
bounds checking, CCured, CRED, and TinyCC, work ex-
tremely well, detecting about 90% of the overflows whilst
raising only one false alarm each. The commercial program
Insure, which also checks bounds violations rigorously, fares
somewhat worse with both fewer detections and more false
alarms. Notice that misses and false alarms for these tools
are errors in the implementation, and are in no way a fun-
damental limitation of dynamic approaches. For example,
in the case of CRED the misses are due to an incorrect
memcpy wrapper; there are no misses once this wrapper is
corrected. The CRED false alarm is the result of overly ag-
gressive string length checks included in the wrappers for
string manipulation functions such as strchr. None of the
tools are given credit for a segmentation fault as a signal of
buffer overflow (except TinyCC and gcc as this is the only
signal provided). This is why, for instance, ProPolice ap-

pears to perform worse than gcc. As a final comment, it is
worth considering the performance of gcc alone. If provided
with the right input, the program itself detects almost half
of these real overflows, indicating that input generation may
be a fruitful area of future research.

5. PERFORMANCE OVERHEAD
The goals of the performance overhead evaluation are two-

fold. One is to quantify the slowdown caused by using dy-
namic buffer overflow detection tools instead of gcc when
executing some commonly used programs. The other is to
test each tool’s ability to compile and monitor a complex
program. In addition, this evaluation shows whether the
tool can be used as a drop-in replacement for gcc, without
requiring changes to the source code. Minimal modifications
to the makefile are allowed, however, to accommodate the
necessary options for the compilation process.

Our evaluation tests overhead on two common utility pro-
grams (gzip and tar), an encryption library (OpenSSL) and
a webserver (Apache). For OpenSSL and tar, the testsuites
included in the distribution were used. The test for gzip

consisted of compressing a tar archive of the source code
package for glibc (around 17MB in size). The test for Apache
consisted of downloading a 6MB file 1,000 times on a loop-
back connection. The overhead was determined by timing
the execution using time and comparing it to executing the
test when the program is compiled with gcc. The results are
summarized in Table 3. Programs compiled with gcc exe-
cuted the tests in 7.2s (gzip), 5.0s (tar), 16.9s (OpenSSL)
and 38.8s (Apache).

Compiling and running Apache presented the most prob-
lems. Chaperon requires a separate license for multi-threaded
programs, so we were unable to evaluate its overhead. Val-
grind claims to support multi-threaded programs but failed
to run due to a missing library. Insure++ failed on the
configuration step of the makefile and thus was unable to



Chaperon Valgrind CCured CRED gcc Insure++ ProPolice TinyCC
b1 d d d d
b2 d d d d
b3 d d d d d d
b4 df df d d d df d df
f1 d d d d
f2 d df df d
f3 d d d d
s1 d d d d
s2 d d df d
s3 d d d
s4 d d d
s5 d d d df d d
s6 df d d
s7 d d d d d d
P (det) 0.14 0.29 0.93 0.86 0.43 0.71 0.21 0.93
P (fa) 0.07 0.07 0.07 0.07 0 0.29 0 0.07

Table 2: Dynamic buffer overflow detection in 14 models of real vulnerabilities in open source server code.
There are four bind models (b1–b4), three wu-ftpd models (f1–f3), and seven sendmail models (s1–s7). A
‘d’ indicates a tool detected a historic overflow, while an ‘f ’ means the tool generated a false alarm on the
patched version. P (det) and P (fa) are the fraction of model programs for which a tool signals a detection or
false alarm, respectively.

Tool gzip tar OpenSSL Apache

Chaperon 75.6 61.8
Valgrind 18.6 73.1 44.8
CCured
CRED 16.6 1.4 29.3 1.1
Insure++ 250.4 4.7 116.6
ProPolice 1.2 1.0 1.1 1.0
TinyCC

Table 3: Instrumentation overhead for commonly
used programs as a multiple of gcc execution time.
The blank entries indicate that the program could
not be compiled or executed with the corresponding
tool.

compile Apache. CCured likewise failed at configuration,
while TinyCC failed in parsing one of the source files during
the compilation step.

The performance overhead results demonstrate some im-
portant limitations of dynamic buffer overflow detection tools.
Insure++ is among the best performers on the variable-
overflow testsuite; however, it incurs very high overhead.
CCured and TinyCC, which performed well on both the
variable-overflow testsuite and the model programs, can-
not compile these programs without modifications to source
code. CCured requires the programmer to annotate sec-
tions of the source code to resolve constraints involving what
the tools considers “bad casts,” while TinyCC includes a C
parser that is likely incomplete or incorrect.

While CRED incurs large overhead on programs that in-
volve many buffer manipulations, it has the smallest over-
head for a fine-grained bounds checking tool. CRED can
be used as a drop-in replacement for gcc, as it requires
no changes to the source code in order to compile these
programs. Only minimal changes to the makefile were re-
quired to enable bounds-checking and turn off optimizations.
CRED’s high detection rate, ease of use and relatively small
overhead make it the best candidate for use in a comprehen-
sive solution for dynamic buffer overflow detection.

6. DISCUSSION
The three top-performing tools in our evaluation are In-

sure++, CCured and CRED. Insure++ performs well on
test cases, but not on model programs. It adds a large per-
formance overhead, and the closed-source nature of the tool
inhibits extensions. CCured shows a high detection rate and
is open-source; however, it requires rewriting 1–2% of code
to compile complicated programs [4]. CRED also offers a
high detection rate, and it is open-source, easily extensible
and has fairly low performance overhead (10% slowdown for
simple Apache loopback test). Its main disadvantage is lack
of overflow detection in library functions compiled without
bounds-checking. Like all compiler-based tools, CRED does
not detect overflows within structs in a general case; how-
ever, if the buffer enclosed in a struct is referenced directly,
then CRED detects the overflow.

As this study demonstrates, several features are crucial
to the success of a dynamic buffer overflow detection tool.
Memory monitoring must be done on a fine-grained basis,
as this is the only way to ensure that discrete writes and
off-by-one overflows are caught. Buffer overflows in library
functions, especially file I/O, often go undetected. Some
tools solve this problem by creating wrappers for library
functions, which is a difficult and tedious task. Recompil-
ing libraries with the bounds-checking tool may be a better
alternative, even if it should entail a significant slowdown.
Error reporting is likewise essential in determining the cause
of the problem because segfaults alone provide little informa-
tion. Since instrumentation and messages can get corrupted
by large overflows, the error should be reported immediately
after the overflow occurs.

Of all the tools surveyed, CRED shows the most promise
as a part of a comprehensive dynamic testing solution. It
offers fine-grained bounds checking, provides comprehensive
error reports, compiles large programs and incurs reasonable
performance overhead. It is also open-source and thus easily
extensible. CRED is likewise useful for regression testing to
find latent buffer overflows and for determining the cause of
segfault behavior.
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ABSTRACT 
A corpus of 291 small C-program test cases was developed to 
evaluate static and dynamic analysis tools designed to detect 
buffer overflows. The corpus was designed and labeled using a 
new, comprehensive buffer overflow taxonomy. It provides a 
benchmark to measure detection, false alarm, and confusion rates 
of tools, and also suggests areas for tool enhancement.  
Experiments with five tools demonstrate that some modern static 
analysis tools can accurately detect overflows in simple test cases 
but that others have serious limitations. For example, PolySpace 
demonstrated a superior detection rate, missing only one 
detection.  Its performance could be enhanced if extremely long 
run times were reduced, and false alarms were eliminated for 
some C library functions. ARCHER performed well with no false 
alarms whatsoever. It could be enhanced by improving inter-
procedural analysis and handling of C library functions. Splint 
detected significantly fewer overflows and exhibited the highest 
false alarm rate.  Improvements in loop handling and reductions 
in false alarm rate would make it a much more useful tool.  UNO 
had no false alarms, but missed overflows in roughly half of all 
test cases.  It would need improvement in many areas to become a 
useful tool.  BOON provided the worst performance. It did not 
detect overflows well in string functions, even though this was a 
design goal. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering] Software/Program Verification, 
D.2.5 [Software Engineering] Testing and Debugging, K.4.4 
[Computers and Society] Electronic Commerce Security. 

General Terms 
Measurement, Performance, Security, Verification. 

Keywords 
Security, buffer overflow, static analysis, evaluation, exploit, test, 
detection, false alarm, source code. 

1. INTRODUCTION 
Ideally, developers would discover and fix errors in programs 
before they are released.  This, however, is an extremely difficult 
task. Among the many approaches to finding and fixing errors, 
static analysis is one of the most attractive. The goal of static 

analysis is to automatically process source code and analyze all 
code paths without requiring the large numbers of test cases used 
in dynamic testing. Over the past few years, static analysis tools 
have been developed to discover buffer overflows in C code. 

Buffer overflows are of particular interest as they are potentially 
exploitable by malicious users, and have historically accounted 
for a significant percentage of the software vulnerabilities 
published each year [18, 20], such as in NIST’s ICAT Metabase 
[9], CERT advisories [1], Bugtraq [17], and other security forums. 
Buffer overflows have also been the basis for many damaging 
exploits, such as the Sapphire/Slammer [13] and Blaster [15] 
worms. 

A buffer overflow vulnerability occurs when data can be written 
outside the memory allocated for a buffer, either past the end or 
before the beginning.  Buffer overflows may occur on the stack, 
on the heap, in the data segment, or the BSS segment (the 
memory area a program uses for uninitialized global data), and 
may overwrite from one to many bytes of memory outside the 
buffer.  Even a one-byte overflow can be enough to allow an 
exploit [10].  Buffer overflows have been described at length in 
many papers, including [20], and many descriptions of exploiting 
buffer overflows can be found online. 

This paper focuses on understanding the capabilities of static 
analysis tools designed to detect buffer overflows in C code. It 
extends a study by Zitser [20, 21] that evaluated the ability of 
several static analysis tools to detect fourteen known, historical 
vulnerabilities (all buffer overflows) in open-source software.  
The Zitser study first found that only one of the tools could 
analyze large, open-source C programs. To permit an evaluation, 
short, but often complex, model programs were extracted from the 
C programs and used instead of the original, much longer 
programs.  Five static analysis tools were run on model programs 
with and without overflows: ARCHER [19], BOON [18], Splint 
[6, 12], UNO [8], and PolySpace C Verifier [14].  All use static 
analysis techniques, including symbolic analysis, abstract 
interpretation, model checking, integer range analysis, and inter-
procedural analysis.  Results were not encouraging.  Only one of 
the five tools performed statistically better than random guessing.  
Not only did the tools fail to detect a significant number of 
overflows, but they also produced a large number of false alarms, 
indicating overflows where none actually existed.  Equally 
discouraging were the confusion rates, reflecting the number of 
cases where a tool reports an error in both the vulnerable and 
patched versions of a program. 
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Given the small number of model programs, and the fact that 
buffer overflows were embedded in complex code, it is difficult to 
draw conclusions concerning why the tools performed poorly.  
This paper describes a follow-on analysis of the five tools 
evaluated in the previous study.  It’s simpler but broader, and 
more diagnostic test cases are designed to determine specific 
strengths and weaknesses of tools.  Although this research 
evaluated only static analysis tools, it provides a taxonomy and 
test suite useful for evaluating dynamic analysis tools as well. 

2. BUFFER OVERFLOW TAXONOMY 
Using a comprehensive taxonomy makes it possible to develop 
test cases that cover a wide range of buffer overflows and make 
diagnostic tool assessments. Zitser developed a taxonomy 
containing thirteen attributes [20].  This taxonomy was modified 
and expanded to address problems encountered with its 
application, while still attempting to keep it small and simple 
enough for practical application.  The new taxonomy consists of 
twenty-two attributes listed in Table 1. 

Table 1. Buffer Overflow Taxonomy Attributes 

Attribute N ttribute Name umber A
1 Write/Read 
2 Upper/Lower Bound 
3 Data Type 
4 Memory Location 
5 Scope 
6 Container 
7 Pointer 
8 Index Complexity 
9 Address Complexity 
10 Length/Limit Complexity 
11 Alias of Buffer Address 
12 Alias of Buffer Index 
13 Local Control Flow 
14 Secondary Control Flow 
15 Loop Structure 
16 Loop Complexity 
17 Asynchrony 
18 Taint 
19 Runtime Environment Dependence 
20 Magnitude 
21 Continuous/Discrete 
22 Signed/Unsigned Mismatch 

 

Details on the p ble values for each attribute are available in 
[11], and are sum arized below.  For each attribute, the possible 
values are listed in ascending order (i.e. the 0 value first). 

Write/Read: des  the type of memory access (write, read).  
While detecting illegal writes is probably of more interest in 
preventing buffer overflow exploits, it is possible that illegal 
reads could allow unauthorized access to information or could 
constitute one operation in a multi-step exploit. 

pper/Lower Bound: describes which buffer bound is violated 
the term “buffer overflow” suggests an 

ers; buffers of all 

ffers (e.g., those allocated by calling a malloc 

 and 

 scope describes a buffer that is 

t it is possible to use a pointer 

expression, 

ossi
m

cribes

U
(upper, lower).  While 
access beyond the upper bound of a buffer, it is equally possible 
to underflow a buffer, or access below its lower bound (e.g. 
buf[-1]). 

Data Type: indicates the type of data stored in the buffer 
(character, integer, floating point, wide character, pointer, 
unsigned character, unsigned integer).  Character buffers are often 
manipulated with unsafe string functions in C, and some tools 
may focus on detecting overflows of those buff
types may be overflowed, however, and should be analyzed. 

Memory Location: indicates where the buffer resides (stack, 
heap, data region, BSS, shared memory).  Non-static variables 
defined locally to a function are on the stack, while dynamically 
allocated bu
function) are on the heap.  The data region holds initialized global 
or static variables, while the BSS region contains uninitialized 
global or static variables.  Shared memory is typically allocated, 
mapped into and out of a program’s address space, and released 
via operating system specific functions.  While a typical buffer 
overflow exploit may strive to overwrite a function return value 
on the stack, buffers in other locations have been exploited
should be considered as well. 

Scope: describes the difference between where the buffer is 
allocated and where it is overrun (same, inter-procedural, global, 
inter-file/inter-procedural, inter-file/global).  The scope is the 
same if the buffer is allocated and overrun within the same 
function.  Inter-procedural scope describes a buffer that is 
allocated in one function and overrun in another function within 
the same file.  Global scope indicates that the buffer is allocated 
as a global variable, and is overrun in a function within the same 
file.  The scope is inter-file/inter-procedural if the buffer is 
allocated in a function in one file, and overrun in a function in 
another file.  Inter-file/global
allocated as a global in one file, and overrun in a function in 
another file.  Any scope other than “same” may involve passing 
the buffer address as an argument to another function; in this case, 
the Alias of Buffer Address attribute must also be set accordingly.  
Note that the test suite used in this evaluation does not contain an 
example for “inter-file/global.”   

Container: indicates whether the buffer resides in some type of 
container (no, array, struct, union, array of structs, array of 
unions).  The ability of static analysis tools to detect overflows 
within containers (e.g., overrunning one array element into the 
next, or one structure field into the next) and beyond container 
boundaries (i.e., beyond the memory allocated for the container as 
a whole) may vary according to how the tools model these 
containers and their contents. 

Pointer: indicates whether the buffer access uses a pointer 
dereference (no, yes).  Note tha
dereference with or without an array index (e.g. *pBuf or 
(*pBuf)[10]); the Index Complexity attribute must be set 
accordingly.  In order to know if the memory location referred to 
by a dereferenced pointer is within buffer bounds, a code analysis 
tool must keep track of what pointers point to; this points-to 
analysis is a significant challenge. 

Index Complexity: indicates the complexity of the array index 
(constant, variable, linear expression, non-linear 
function return value, array contents, N/A).  This attribute applies 
only to the user program, and is not used to describe how buffer 
accesses are performed inside C library functions. 

 



Address Complexity: describes the complexity of the address or 
pointer computation (constant, variable, linear expression, non-
linear expression, function return value, array contents).  Again, 
this attribute is used to describe the user program only, and is not 

 “N/A” is used 

 that if a C library function 

hat pointers point to is a 

e, and those within recursive functions 

des the overflow 

to directly containing the 

 > 10) 

Only cts whether or not the overflow occurs 
is cl s, if a preceding control flow construct 
has no bearing on whether or not the subsequent overflow occurs, 
it is not considered to be secondary control flow, and this attribute 
would be assigned the value “none.”   

The rates nested control flow.  The inner 
if s s the overflow, and we assign the 
valu ontrol Flow attribute.  The outer if 
statement represents secondary control flow, and we assign the 
valu Secondary Control Flow attribute as well. 

Som -sensitive analyses, and 
som ing 
approximations in order to keep the problem tractable and the 

applied to C library function internals. 

Length/Limit Complexity: indicates the complexity of the length 
or limit passed to a C library function that overruns the buffer 
(N/A, none, constant, variable, linear expression, non-linear 
expression, function return value, array contents). 
when the test case does not call a C library function to overflow 
the buffer, whereas “none” applies when a C library function 
overflows the buffer, but the function does not take a length or 
limit parameter (e.g. strcpy).  The remaining attribute values 
apply to the use of C library functions that do take a length or 
limit parameter (e.g. strncpy).  Note
overflows the buffer, the overflow is by definition inter-file/inter-
procedural in scope, and involves at least one alias of the buffer 
address.  In this case, the Scope and Alias of Buffer Address 
attributes must be set accordingly.  Code analysis tools may need 
to provide their own wrappers for or models of C library functions 
in order to perform a complete analysis. 

Alias of Buffer Address: indicates if the buffer is accessed 
directly or through one or two levels of aliasing (no, one, two).  
Assigning the original buffer address to a second variable and 
subsequently using the second variable to access the buffer 
constitutes one level of aliasing, as does passing the original 
buffer address to a second function.  Similarly, assigning the 
second variable to a third and accessing the buffer through the 
third variable would be classified as two levels of aliasing, as 
would passing the buffer address to a third function from the 
second.  Keeping track of aliases and w
significant challenge for code analysis tools. 

Alias of Buffer Index: indicates whether or not the index is 
aliased (no, one, two, N/A).  If the index is a constant or the 
results of a computation or function call, or if the index is a 
variable to which is directly assigned a constant value or the 
results of a computation or function call, then there is no aliasing 
of the index.  If, however, the index is a variable to which the 
value of a second variable is assigned, then there is one level of 
aliasing.  Adding a third variable assignment increases the level of 
aliasing to two.  If no index is used in the buffer access, then this 
attribute is not applicable. 

Local Control Flow: describes what kind of program control 
flow most immediately surrounds or affects the overflow (none, 
if, switch, cond, goto/label, setjmp/longjmp, function pointer, 
recursion).  For the values “if”, “switch”, and “cond”, the buffer 
overflow is located within the conditional construct.  “Goto/label” 
signifies that the overflow occurs at or after the target label of a 
goto statement.  Similarly, “setjmp/longjmp” means that the 
overflow is at or after a longjmp address.  Buffer overflows that 
occur within functions reached via function pointers are assigned 
the “function pointer” valu
receive the value “recursion”.  The values “function pointer” and 
“recursion” necessarily imply a global or inter-procedural scope, 
and may involve an address alias.  The Scope and Alias of Buffer 
Address attributes should be set accordingly.   

Control flow involves either branching or jumping to another 
context within the program; hence, only path-sensitive code 

analysis can determine whether or not the overflow is actually 
reachable.  A code analysis tool must be able to follow function 
pointers and have techniques for handling recursive functions in 
order to detect buffer overflows with the last two values for this 
attribute. 

Secondary Control Flow: has the same values as Local Control 
Flow, the difference being the location of the control flow 
construct.  Secondary Control Flow either prece
or contains nested, local control flow.  Some types of secondary 
control flow may occur without any local control flow, but some 
may not.  The Local Control Flow attribute should be set 
accordingly.   

The following example illustrates an if statement that precedes 
the overflow and affects whether or not it occurs.  Because it 
precedes the overflow, as opposed 
overflow, it is labeled as secondary, not local, control flow. 

int main(int argc, char *argv[]) 
{ 
  char buf[10]; 
  int i = 10; 
 
  if (i
  { 
    return 0; 
  } 
 
  /*  BAD  */ 
  buf[i] = 'A'; 
 
  return 0; 
} 

ntrol flow that affe co
assified.  In other word

following example illust
ement directly containtat

e “if” to the Local C

e “if” to the 

int main(int argc, char *argv[]) 
{ 
  char buf[10]; 
  int i = 10; 
 
  if (sizeof buf <= 10) 
  { 
    if (i <= 10) 
    { 
      /*  BAD  */ 
      buf[i] = 'A'; 
    } 
}   

 
  return 0; 
 }

e code analysis tools perform path
e do not.  Even those that do often must make simplify

 



solu y mean throwing away some 
infor ng precision, at points in the 
prog  Test cases containing 
seco ntrol flow may highlight the capabilities or 
limitations of these varying techniques. 

Loo ribes the type of loop construct within 
which the overflow occurs (none, standard for, standard do-while, 

    i++; 
(i<11); 

Standard 

’; 
;  

           buf[i++] = ‘A’;  

itate secondary control flow (such 
as additional if s e cases, the Secondary Control 

tr ngly.  Any value other than 
“none” for this attribute requires that the Loop Complexity 
attribute be set to something other than “not applicable.”   

of iteratio ia that depend on runtime 
ible or impractical for 

 
Different tools have different methods for handling loops; for 

The functions that may be used 

 influenced 

aintable.”  These may be the most crucial 

n an off-by-

 overflow sizes were chosen with 

 rely 

tion scalable.  This ma
mation, and thereby sacrifici

e previous branches rejoin. ram wher
condary 

p Structure: desc

standard while, non-standard for, non-standard do-while, non-
standard while).  A “standard” loop is one that has an 
initialization, a loop exit test, and an increment or decrement of a 
loop variable, all in typical format and locations.  A “non-
standard” loop deviates from the standard loop in one or more of 
these areas.  Examples of standard for, do-while, and while 
loops are shown below, along with one non-standard for loop 
example: 

Standard for loop:  
for (i=0; i<11; i++)  
{ 

           buf[i] = ‘A’;  
} 

Standard do-while loop:  
i=0; 
do  
{ 

         buf[i] = ‘A’; 
     

} while 

while loop: 
 i=0; 

ile (i<11)  wh
{ 

         buf[i] = ‘A
i++     

} 

A non-standard for loop:  
 i<11; )  for (i=0;

{ 

} 
 

Non-standard loops may necess
tatements).  In thes

Flow at ibute should be set accordi

Loops may execute for a large number or even an infinite number 
 or may have exit criterns,

conditions; therefore, it may be imposs
static ana or analyze loops to completion. lysis tools to simulate 

example, some may attempt to simulate a loop for a fixed number 
of iterations, while others may employ heuristics to recognize and 
handle common loop constructs.  The approach taken will likely 
affect a tool’s capabilities to detect overflows that occur within 
various loop structures. 

Loop Complexity: indicates how many loop components 
(initialization, test, increment) are more complex than the 
standard baseline of initializing to a constant, testing against a 
constant, and incrementing or decrementing by one (N/A, none, 

one, two, three).  Of interest here is whether or not the tools 
handle loops with varying complexity in general, rather than 
which particular loop components are handled or not. 

Asynchrony: indicates if the buffer overflow is potentially 
obfuscated by an asynchronous program construct (no, threads, 
forked process, signal handler).  
to realize these constructs are often operating system specific (e.g. 
on Linux, pthread functions; fork, wait, and exit; and 
signal).  A code analysis tool may need detailed, embedded 
knowledge of these constructs and the O/S-specific functions in 
order to properly detect overflows that occur only under these 
special circumstances. 

Taint: describes whether a buffer overflow may be
externally (no, argc/argv, environment variables, file read or 
stdin, socket, process environment).   The occurrence of a buffer 
overflow may depend on command line or stdin input from a user, 
the value of environment variables (e.g. getenv), file contents  
(e.g. fgets, fread, or read), data received through a socket or 
service (e.g. recv), or properties of the process environment, 
such as the current working directory (e.g. getcwd).  All of these 
can be influenced by users external to the program, and are 
therefore considered “t
overflows to detect, as it is ultimately the ability of the external 
user to influence program operation that makes exploits possible.  
As with asynchronous constructs, code analysis tools may require 
detailed modeling of O/S-specific functions in order to properly 
detect related overflows.  Note that the test suite used in this 
evaluation does not contain an example for “socket.” 

Runtime Environment Dependence: indicates whether or not 
the occurrence of the overrun depends on something determined 
at runtime (no, yes).  If the overrun is certain to occur on every 
execution of the program, it is not dependent on the runtime 
environment; otherwise, it is. 

Magnitude: indicates the size of the overflow (none, 1 byte, 8 
bytes, 4096 bytes).  “None” is used to classify the “OK” or 
patched versions of programs that contain overflows.  One would 
expect static analysis tools to detect buffer overflows without 
regard to the size of the overflow, unless they contai
one error in their modeling of library functions.  The same is not 
true of dynamic analysis tools that use runtime instrumentation to 
detect memory violations; different methods may be sensitive to 
different sizes of overflows, which may or may not breach page 
boundaries, etc.  The various
future dynamic tool evaluations in mind.  Overflows of one byte 
test both the accuracy of static analysis modeling, and the 
sensitivity of dynamic instrumentation.  Eight and 4096 byte 
overflows are aimed more exclusively at dynamic tool testing, 
and are designed to cross word-aligned and page boundaries. 

Continuous/Discrete: indicates whether the buffer overflow 
jumps directly out of the buffer (discrete) or accesses consecutive 
elements within the buffer before overflowing past the bounds 
(continuous).  Loop constructs are likely candidates for containing 
continuous overflows.  C library functions that overflow a buffer 
while copying memory or string contents into it demonstrate 
continuous overflows.  An overflow labeled as continuous should 
have the loop-related attributes or the Length Complexity 
attribute (indicating the complexity of the length or limit passed 
to a C library function) set accordingly.  Some dynamic tools

 



on “canaries” at buffer boundaries to detect continuous overflows 
[5], and therefore may miss discrete overflows. 

Signed/Unsigned Mismatch: indicates if the buffer overflow is 
caused by using a signed or unsigned value where the opposite is 
expected (no, yes).  Typically, a signed value is used where an 
unsigned value is expected, and gets interpreted as a very large 
unsigned or positive value, causing an enormous buffer overflow. 

This taxonomy is specifically designed for developing simple 
diagnostic test cases. It may not fully characterize complex buffer 
overflows that occur in real code, and specifically omits complex 
details related to the overflow context.  

For each attribute (except for Magnitude), the zero value is 
assigned to the simplest or “baseline” buffer overflow, shown 
below: 

int main(int argc, char *argv[]) 
{ 
  char buf[10]; 
  /*  BAD  */ 
  buf[10] = 'A'; 
  return 0; 
} 
 

Each test case includes a comment line as shown with the word 
“BAD” 
line where an overflow m

or “OK.” This comment is placed on the line before the 
an 

over  program is 
a w he upper bound of a stack-based 
character buffer that is defined and overflowed within the same 
func t lie within another container, is 
addr xed with a constant.  No C library 
func ess the buffer, the overflow is not within 
any ditional or complicated control flows or asynchronous 

y Classification: 0000000000000000000000 */ 

  ADDRESS COMPLEXITY      0 constant 
LENGTH COMPLEXITY         0 N/A 

S          
     

ROL OW 
L FL  0 

RUCTURE            
EXIT             

NY             

 0 
erflow 

  te 

Whi a airs co ting of a bad 
prog rogram evaluation 
uses ur sions of each test case 
correspond to the four possible values of the Magnitude attribute; 
one no flow), while 
the r ov lows o and 
4096 u  and la ows. 

3. ST SUITE 

Ideally, the test suite would have at least one instance of each 
that could be described by the taxonomy.  

t cases. 

s were also corrected based on initial 

ight occur and it indicates whether 
 does occur. The buffer access in the baselineflow

rite operation beyond t

tion.  The buffer does no
 is indeessed directly, and

 is used to acction
nco

program constructs, and does not depend on the runtime 
environment.  The overflow writes to a discrete location one byte 
beyond the buffer boundary, and cannot be manipulated by an 
external user.  Finally, it does not involve a signed vs. unsigned 
type mismatch. 

Appending the value digits for each of the twenty-two attributes 
forms a string that classifies a buffer overflow, which can be 
referred to during results analysis.  For example, the sample 
program shown above is classified as 
“0000000000000000000100.”  The single “1” in this string 
represents a “Magnitude” attribute indicating a one-byte 
overflow.  This classification information appears in comments at 
the top of each test case file, as shown in the example below: 

/* Taxonom
 
/* 
 *  WRITE/READ  0 write 
 *  WHICH BOUND  0 upper 
 *  DATA TYPE  0 char 
 *  MEMORY LOCATION 0 stack 
 *  SCOPE   0 same 
 *  CONTAINER  0 no 
 *  POINTER   0 no 
 *  INDEX COMPLEXITY 0 constant 
 *
 *  

 *  ADDRESS ALIA    0 none 
 *  INDEX ALIAS          0 none 
 *  LOCAL CONT  FL 0 none 
 *  SECONDARY CONTRO OW none 
 *  LOOP ST 0 no 
 *  LOOP COMPL Y 0 N/A
 *  ASYNCHRO    0 no 
 *  TAINT                       0 no 
 *  RUNTIME ENV. DEPENDENCE no 
 *  MAGNITUDE                 0 no ov
 *  CONTINUOUS/DISCRETE 0 discre
 *  SIGNEDNESS                0 no 
 */ 
 

le the Zitser test cases were progr m p nsis
ram and a corresponding patched p , this 
 program quadruplets.  The fo ver

of these represents the patched program (  over
remaining three indicate buffe erf f one, eight, 
 bytes denoted as minimum, medi m, rge overfl

TE
A full discussion of design considerations in creating test cases is 
provided in [11].  Goals included avoiding tool bias; providing 
samples that cover the taxonomy; measuring detections, false 
alarms, and confusions; naming and documenting test cases to 
facilitate automated scoring and encourage reuse; and maintaining 
consistency in programming style and use of programming 
idioms. 

possible buffer overflow 
Unfortunately, this is completely impractical.  Instead, a “basic” 
set of test cases was built by first choosing a simple, baseline 
example of a buffer overflow, and then varying its characteristics 
one at a time.  This strategy results in taxonomy coverage that is 
heavily weighted toward the baseline attribute values. Variations 
were added by automated code-generation software that produces 
C code for the test cases to help insure consistency and make it 
easier to add tes

Four versions of 291 different test cases were generated with no 
overflow and with minimum, medium, and large overflows.  Each 
test case was compiled with gcc, the GNU C compiler [7], on 
Linux to verify that the programs compiled without warnings or 
errors (with the exception of one test case that produces an 
unavoidable warning).  Overflows were verified using CRED, a 
fine-grained bounds-checking extension to gcc that detects 
overflows at run time [16], or by verifying that the large overflow 
caused a segfault. A few problems with test cases that involved 
complex loop condition
results produced by the PolySpace tool. 

4. TEST PROCEDURES 
The evaluation consisted of analyzing each test case (291 
quadruplets), one at a time using the five static analysis tools 
(ARCHER, BOON, PolySpace, Splint, and UNO), and collecting 
tool outputs. Tool-specific Perl programs parsed the output and 
determined whether a buffer overflow was detected on the line 
immediately following the comment in each test case.  Details of 

 



the test procedures are provided in [11].  No annotations were 
added and no modifications were made to the source code for any 
tool. 
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overflow occurs in a C library function.  PolySpace reports 

s, while the false alarm rate 
in the patched 
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 test cases where tool reports overflow  
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ctions.  
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roduced none.  Splint and UNO each detected roughly half of the 
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false alarms, while a 
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confusion rate was 
 

Since BOON does not report line
automated tabulation cannot validate that the reported error 
corresponds to the commented buffer access in the test case file.  
Instead, it assumes that any reported error is a valid detection.  
Therefore, BOON detections and false alarms were further 
inspected manually to verify their accuracy, and some were 
dismissed (two detections and two false alarms) since they did not 
refer to the buffer access in question. 

Special handling was required for PolySpace in cases where the 
buffer 
the error in the library function itself, rather than on the line in the 
test case file where the function is called.  Therefore, the results 
tabulator looks for errors reported in the called library function 
and counts those detections irrespective of the associated line 
number.  Additionally, one test case involving wide characters 
required additional command-line options to work around errors 
reported when processing wctype.h. 

5. RESULTS AND ANALYSIS 
All five static analysis tools performed the same regardless of 
overflow size (this would not necessarily hold for dynamic 
analysis).  To simplify the discussion, results for the three 
magnitudes of overflows are thus reported as results for “bad” test 
cases as a whole. 
Table 2 shows the performance metrics computed for each tool.  
The detection rate indicates how well a tool detects the known 
buffer overflows in the bad program
indicates how often a tool reports a buffer overflow 
programs.  The confusion rate indicates ho
distinguish between the bad and patched programs.  When a tool 
reports a detection in both the patched and bad versions of a test 
case, the tool has demonstrated “confusion.”  The formulas used 
to compute these three metrics are shown below: 

            #
                            in bad version 

detection rate =     ------------------------------------------------ 
                                    # test cases tool evaluated 
 

              # test cases where tool reports overflow  
                           in patched version 

false alarm rate =  ------------------------------------------------ 
                                    # of test cases tool evaluated 
 

             # test cases where tool reports overflow 
ed version      in both bad and patch

confusion rate =   ------------------------------------------------- 
verflow                               # test cases where tool reports o

                                           in bad version  

n Table 2, ARCHER and PolySpace both have det
eeding 90%.  PolySpace’s detect

perfect, missing only one out of the 291 possible dete
PolySpace produced seven false alarms, wherea
p

. Splint, however, produced a substantial num
 UNO produced none.  Splint also exhibited 

fairly high confusion rate. In over twenty percent of the
where it properly detected an overflow, it also reported an error 
the patched program.  PolySpace’s 
substantially lower, while the other three tools had no confusions. 
BOON’s detection rate across the test suite was extremely low. 

Table 2. Overall Performance on Basic Test Suite (291 cases) 

Tool 
Detection 
Rate 

False Alarm 
Rate 

Confusion 
Rate 

ARCHER 90.7% 0.0% 0.0% 
BOON 0.7% 0.0% 0.0% 
PolySpace 99.7% 2.4% 2.4% 
Splint 56.4% 12.0% 21.3% 
UNO 51.9% 0.0% 0.0% 
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Figure 1 presents a plot of detection rate vs. false alarm rate for 
each tool.  Each tool’s performance is plotted with a single data 
point representing detection and false alarm percentages.  The 
diagonal line represents the hypothetical performance of a random 
guesser that decides with equal probability if each commented 
buffer access in the test programs results in an overflow or not.  
The difference between a tool’s detection rate and the random 
guesser’s is only statistically significant if it lies more than two 
standard deviations (roughly 6 percentage points when the 
detection rate is 50%) away from the random
same false alarm rate.  In this evaluation, every tool except 
BOON performs significantly better than a random guesser. In 
Zitser’s evaluation [20], only PolySpace was significantly better.  
This difference in performance reflects the simplicity of the 
diagnostic test cases. 
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Figure 1. False Alarm and Detection Rates per Tool 

 



Since PolySpace missed only one detection, and three of the other 
tools did detect the overflow in that test case, one could obtain 
perfect detection across the evaluation test suite by using 
PolySpace as the primary authority, and using one of the other 
tool’s results only when PolySpace did not detect an overflow. 
ARCHER or UNO would be the best choice for this, as neither 
adds false alarms.    

Similarly combining ARCHER and Splint would produce a 
detection rate of ninety-eight percent. ARCHER missed twenty-
seven detections, and Splint detected all but five of those. 
Unfortunately, using Splint would also add thirty-five false 
alarms. 

Table 3. Tool Execution Times 

Tool

 

 

Average 
Time per Test 

 Total Time (secs) Case (secs) 
ARCHER     288   0.247 
BOON      73   0.063 
PolySpace 200,820 (56 hrs) 172.526 
Splint      24   0.021 
UNO      27   0.023 

 
Execution times for the five tools were measured as the total time 

 BOON’s slightly longer execution 
time did not resu

Some general observations can be made from inspecting the 
as a whole.  M d tend to 

If one 
ar test c lly some of 
  For f es, only 

not m the ams.  No 
sets and no individual test cases have perfect detections 

attribute sets contain no false 
at all (Upper/L ound, Data Ty ter, Alias of 

l’s performance in 

ot 
fects analysis and has a 

 limited to 

l.  Most of its twenty-seven missed detections are 

e 

N will not detect 

to run each test case, including tool startup time, and are provided 
in Table 3.  PolySpace’s high detection rate comes at the cost of 
dramatically long execution times.  ARCHER demonstrated both 
the second highest detection rate and the second highest execution 
time.  Splint and UNO, with intermediate detection rates, had the 
two fastest execution times. 

lt in a higher detection rate. 

results issed detections an
nd follow logical patterns.  

false alarms 
group in certain attribute sets a
tool missed a detection on a particul ase, usua
the other tools missed it as well. ive test cas
PolySpace did iss detections in bad progr
attribute 
across all five tools, but eight 
larms a ower B pe, Poin

Buffer Index, Loop Structure, Loop Complexity, Asynchrony, and 
Signed/Unsigned Mismatch).  Without the BOON results, looking 
exclusively at the results of the other four tools, three of the 
attribute sets (Write/Read, Data Type, and Alias of Buffer Index) 
and 108 individual test cases had perfect detections across the 
four tools.  Complete and detailed results are presented in [11]. 

6. Detailed Tool Diagnostics 
The following paragraphs discuss each too
detail, especially compared to the tools’ design goals. 

ARCHER’s strategy is to detect as many bugs as possible while 
minimizing the number of false alarms.  It is designed to be inter-
procedural, path-sensitive, context-sensitive, and aware of pointer 
aliases.  It performs a fully-symbolic, bottom-up data flow 
analysis, while maintaining symbolic constraints between 
variables (handled by a linear constraint solver).  ARCHER 
checks array accesses, pointer dereferences, and function calls 

that take a pointer and size.  It is hard-coded to recognize and 
handle a small number of memory-related functions, such as 
malloc [19]. 

The authors discuss many limitations of the current version of 
ARCHER.  It does not handle function pointers, and imposes a 
five second limit on the analysis of any particular function.  
Furthermore, it loses precision after function calls, as it does n
perform a proper inter-procedural side ef
very simple alias analysis.  It does not understand C library string 
functions, nor does it keep track of null pointers or the length of 
null-terminated strings.  Its linear constraint solver is
handling at most two non-linearly related variables.  Finally, 
some of the techniques it uses to reduce false alarms will 
necessarily result in missed detections.  For instance, if no bounds 
information is known about a variable used as an array index, 
ARCHER assumes the array access is trusted and does not issue a 
warning.  Similarly, it only performs a bounds check on the length 
and offset of a pointer dereference if bounds information is 
available; otherwise it remains quiet and issues no warning [19]. 

With close to a 91% detection rate and no false alarms, ARCHER 
performs wel
easily explained by its limitations.  Twenty of these were inter-
procedural, and this seems to be ARCHER’s main weakness.  The 
twenty inter-procedural misses include fourteen cases that call C 
library functions.  While the authors admit to ignoring string 
functions, one might have expected memcpy() to be one of the 
few hard-coded for special handling.  The other inter-procedural 
misses include cases involving shared memory, function pointers, 
recursion, and simple cases of passing a buffer address through 
one or two functions. Of the remaining seven misses, three 
involve function return values, two depend on array contents, and 
two involve function pointers and recursion. 

While some of the missed detections occurred on cases whose 
features may not be widespread in real code (such as recursion), 
the use of C library functions and other inter-procedural 
mechanisms are surely prevalent.  Indeed, ARCHER’s poor 
performance in [20] is directly attributable to the preponderanc
of these features.  ARCHER detected only one overflow in this 
prior evaluation, which was based on overflows in real code.  Of 
the thirteen programs for which ARCHER reported no overflows, 
twelve contained buffer overflows that would be classified 
according to this evaluation’s taxonomy as having inter-
procedural scope, and nine of those involve calls to C library 
functions.  To perform well against a body of real code, ARCHER 
needs to handle C library functions and other inter-procedural 
buffer overflows correctly. 

BOON’s analysis is flow-insensitive and context-insensitive for 
scalability and simplicity. It focuses exclusively on the misuse of 
string manipulation functions, and the authors intentionally 
sacrificed precision for scalability.  BOO
overflows caused by using primitive pointer operations, and 
ignores pointer dereferencing, pointer aliasing, arrays of pointers, 
function pointers, and unions.  The authors expect a high false 
alarm rate due to the loss of precision resulting from the 
compromises made for scalability [18]. 

In this evaluation, BOON properly detected only two out of 
fourteen string function overflows, with no false alarms.  The two 
detected overflows involve the use of strcpy() and fgets().  BOON 

 



failed to detect the second case that calls strcpy(), all six cases 
that call strncpy(), the case that calls getcwd, and all four cases 
that call memcpy().  Despite the heavy use of C library string 
functions in [20], BOON achieved only two detections in that 
evaluation as well.   

PolySpace is the only commercial tool included in this 

sis tractable. 

 not too surprising, as it is impractical for a 

 static analysis and heuristics that 

larm rates in the developers’ own tests [6, 12]. 

ty-five false alarms are attributable to 

and all 

ith the loss of precision leading to 

program.  It appears 

tants and scalars, but not computed 

e, but did miss 

evaluation.  Details of its methods and implementation are 
proprietary.  We do know, however, that its approach uses 
techniques described in several published works, including: 
symbolic analysis, or abstract interpretation [2]; escape analysis, 
for determining inter-procedural side effects [4]; and inter-
procedural alias analysis for pointers [3].  It can detect dead or 
unreachable code.  Like other tools, it may lose precision at 
junctions in code where previously branched paths rejoin, a 
compromise necessary to keep the analy

PolySpace missed only one detection in this evaluation, which 
was a case involving a signal handler.  The PolySpace output for 
this test case labeled the signal handler function with the code 
“UNP,” meaning “unreachable procedure.”  PolySpace reported 
seven false alarms across the test suite.  These included all four of 
the taint cases, shared memory, using array contents for the buffer 
address, and one of the calls to strcpy().  The false alarm on the 
array contents case is
tool to track the contents of every location in memory.  PolySpace 
does not, however, report a false alarm on the other two cases 
involving array contents.  The other six false alarms are on test 
cases that in some way involve calls to C library or O/S-specific 
function calls.  Not all such cases produced false alarms, however.  
For instance, only one out of the two strcpy() cases produced a 
false alarm: the one that copies directly from a constant string 
(e.g., “AAAA”).  Without more insight into the PolySpace 
implementation, it is difficult to explain why these particular 
cases produced false alarms. 

PolySpace did not perform as well in Zitser’s evaluation [20].  
Again, without more knowledge of the tool’s internals, it is 
difficult to know why its detection rate was lower.  Presumably 
the additional complexity of real code led to approximations to 
keep the problem tractable, but at the expense of precision.  The 
majority of the false alarms it reported in Zitser’s evaluation were 
on overflows similar to those for which it reported false alarms in 
this evaluation: those involving memory contents and C library 
functions. 

PolySpace’s performance comes with additional cost in money 
and in time.  The four other tools were open source when this 
evaluation was performed, and completed their analyses across 
the entire corpus in seconds or minutes. PolySpace is a 
commercial program and ran for nearly two days and eight hours, 
averaging close to three minutes of analysis time per test case file.  
This long execution time may make it difficult to incorporate into 
a code development cycle. 

Splint employs “lightweight”
are practical, but neither sound nor complete.  Like many other 
tools, it trades off precision for scalability.  It implements limited 
flow-sensitive control flow, merging possible paths at branch 
points.  Splint uses heuristics to recognize loop idioms and 
determine loop bounds without resorting to more costly and 
accurate abstract evaluation.  An annotated C library is provided, 
but the tool relies on the user to properly annotate all other 

functions to support inter-procedural analysis.  Splint exhibited 
high false a

The basis test suite used in this evaluation was not annotated for 
Splint for two reasons.  First, it is a more fair comparison of the 
tools to run them all against the same source code, with no special 
accommodations for any particular tool.  Second, expecting 
developers to completely and correctly annotate their programs 
for Splint seems unrealistic. 

Not surprisingly, Splint exhibited the highest false alarm rate of 
any tool.  Many of the thir
inter-procedural cases; cases involving increased complexity of 
the index, address, or length; and more complex containers and 
flow control constructs.  The vast majority, 120 out of 127, of 
missed detections are attributable to loops.  Detections were 
missed in all of the non-standard for() loop cases (both discrete 
and continuous), as well as in most of the other continuous loop 
cases.  The only continuous loop cases handled correctly are the 
standard for loops, and it also produces false alarms on nearly all 
of those.  In addition, it misses the lower bound case, the “cond” 
case of local flow control, the taint case that calls getcwd, 
four of the signed/unsigned mismatch cases. 

While Splint’s detection rate was similar in this evaluation and 
the Zitser evaluation [20], its false alarm rate was much higher in 
the latter.  Again, this is presumably because code that is more 
complex results in more situations where precision is sacrificed in 
the interest of scalability, w
increased false alarms. 

Splint’s weakest area is loop handling.  Enhancing loop heuristics 
to more accurately recognize and handle non-standard for loops, 
as well as continuous loops of all varieties, would significantly 
improve performance.  The high confusion rate may be a source 
of frustration to developers, and may act as a deterrent to Splint’s 
use.  Improvements in this area are also important. 

UNO is an acronym for uninitialized variables, null-pointer 
dereferencing, and out-of-bounds array indexing, which are the 
three types of problems it is designed to address.  UNO 
implements a two-pass analysis; the first pass performs intra-
procedural analysis within each function, while the second pass 
performs a global analysis across the entire 
that the second pass focuses only on global pointer dereferencing, 
in order to detect null pointer usage; therefore, UNO would not 
seem to be inter-procedural with respect to out-of-bounds array 
indexing.  UNO determines path infeasibility, and uses this 
information to suppress warnings and take shortcuts in its 
searches.  It handles cons
indices (expressions on variables, or function calls), and easily 
loses precision on conservatively-computed value ranges.  It does 
not handle function pointers, nor does it attempt to compute 
possible function return values.  Lastly, UNO does not handle the 
setjmp/longjmp construct [8]. 

UNO produced no false alarms in the basic test suit
nearly half of the possible detections (140 out of 291), most of 
which would be expected based on the tool’s description.  This 
included every inter-procedural case, every container case, nearly 
every index complexity case (the only one it detected was the 
simple variable), every address and length complexity case, every 
address alias case, the function and recursion cases, every 

 



signed/unsigned mismatch, nearly every continuous loop, and a 
small assortment of others.  It performed well on the various data 
types, index aliasing, and discrete loops. Given the broad variety 
of detections missed in the basic test suite, it is not surprising that 
UNO exhibited the poorest performance in Zitser’s evaluation 
[20].   

7. CONCLUSIONS 
A corpus of 291 small C-program test cases was developed to 
evaluate static and dynamic analysis tools that detect buffer 
overflows. The corpus was designed and labeled using a new, 

. 

oped can serve as a type of litmus 

that a tool doesn’t provide some assistance when 

comprehensive buffer overflow taxonomy. It provides a 
benchmark to measure detection, false alarm, and confusion rates 
of tools, and can be used to find areas for tool enhancement.  
Evaluations of five tools validate the utility of this corpus and 
provide diagnostic results that demonstrate the strengths and 
weaknesses of these tools. Some tools provide very good 
detection rates (e.g. ARCHER and PolySpace) while others fall 
short of their specified design goals, even for simple 
uncomplicated source code. Diagnostic results provide specific 
suggestions to improve tool performance (e.g. for Splint, improve 
modeling of complex loop structures; for ARCHER, improve 
inter-procedural analysis).  They also demonstrate that the false 
alarm and confusion rates of some tools (e.g. Splint) need to be 
reduced

The test cases we have devel
test for tools. Good performance on test cases that fall within the 
design goals of a tool is a prerequisite for good performance on 
actual, complex code. Additional code complexity in actual code 
often exposes weaknesses of the tools that result in inaccuracies, 
but rarely improves tool performance. This is evident when 
comparing test case results obtained in this study to results 
obtained by Zitser [20] with more complex model programs. 
Detection rates in these two studies are shown in Table 4. As can 
be seen, the two systems that provided the best detection rates on 
the model programs (PolySpace and Splint) also had high 
detection rates on test cases. The other three tools performed 
poorly on model programs and either poorly (BOON) or well 
(ARCHER and UNO) on test cases. Good performance on test 
cases (at least on the test cases within the tool design goals) is a 
necessary but not sufficient condition for good performance on 
actual code. Finally, poor performance on our test corpus does not 
indicate 
searching for buffer overflows. Even a tool with a low detection 
rate will eventually detect some errors when used to analyze 
many thousands of lines of code.  

Table 4. Comparison of detection rates with 291 test cases and 
with 14 more complex model programs in Zitser [20]. 

Tool 
Test Case 
Detection 

Model 
Program 
Detection [20] 

ARCHER 90.7% 1% 
BOON 0.7% 5% 
PolySpace 99.7% 87% 
Splint 56.4% 57% 
UNO 51.9% 0.0% 

 

The test corpus could be improved by adding test cases to cover 
attribute values currently underrepresented, such as string 
functions.  It may also be used to evaluate the performance of 
dynamic analysis approaches.  Anyone wishing to use the test 
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ABSTRACT
Benchmarking provides an effective way to evaluate different
tools. Unfortunately, so far there is no good benchmark suite to
systematically evaluate software bug detection tools. As a result,
it is difficult to quantitatively compare the strengths and limita-
tions of existing or newly proposed bug detection tools.

In this paper, we share our experience of building a bug bench-
mark suite called BugBench. Specifically, we first summarize the
general guidelines on the criteria for selecting representative bug
benchmarks, and the metrics for evaluating a bug detection tool.
Second, we present a set of buggy applications collected by us,
with various types of software bugs. Third, we conduct a pre-
liminary study on the application and bug characteristics in the
context of software bug detection. Finally, we evaluate several ex-
isting bug detection tools including Purify, Valgrind, and CCured
to validate the selection of our benchmarks.

1 Introduction

1.1 Motivation
Software bugs account for more than 40% system failures [20],
which makes software bug detection an increasingly important re-
search topic. Recently, many bug detection tools have been pro-
posed, with many more expected to show up in the near future.
Facing ever so many tools, programmers need a guidance to se-
lect tools that are most suitable for their programs and occurring
failures; and researchers also desire a unified evaluation method to
demonstrate the strength and weakness of their tools versus others.
All these needs strongly motivate a representative, fair and com-
prehensive evaluation benchmark suite for the purpose of evaluat-
ing software bug detection tools.

Benchmark is a standard of measurement or evaluation, and
an effective and affordable way of conducting experiments [28].
A good all-community accepted benchmark suite has both tech-
nique and sociality impact. In the technical aspect, evaluations
with standard benchmarks are more rigorous and convincing; al-
ternative ideas can be compared objectively; problems overlooked
in previous research might be manifested in benchmarking. In
the social aspect, building benchmark enforces the collaboration
within community and help the community to form a common un-
derstanding of the problem they are facing [26]. There are many
successful benchmark examples, such as SPEC (Standard Perfor-
mance Evaluation Corporation) benchmarks [27], and TPC series
(Transaction Processing Council) [29], both of which have been
widely used by the corresponding research and product develop-
ment communities.

However, in the software bug detection area, there is no widely-
accepted benchmark suite to evaluate existing or newly proposed
methods. As a result, many previous studies either use syn-
thetic toy-applications or borrow benchmarks (such as SPEC and
Siemens) from other research areas. While such evaluation might
be appropriate to use for proof of concept, it hardly provides a
solid demonstration of the unique strength and shortcomings of
the proposed method. Being aware of this problem, some stud-
ies [5, 23, 32] use real buggy applications for evaluation, which

makes the proposed tools much more convincing. Unfortunately,
based on our previous experience of evaluating our own bug de-
tection tools [18, 24, 32, 33], finding real applications with real
bugs is a time-consuming process, especially since many bug re-
port databases are not well documented for our purposes, i.e., they
only report the symptoms but not the root causes. Furthermore,
different tools are evaluated with different applications, making it
hard to cross-compare tools with similar functionality.

Besides benchmarking, the evaluation criteria of software bug
detection tools are also not standardized. Some work evaluated
only the execution overhead using SPEC benchmarks, completely
overlooking the bug detection functionality. In contrast, some
work [16, 18] did much more thorough evaluation. They not only
reported false positives and/or false negatives, but also provided
the ranking of reported bugs.

As the research area of software bug detection starts boom-
ing with many innovative ideas, the urgency of a unified evalua-
tion method with a standard benchmark suite has been recognized,
as indicated by the presence of this workshop. For example, re-
searchers at IBM Haifa [6] advocate building benchmarks for test-
ing and debugging concurrent programs. Similarly, although not
formally announced as benchmark, a Java application set, HEDC
used in [31], is shared by a few laboratories to compare the effec-
tiveness of data race detection methods.

1.2 Our Work
Benchmark suite building is a long-term, iterative process and
needs the cooperation from all over the community. In this pa-
per, we share our experience of building a bug benchmark suite
as a vehicle to solicit feedbacks. We plan to release the current
collection of buggy applications soon to the research community.
Specifically, this paper reports our work on bug benchmark design
and collection in the following aspects:
(1) General guidelines on bug benchmark selection criteria
and evaluation metrics: By learning from successful bench-
marks in other areas and prior unsuccessful bug benchmark tri-
als, we summarize several criteria that we follow when selecting a
buggy application into our benchmark suite. In addition, based on
previous research experience and literature research in software
bug detection, we also summarize a set of quantitative and quali-
tative metrics for evaluating bug detection tools.
(2) A C/C++ bug benchmark suite BugBench: By far, we have
collected 17 C/C++ applications for our BugBench and we are still
looking for more applications to enrich the suite. All of the appli-
cations are from the open source community and contain various
software defects including buffer overflows, stack smashing, dou-
ble frees, uninitialized reads, memory leaks, data races, atomic
violations, semantic bugs, etc. Some of these buggy applications
have been used by our previous work [18, 24, 32, 33], and also
forwarded by us to a few other research groups at UCSD, Purdue,
etc in their studies [7, 22].
(3) A preliminary study of benchmark and bug characteris-
tics: We have studied the characteristics of several benchmarks
that contain memory-related bugs, including memory access fre-
quencies, malloc frequencies, crash latencies (the distance from
the root cause to the manifestation point), etc., which would af-
fect the overhead and bug-detection capability of a dynamic bug



detection tool. To our best knowledge, ours is one of the first in
studying buggy application characteristics in the context of soft-
ware bug detection.
(4) A preliminary evaluation of several existing tools: To val-
idate our selection of benchmarks and characteristics, we have
conducted a preliminary evaluation using several existing tools in-
cluding Purify [12], Valgrind [25] and CCured [23]. Our prelimi-
nary results show that our benchmarks can effectively differentiate
the strengths and limitations of these tools.

2 Lessons from Prior Work
2.1 Successful Benchmark in Other Areas
SPEC (Standard Performance Evaluation Cooperative) was
founded by several major computer vendors in order to “provide
the industry with a realistic yardstick to measure the performance
of advanced computer systems” [3]. To achieve this purpose,
SPEC has very strict application selection process. First, candi-
dates are picked from those that have significant use in their fields,
e.g. gcc from compiler field, and weather prediction from scien-
tific computation field. Then, candidates are checked for their clar-
ity and portability over different architecture platforms. Qualified
candidates will be analyzed for detailed dynamic characteristics,
such as instruction mix, memory usage, etc. Based on these char-
acteristics, SPEC committee decides whether there are enough di-
versity and little redundancy in the benchmark suite. After sev-
eral iterations of the above steps, a SPEC-benchmark is finally
announced.
TPC (Transaction Processing Council) was founded in the mid-
dle 80’s to satisfy the demand of comparing numerous database
management systems. TPC benchmark shares some com-
mon properties as that in SPEC, i.e. representative, diverse,
and portable, etc. Take TPC-C (an OLTP benchmark) as an
example[17]. To be representative, TPC-C uses five real-world
popular transactions: new order, payment, delivery, order status,
and stock level. In terms of diversity, these transactions cover al-
most all important database operations. In addition, TPC-C has
a comprehensive evaluation metric set. It adopts two standard
metrics: new-order transaction rate and price/performance, to-
gether with additional tests for ACID properties, e.g. whether the
database can recover from failure. All these contribute to the great
success of TPC-C benchmark.

2.2 Prior Benchmarks in Software Engineering
and Bug Detection Areas

Recently, much progress has been made on benchmarking in soft-
ware engineering-related areas. CppETS [26] is a benchmark suite
in reverse engineering for evaluating “factor extractors”. It pro-
vides a collection of C++ programs, each associated with a ques-
tion file. Evaluated tools will answer the questions based on their
factor extracting results and get points from their answers. The fi-
nal score from all test programs indicates the performance of this
tool. This benchmark suite is a good vehicle to objectively evalu-
ate and compare factor extractors.

The benchmark suites more related to bug detection are
Siemens benchmark suite [11] and PEST benchmark suite [15]
for software testing. In these benchmark suites, each application is
associated with some buggy versions. Better testing tools can dis-
tinguish more buggy versions from correct ones. Although these
benchmark suites provide a relatively large bug pool, most bugs
are semantic bugs. There is almost no memory-related bugs and
definitely no multi-threading bugs. Furthermore, the benchmark
applications are very small (some are less than 100 line of code),
hence cannot represent real bug detection scenarios and can hardly

be used to measure time overhead. Therefore, they are not suitable
for serving as bug detection benchmarks.

In the bug detection community, there is not much work done in
benchmarking. Recently, researchers in IBM Haifa [14] propose
building multithreading program benchmarks. However, their ef-
forts are unsuccessful as also acknowledged in their following pa-
per [6], because they rely on students to purposely generate buggy
programs instead of using real ones.

3 Benchmarking Guideline

3.1 Classification of Software Bugs
In order to build good bug benchmarks, we first need to classify
software bugs. There are different ways to classify bugs [1, 15], in
this section we make classification based on different challenges
the bug exposes to the detection tools. Since our benchmark suite
cannot cover all bug types, in the following we only list the bug
types that are most security critical and most common. They are
also the design focus of most bug detection tools.
Memory related bugs Memory related bugs are caused by im-
proper handling of memory objects. These bugs are often ex-
ploited to launch security attack. Based on US-CERT vulner-
ability Notes Database [30], they contribute the most to all re-
ported vulnerabilities since 1991. Memory-related bugs can be
further classified into: (1) Buffer overflow: Illegal access beyond
the buffer boundary. (2) Stack smashing: Illegally overwrite the
function return address. (3) Memory leak: Dynamically allocated
memory have no reference to it, hence can never be freed. (4)
Uninitialized read: Read memory data before it is initialized. The
reading result is illegal. (5) Double free: One memory location
freed twice.
Concurrent bugs Concurrent bugs are those that happen only
in multi-threading (or multi-processes) environment. They are
caused by ill-synchronized operations from multiple threads. Con-
current bugs can be further divided into following groups: (1) Data
race bugs: Conflicting accesses from concurrent threads touch
the shared data in arbitrary order. (2) Atomicity-related bugs: A
bunch of operations from one thread is unexpectedly interrupted
by conflicting operations from other threads. (3) Deadlock: In re-
source sharing, one or more processes permanently wait for some
resources and can never proceed any more.

An important property of concurrent bugs is un-deterministic,
which makes them hard to be reproduced. Such temporal sensitiv-
ity adds extra difficulty to bug detection.
Semantic bugs A big family of software bugs are semantic bugs,
i.e. bugs that are inconsistent with the original design and the
programmers’ intention. We often need semantic information to
detect these bugs.

3.2 Classification of Bug Detection Tools
Different tools detect bugs using different methods. A good
benchmark suite should be able to demonstrate the strength and
weakness of each tool. Therefore, in this section, we study the
classification of bug detection tools, by taking a few tools as ex-
amples and classifying them by two criteria in Table 1.

Static Dynamic Model Checking
Programming-rule PREfix [2] Purify [12] VeriSoft[9]
based tools RacerX [4] Valgrind [25] JPFinder[13]
Statistic-rule CP-Miner [18] DIDUCE [10] CMC[21]
based tools D. Engler’s [5] AccMon [32]

Liblit’s [19]
Annotation-based ESC/Java [8]

Table 1: Classification of a few detection tools



As shown in Table 1, one way to classify tools is based on
the rules they use to detect bugs. Most detection tools hold
some “rules” in mind: code violating the rules is reported as
bug. Programming-rule-based tools use rules that should be
followed in programming, such as “array pointer cannot move
out-of-bound”. Statistic-rule-based approaches learn statistically
correct rules (invariants) from successful runs in training phase.
Annotation-based tools use programmer-written annotations to
check semantic bugs.

We can also divide tools into static, dynamic and model check-
ing. Static tools detect bugs by static analysis, without requiring
code execution. Dynamic tools are used during execution, analyz-
ing run-time information to detect bugs on-the-fly. They add run-
time overhead but are more accurate. Model checking is a formal
verification method. It was usually grouped into static detection
tools. However, recently people also use model checking during
program execution.

3.3 Benchmark Selection Criteria
Based on the study in section 2 and 3.1, 3.2, we summarize fol-
lowing bug detection benchmark selection criteria. (1) Represen-
tative: The applications in our benchmark suite should be able to
represent real buggy applications. That means: First, the appli-
cation should be real, implemented by experienced programmers
instead of novices. It is also desirable if the application has signifi-
cant use in practice. Second, the bug should also be real, naturally
generated, not purposely injected. (2) Diverse: In order to cover
a wide range of real cases, the applications in benchmark should
be diverse in the state space of some important characteristics, in-
cluding bug types; some dynamic execution characteristics, such
as heap and stack usage, the frequency of dynamic allocations,
memory access properties, pointer dereference frequency, etc; and
the complexity of bugs and applications, including the bug’s crash
latency, the application’s code size and data structure complex-
ity, etc. Some of these characteristics will be discussed in detail
in section 4.2. (3) Portable: The benchmark should be able to
evaluate tools designed on different architecture platforms, so it is
better to choose hardware-independent applications. (4) Accessi-
ble: Benchmark suites are most useful when everybody can easily
access them and use them in evaluation. Obviously, proprietary
applications can not meet this requirement, so we only consider
open source code to build our benchmark. (5) Fair: The bench-
mark should not bias toward any detection tool. Applying above
criteria, we can easily see that benchmarks like SPEC, Siemens
are not suitable in our context: many SPEC applications are not
buggy at all and Siemens benchmarks are not diverse enough in
code size, bug types and other characteristics.

In addition to the above five criteria designed for selecting ap-
plications into the bug benchmark suite, application inputs also
need careful selection. A good input set should contain both cor-
rect inputs and bug-triggering inputs. Bug-triggering inputs will
expose the bug and correct inputs can be used to calculate false
positives and enable the overhead measurement in both buggy runs
and correct runs. Additionally, a set of correct inputs can also be
used to unify the training phase of invariant-based tools.

3.4 Evaluation Metrics
The effectiveness of a bug detection tool has many aspects. A
complete evaluation and comparison should base on a set of met-
rics that reflect the most important factors. As shown in Table 2,
our metric set is composed of four groups of metrics, each repre-
senting an important aspect of bug detection.

Most metrics can be measured quantitatively. Even for some
traditionally subjective metric, such as “pinpoint root cause”, we
can measure it quantitatively by the distance from the bug root
cause to the bug detection position in terms of dynamic and/or

Functionality Metrics Overhead Metrics
Bug Detection False Positive Time Overhead
Bug Detection False Negative Space Overhead
Easy to Use Metrics Static Analysis Time
Reliance on Manual Effort Training Overhead
Reliance on New Hardware Dynamic Detection Overhead
Helpful to Users Metrics
Bug Report Ranking
Pinpoint Root Cause?

Table 2: Evaluation metric set
static instruction numbers (we call it Detection Latency). Some
metrics, such as manual effort and new hardware reliance, will be
measured qualitatively.

We should also notice that, the same metric may have different
meanings for different types of tools. That is the reason that we list
three different types of overhead together with the time and space
overhead metrics. We will only measure static analysis time for
static tools; measure both training and dynamic detection over-
head for statistical-rule-based tools and measure only dynamic
detection overhead for most programming-rule-based tools. The
comparison among tools of the same category is more appropriate
for some metrics. When comparing tools of different categories,
we should keep the differences in mind.

4 Benchmark
4.1 Benchmark Suite
Based on the criteria in section 3.3, we have collected 17 buggy
C/C++ programs from open source repositories. These programs
contain various bugs including 13 memory-related bugs, 4 concur-
rent bugs and 2 semantic bugs 1. We have also prepared different
test cases, both bug-triggering and non-triggering ones, for each
application. We are still in the process of collecting more buggy
applications.

Table 3 shows that all applications are real open-source appli-
cations with real bugs and most of them have significant use in
their domains. They have different code sizes and have covered
most important bug types.

As we can see from the table, the benchmark suite for memory-
related bugs is already semi-complete. We will conduct more de-
tailed analysis for them in the following sections. Other types
of bugs, however, are incomplete yet. Enriching BugBench with
more applications on other types of bugs and more analysis on
large applications remains as our future work.

4.2 Preliminary Characteristics Analysis
An important criterion for a good benchmark suite is its diversity
on important characteristics, as we described in section 3.3. In this
section, we focus on a subset of our benchmarks (memory-related
bug applications) and analyze their characteristics that would af-
fect dynamic memory bug detection tools.

Dynamic memory allocation and memory access behaviors are
the most important characteristics that have significant impact on
the overheads of dynamic memory-related bug detection tools.
This is because many memory-related bug detection tools inter-
cept memory allocation functions and monitor most memory ac-
cesses. In table 4, we use frequency and size to represent dy-
namic allocation properties. As we can see, in 8 applications, the
memory allocation frequency ranges from 0 to 769 per Million In-
structions and the size ranges from 0 to 6.0 MBytes. Such large
range of memory allocation behaviors will lead to different over-
heads in dynamic bug detection tools, such as Valgrind and Purify.
In general, the more frequent of memory allocation, the larger

1some applications contain more bugs than we describe in Table 3.



Name Program Source Description Line of Code Bug Type
NCOM ncompress-4.2.4 Red Hat Linux file (de)compression 1.9K Stack Smash
POLY polymorph-0.4.0 GNU file system ”unixier” 0.7K Stack Smash &

(Win32 to Unix filename converter) Global Buffer Overflow
GZIP gzip-1.2.4 GNU file (de)compression 8.2K Global Buffer Overflow
MAN man-1.5h1 Red Hat Linux documentation tools 4.7K Global Buffer Overflow
GO 099.go SPEC95 game playing (Artificial Intelligent) 29.6K Global Buffer Overflow

COMP 129.compress SPEC95 file compression 2.0K Global Buffer Overflow
BC bc-1.06 GNU interactive algebraic language 17.0K Heap Buffer Overflow

SQUD squid-2.3 Squid web proxy cache server 93.5K Heap Buffer Overflow
CALB cachelib UIUC cache management library 6.6K Uninitialized Read
CVS cvs-1.11.4 GNU version control 114.5K Double Free

YPSV ypserv-2.2 Linux NIS NIS server 11.4K Memory Leak
PFTP proftpd-1.2.9 ProFTPD ftp server 68.9K Memory Leak

SQUD2 squid-2.4 Squid web proxy cache 104.6K Memory Leak
HTPD1 httpd-2.0.49 Apache HTTP server 224K Data Race
MSQL1 msql-4.1.1 MySQL database 1028K Data Race
MSQL2 msql-3.23.56 MySQL database 514K Atomicity
MSQL3 msql-4.1.1 MySQL database 1028K Atomicity
PSQL postgresql-7.4.2 PostgreSQL database 559K Semantic Bug

HTPD2 httpd2.0.49 Apache HTTP server 224K Semantic Bug
Table 3: Benchmark suite

Name Malloc Freq. Allocated Heap Usage Memory Access Memory Read Symptom Crash Latency
(# per MInst) Memory Size vs. Stack Usage (# per Inst) vs. Write (# of Inst)

NCOM 0.003 8B 0.4% vs. 99.5% 0.848 78.4% vs. 21.6% No Crash NA
POLY 7.14 10272B 23.9% vs. 76.0% 0.479 72.6% vs. 27.4% Varies on Input∗ 9040K∗

GZIP 0 0B 0.0% vs. 100% 0.688 80.1% vs. 19.9% Crash 15K
MAN 480 175064B 85.1% vs. 14.8% 0.519 70.9% vs. 20.1% Crash 29500K
GO 0.006 364B 1.6% vs. 98.3% 0.622 82.7% vs. 17.3% No Crash NA
COMP 0 0B 0.0% vs. 100% 0.653 79.1% vs. 20.9% No Crash NA
BC 769 58951B 76.6% vs. 23.2% 0.554 71.4% vs. 28.6% Crash 189K
SQUD 138 5981371B 99.0% vs. 0.9% 0.504 54.2% vs. 45.8% Crash 0

Table 4: Overview of the applications and their characteristics (*:The crash latency is based on the input that will cause the crash.)

overhead would be imposed by such tools. To reflect the mem-
ory access behavior, we use access frequency, read/write ratio and
heap/stack usage ratio. Intuitively, access frequency directly influ-
ences the dynamic memory bug detection overhead: the more fre-
quent memory accesses, the larger the checking overhead. Some
tools use different policies to check read and write accesses and
some tools differentiate stack and heap access, so all these ratios
are important to understand the overhead. In table 4, the access
frequencies of our benchmark applications change from 0.479 to
0.848 access per instruction and heap usage ratio from 0 to 99.0%.
Both show a good coverage. Only the read/write ratio seems not
to change much within all 8 applications, which indicates the need
to further improve our benchmark suite based on this.

Obviously, the bug complexity may directly determines the
false negatives of bug detection tools. In addition, the more dif-
ficult to detect, the more benefits a bug detection tool can pro-
vide the programmers. While it is possible to use many ways to
measure complexity (which we will do in the future), we use the
symptom and crash latency to measure this property. Crash la-
tency is the latency from the root cause of a bug to the place where
the application finally crashes due to the propagation of this bug.
If the crash latency is very short, for example, right at the root
cause, even without any detection tool, programmers may be able
to catch the bug immediately based on the crash position. On the
other hand, if the bug does not manifest until a long chain of error
propagation, detecting the bug root cause would be much more
challenging for both programmers and all bug detection tools. As
shown in Table 4, the bugs in our benchmarks manifest in different
ways: crash or silent errors. For applications that will crash, their
crash latency varies from zero latency to 29 million instructions.

5 Preliminary Evaluation
In order to validate the selection of our bug benchmark suite, in
this section, we use BugBench to evaluate 3 popular bug detec-
tion tools: Valgrind [25], Purify [12] and CCured [23]. All these
three are designed to detect memory-related bugs, so we choose
8 memory-relate buggy applications from our benchmarks. The
evaluation results are shown in Table 5.

In terms of time overhead, among the three tools, CCured al-
ways has the lowest overhead, because it conducted static analysis
beforehand. Purify and Valgrind have similar magnitude of over-
head. Since Valgrind is implemented based on instruction emula-
tion and Purify is based on binary code instrumentation, we do not
compare the overheads of these two tools. Instead, we show how
an application’s characteristics affect one tool’s overhead. Since
our bug benchmark suite shows a wide range of characteristics,
the overheads imposed by these tools also vary from more than
100 times of overhead to less than 20% overhead. For example,
the application BC has the largest overhead in both Valgrind and
Purify, as high as 119 times. The reason is that BC has very high
memory allocation frequency, as shown in Table 4. On the other
hand, POLY has very small overhead due to its smallest memory
access frequency as well as its small allocation frequency.

In terms of bug detection functionality, CCured successfully
catches all the bugs in our applications and also successfully points
out the root cause in most cases. Both Valgrind and Purify fail to
catch the bugs in NCOM and COMP. The former is a stack buffer
overflow and the latter is a one-byte global buffer overflow. Val-
grind also fails to catch another global buffer overflow in GO and
has long detection latencies in the other three global buffer over-



Catch Bug? False Positive Pinpoint The Root Cause Overhead Easy to Use
(Detection Latency(KInst)1)

Valgrind Purify CCured Valgrind Purify CCured Valgrind Purify CCured Valgrind Purify CCured Valgrind Purify CCured
NCOM No No Yes 0 0 0 N/A N/A Yes 6.44X 13.5X 18.5% Easiest Easy Moderate
POLY Vary2 Yes Yes 0 0 0 No(9040K)2 Yes Yes 11.0X 27.5% 4.03% Easiest Easy Moderate
GZIP Yes Yes Yes 0 0 0 No(15K) Yes Yes 20.5X 46.1X 3.71X Easiest Easy Moderate
MAN Yes Yes Yes 0 0 0 No(29500K) Yes Yes 115.6X 7.36X 68.7% Easiest Easy Hard
GO No Yes Yes 0 0 0 N/A Yes Yes 87.5X 36.7X 1.69X Easiest Easy Moderate
COMP No No Yes 0 0 0 N/A N/A Yes 29.2X 40.6X 1.73X Easiest Easy Moderate
BC Yes Yes Yes 0 0 0 Yes Yes Yes 119X 76.0X 1.35X Easiest Easy Hardest
SQUD Yes Yes N/A3 0 0 N/A3 Yes Yes N/A3 24.21X 18.26X N/A3 Easiest Easy Hardest

Table 5: Evaluation of memory bug detection tools. (1: Detection latency is only applicable when fail to pinpoint the root cause; 2: Valgrind’s
detection result varies on inputs. Here we use the input by which Valgrind fails to pinpoint root cause; 3: We fail to apply CCured on Squid)

flow applications: POLY, GZIP and MAN. The results indicate
that Valgrind and Purify handle heap objects much better than they
do on stack and global objects.

As for POLY, we tried different buggy inputs for Valgrind and
the results are interesting: if the buffer is not overflowed signif-
icantly, Valgrind will miss it; with moderate overflow, Valgrind
catches the bug after a long path of error propagation, not the root
cause; only with significant overflow, Valgrind can detect the root
cause. The different results are due to POLY’s special bug type:
first global corruption and later stack corruption.

Although CCured performs much better than Valgrind and Pu-
rify in both overhead and functionality evaluation, the tradeoff is
its high reliance on manual effort in code preprocessing. As shown
in the “Easy to Use” column of Table 5, among all these tools, Val-
grind is the easiest to use and requires no re-compilation. Purify
is also fairly easy to use, but requires re-compilation. CCured is
the most difficult to use. It often requires fairly amount of source
code modification. For example, in order to use CCured to check
BC, we have worked about 3 to 4 days to study the CCured policy
and BC’s source code to make it satisfy the CCured’s language
requirement. Moreover, we fail to apply CCured on a more com-
plicated server application: SQUD.

6 Current Status & Future Work
Our BugBench is an ongoing project. We will release these appli-
cations together with documents and input sets through our web
page soon. We welcome feedbacks to refine our benchmark.

In the future, we plan to extend our work in several dimensions.
First, we will enrich the benchmark suite with more applications,
more types of bugs based on our selection criteria and characteris-
tic analysis (the characteristics in Table 4 show that some impor-
tant benchmark design space is not covered yet). We are also in
the plan of designing tools to automatically extract bugs from bug
databases (e.g. Bugzilla) maintained by programmers, so that we
can not only get many real bugs but also gain deeper insight into
real large buggy applications. Second, we will evaluate more bug
detection tools, which will help us enhance our BugBench. Third,
we intend to add some supplemental tools, for example, program
annotation for static tools, and scheduler and record-replay tools
for concurrent bug detection tools.
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The best benchmarks serve non-experts by producing simple, easy-to-compare results 
regardless of the complexity of the solution.  I propose the following three principles for 
creating a benchmark for bug detection: 

1) Take the user’s perspective.  A bug detection benchmark should measure the 
following properties of a tool above all else: 

• Ability to detect an explicit set of bugs that the community deems important. 
• Ability to produce output that can be consumed efficiently (often expressed as 

“give me few false alarms”). 
• Performance (both capacity and execution time). 

2) Name the scenario. Consider the TPC-C benchmark, the most widely used standard 
for evaluating database performance: 
“In the TPC-C business model, a wholesale parts supplier (called the Company 
below) operates out of a number of warehouses and their associated sales districts… 
Each warehouse in the TPC- C model must supply ten sales districts, and each district 
serves three thousand customers. An operator from a sales district can select, at any 
time, one of the five operations or transactions offered by the Company's order-entry 
system.”  (From http://www.tpc.org/tpcc/detail.asp) 
For bug detection tools, interesting scenarios might include:  

• A network server that speaks a standard protocol (http, ftp, smtp, etc.) 
• A set of device drivers 
• A web-based enterprise application 
• A privileged system utility.   

3) Start with documented bugs (and their solutions).  The body of open source 
applications is large enough and rich enough that a bug detection benchmark should 
never suffer the complaint that the included bugs do not represent realistic practices 
or coding styles.  The benchmark code need not be drawn verbatim from open source 
applications, but the pedigree of a each bug should be documented as part of the 
benchmark.  Because false alarms are such a concern, the benchmark should include 
code that represents both a bug and the fix for the bug. 

 
Creating a benchmark is hard. It requires making value judgments about what is 
important, what is less important, and what can be altogether elided.  These judgments 
are harder still for people who value precision, since computing a benchmark result will 
invariably require throwing some precision away.  We should not expect to get it all right 
the first time.  Any successful benchmark will inevitably evolve in scope, content, and 
methodology.  The best thing we can do is make a start. 

 



Benchmarks should not be made to serve experts or connoisseurs.  The target audience for 
a benchmark should be non-experts who need a way to take a complex topic and boil it 
down to a simple one.  Domain experts are drawn to building benchmarks partially because 
they help focus the world’s attention on their problem.  Invariably this attention causes the 
experts to put a lot of thought and effort into how to come out on top in the benchmark 
rankings.  The winner of the 2nd place trophy will always bemoan the benchmark: “it 
ignores the subtlety of the topic, the area where my approach truly shines.”  But if the 
benchmark is good, these complaints will be quickly forgotten.  The benchmark will focus 
research on problems that benefit the field. 
 
Experts appreciate benchmarks because they can draw the world’s attention to problems they 
consider important. Invariably, the experts focus on achieving a top ranking in the 
benchmark, rather than on the overall usefulness of the solution that is being benchmarked. 
This creates a situation in which everyone except the winner of the benchmark bemoans the 
fact that the benchmark did not accurately measure the true robustness of their solution.  
  
The best benchmarks serve non-experts by producing simple, easy-to-understand results 
regardless of the complexity of the solution. This talk discusses three principles for creating a 
useful and easily understood benchmark for bug detection tools. 
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The foundation of the scientific method is the experimental, repeatable validation of hypotheses. However, it is
currently extremely difficult to apply this methodology to tools and techniques for finding bugs in software. As a
community, we are suffering from two major limitations:

1. It is extremely difficult to quantitatively measure the results of a tool. We can easily count the number of
warnings generated, but on a large code base it is extremely difficult to categorize all of the warnings as correct
or as false positives, and to correlate them with underlying software bugs. One warning may correspond to
multiple underlying bugs, or one bug may yield multiple warnings. Even identifying separable “bugs” can be
problematic, since code in isolation can be correct in some sense but interact incorrectly with other code.

Moreover, we have almost no objective way of measuring false negatives, except by comparing with other tools.
But even this approach is problematic: In a recently published paper [1], we compared a number of different bug
finding tools for Java, and we found that even when the tools looked for the same kind of error (e.g., concurrency
errors or null pointer errors), they report different warnings in different places, most likely due to differing design
tradeoffs between false positives and false negatives. Finally, we often have no independent information about
the severity of bugs, making it difficult to decide if one error is more important than another. For example, null
pointer errors are bad, but they often cause a program to crash at the dereference site, making identifying at least
the crash site easy. Whereas race conditions that corrupt internal program logic are extremely difficult to track
down, yet may not even violate standard type safety.

2. It is extremely difficult to reproduce others’ results. If tools are run on open-source software, then it is easy to
get the code for comparison. But it may be hard to duplicate the experimental configuration (did it compile with
a different set of header files or different flags?). And even the most thorough description on paper omits by
necessity many small details that can have a significant impact on the behavior of a tool. When tools are run to
produce the results in a paper, they are often not made publicly available, and often if they are made available
later, they may have undergone changes from the original description in the paper. Finally, reimplementing tools
and reevaluating them is most likely not considered publication-worthy in top conferences—at least, not without
a strong result, like showing that previous claims about the technique are false. Some seemingly unimportant
details can also make reproducing experiments extremely difficult, even if the tools are made available. Changes
in compilers and runtime environments over time can make building the tools difficult. Moreover, small changes
in the tools’ target can render them unusable. For example, in [1], we found that language drift over time made it
difficult to apply the different tools—tools that ran correctly on Java 1.3 code did not accept Java 1.4 code, often
for minor reasons. Even without an “official” change, tools sometimes need to be tweaked—we have found that
handling new features of gcc required (minor) changes to a C front end.

Given this state of affairs, I propose that our community should adopt two policies. First, we should develop an
(initially) small, shared registry for storing open source code, in raw and possibly preprocessed/munged form, along
with detailed information about bugs. By keeping the registry small (at least for a few years), we could focus effort
on a set of programs, making it feasible to do much more detailed evaluation of false negatives in particular. It would
also be useful to get bug information from developers. One solution might be to develop or co-opt a freely-available
bug tracking system that both provided advantages over current solutions and encouraged developers to report bugs
and patches in a form amenable to automated extraction. (I do not know what such a system would look like.)

Second, we should strongly encourage researchers to make their tools publicly available for comparison purposes.
For developers of open source software, this would be easy, but we should still cultivate a community in which the
tool is made available when the paper is published. For developers of proprietary software, the registry would provide
a standardized test bed, and the raw output of the tool would be made public at publication time.

References
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science n. The observation, identification,
description, experimental investigation, and
theoretical explanation of phenomena.

To perform a scientific experimental investigation
of software defects, we need bugs.

Lots of them. Thousands only begins to cover it.
Pinned to the wall, embedded in blocks of clear

plastic, with a whole cabinet full of note cards about
them.

So, how are we going to make that happen?

Studying Software Defects

Many papers on software reliability don’t even ad-
dress the issue of software defects, and instead report
on numbers such as the size of the points-to relation,
with a hope that the numbers will be relevant to soft-
ware defect detection.

But when papers do report on number of bugs
found, often they only report the “number of bugs
found”.

Unfortunately, companies now now feel that the
exact bugs they can identify with their tools is a trade
secret, and no longer make such information publicly
available.

Even the exact nature of the bugs identified by re-
search papers is often unclear: many different things
can be classified as a null pointer or synchronization
error, and without being able to examine which bugs
are being classified as which, it is very difficult to
compare two different analysis techniques. The use
of heuristics to eliminate false positives or unimpor-
tant bugs makes it hard even to compare bug counts.

Work on array data dependence analysis showed
that many things other than proposed techniques can

substantially results presented in a paper. For exam-
ple, the kind of induction variable recognition used
often had a far greater impact on the accuracy of the
analysis than the actual array data dependence anal-
ysis technique used. I would not be surprised to find
the same of software defect detection techniques.

OK, fine, so we need to come up with some bench-
marks.

But I’m not sure if benchmarks will cut it.
Most benchmarks are lousy. Benchmarks can be

OK for allowing you to compare two different tech-
niques. But conventional benchmarks can be really
lousy as a basis for trying to build an experimental
understanding of a phenomena. If we put together
a benchmark of 10 programs with a total of 14 null
pointer dereferences, what does that tell us? Not
much.

The problem is that we don’t understand software
defects enough to craft small benchmarks that char-
acterize the types of problems we want to be able
to detect with software defect detection tools. Some
special cases, maybe (e.g., format string vulnerabili-
ties).

But if we want to understand the larger universe of
software defects, we need huge collections of software
defects. This, of course, means a huge collection of
software. And open source repositories can be a good
source of software for research.

But we also need to have some kind of ground truth
as to what is a bug, and how important the bug is.
One possible source for this is bug databases for open
source projects. These bug databases can be pretty
noisy, and matching the bug reports with the actual
lines of code containing the defect or the lines changed
in order to fix the defect is a challenging research
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problem.
To use open source projects as a basis for studying

software defects, we need

• Results on specific and available versions of
open-source software artifacts.

• Detailed bug reports published in a easy, ma-
chine readable format.

To be truly successful, our community also needs to
choose some specific versions of specific open-source
software artifacts. This would allow

• Artifacts to be examined by multiple researchers.

• Development of standard interchange format for
labeling defects and warnings in the artifacts.

• Some kind of shared information about con-
firmed defects found in the artifact. These con-
firmed defects would arise from bug databases,
change logs, unit tests, or manual inspections.

The Marmoset Project

In addition to using open source, widely used, soft-
ware artifacts for benchmarking, at the University
of Maryland we are using student code as an ex-
perimental basis for studying software defects. This
work is taking place as part of the Marmoset project,
which is an innovative system for student program-
ming project submission and testing. The Marmoset
system provides significant technical, motivational
and pedagogical advantages over traditional project
submission and grading systems, and in particular
helps students strengthen their skills at developing
and using testing.

But of more relevance, the Marmoset system al-
lows us to have students participate in research stud-
ies where we collect every save of every file as they
develop their programming projects. These each are
added to a database, and we compile and run all of
the unit tests on each compilable snapshot. We col-
lect code coverage information from each run, and
also apply static analysis tools such as FindBugs to
each snapshot. Figure 1 shows some data from two
semesters of our second semester OO programming
course (taught in Java).

We have found the tests results to be uniquely valu-
able. It starts letting us have a good approximation
for ground truth. But more importantly, we can look
for defects we weren’t expecting. We didn’t expect to
see so many ClassCast and StackOverflow errors. By

# snapshots 108,352
# compilable 84,950
# unique 68,226
# test outcomes 939,745
# snapshots with exception:

NullPointer 11,527
ClassCast 4,705
IndexOutOfBounds 3,345
OutOfMemory 2,680
ArrayIndexOutOfBound 2,268
StringIndexOutOfBound 2,124
NoSuchElement 2,123
StackOverflow 2,023

Figure 1: Marmoset Data from CMSC 132

sampling the snapshots where those errors occurred,
we were able to discover new bug patterns, imple-
ment them as static analysis rules, validate them on
student code and use them to find dozens of serious
bugs in production code.

We still have lots of work to do; we’ve only started
to collect code coverage information from our test
runs, and still have to integrate it into our analysis.
The correspondence between defects and exceptions
under test isn’t as direct as we would like, because
one fault can mask other faults, or faults can occur
in code not covered by any test.

Still, we are very excited about the data we are
collecting via the Marmoset project and would love
to talk to other researchers about sharing the data
we’ve collected and rolling the Marmoset system out
to other schools to allow them to start collecting data
for the Marmoset project as well.
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Introduction
Software metrics are a means of assuring that an application has certain attributes, such as adequate security. Some software assurance techniques are
scanning source code, byte code, or binaries, penetration testing, "sandbox" testing. Source code, byte code, and and binary scanners in particular are
important in evaluating a software product because they may detect accidental or intentional vulnerabilities such as "back doors". Additionally, software
metrics are essential to help determine what effect, if any, a change in the software development process has on the software quality.

The U.S. Department of Homeland Security is concerned about the effectiveness of software assurance (SA) tools. When an SA tool reports software
vulnerabilities, or the lack thereof, for a software product, to what degree can the user be confident that the report is accurate? Does the tool faithfully
implement SA checking techniques? What is the rate of false positives and the rate of false negatives for those techniques? Standard testing methodologies
with reference matter may help measure a tool's effectiveness.

A more fundamental question is,  given that some technique has been used to examine a software product, how much confidence should the user have in the
product? In other words, how well do techniques actually measure security, correctness, robustness, etc.? What assurance level can be assigned? How much
do different techniques overlap in detecting the same problems (or lack thereof)?

NIST is tasked by DHS to help define these needs. The Software Assurance Metrics and Tool Evaluation (SAMATE) program [1] is designed to develop
metrics for the effectiveness of SA techniques and tools and to identify deficiencies in software assurance methods and tools.

This paper is targeted at the community of researchers, developers and users of software defect detection tools. In particular, this paper addresses the
technical areas where NIST can provide SA tool evaluation support.

Background
The performance, effectiveness, and scope of SA tools vary significantly. For instance, although a tool may be generally classed as a "source code
scanner", the scanning methodology employed, the depth and rigor with which that tool identifies software flaws and potential vulnerabilities may be quite
different. In addition, different vendors make different trade-offs in performance, precision, and completeness based on the needs of different industrial
segments.

Today tool vendors develop and test internally against their own test material and tool metrics. The ability to find code flaws and vulnerabilities is an
important metric in measuring a tool's effectiveness. However, there is no common benchmark. A set of common, publicly available programs would allow
vendors to independently check their own progress.  Small tool producers and researchers would especially benefit from having a collection maintained and
checked. Users would be more confident in the capabilities of different tools and be able to choose the tool(s) that are most appropriate for their situation.

Finding code flaws may not be the only metric. How useful is a tool that generates a large number of false positives? Or conversely, how effective is a tool
that generates few false positives, but misses many problems (many false negatives)? These concerns must be factored in, too.

Publicly available work is already being done in the area of SA tool evaluations and metrics ([TSAT] and [ASATMS]). NIST is examining these and other
existing bodies of work as possible sources of contribution to the SAMATE specifications, metrics and test material.

NIST's Information Technology Laboratory has developed or helped develop specifications and test suites for numerous technologies, including XML,
PHIGS, SQL, Smart Card, and computer forensic tools. The highly successful NIST Computer Forensic Tools Testing (CFTT) project [2] is a model of tool
testing that can be applied to the evaluation of the effectiveness of SA tools. The CFTT framework defines a taxonomy of forensic tool functions,
functional specifications of expected tool behavior, and metrics for determining the effectiveness of test procedures.

Vendors are properly concerned about reports on their product. NIST, a part of the U.S. Department of Commerce, is a "neutral" party in the development
of testing specifications and test suites. Because NIST's mandate is to support U.S. commerce and business,  our role in testing is to help companies
improve the quality of the products they bring to market. NIST is not "consumer reports", and does not endorse one company's product over another.

The SAMATE roadmap
By serving as neutral party maintaining an open repository for SA tool testing methods and matter, NIST will provide a common resource for SA tool
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vendors, researchers and users to measure the suitability and effectiveness of a particular tool or technique.

The SAMATE project will provide an open, free, publicly reviewed resource to SA tool vendors, researchers and users that will include:

A taxonomy of classes of SA tool functions

NIST will help find or develop a taxonomy based on the state of the art in software assurance tools and techniques

Workshops for SA tool developers and researchers and users to prioritize particular SA tool functions

Priority may be based upon commonality, criticality, cost efficiency or other factors

This list will determine areas of focus and specification development

Specifications of SA tool functions

Based upon focus group results, detailed specifications of functions for particular classes of SA verification will be developed

Detailed test methodologies

How and which reference applications to use

Well-defined counting and computing procedures

Associated scripts and auxiliary functions

Workshops to define and study metrics for the effectiveness of SA functions

Follow-on workshops to critique methodologies and formalize metrics for SA tools based upon experience

Incorporate ongoing research and thinking

A set of reference applications with known vulnerabilities

Publish papers in support of the SAMATE metric

The methodology used to define the functional specifications, test suites, test reports and definition of SA tool metrics will be published
by NIST for peer review by the community

Immediate Goals
By introducing the SAMATE project at this workshop, NIST's goals are to:

Solicit participation in upcoming NIST workshops to prioritize functional areas of testing

Identify existing taxonomies, surveys, metrics, etc.

Solicit contributions of example program suites

Discuss issues of importance to vendor, user, and researcher participation

Bibliography
[TSAT] Testing Static Analysis Tools Using Exploitable Buffer Overflows from Open Source Code, Misha Zitser, Richard Lippmann, Tim Leek, Copyright 
© 2004, ISBN 1-58113-855-5, Proceedings of the 12th ACM SIGSOFT International Symposium on Foundations of Software Engineering, 2004, Newport
Beach, CA, USA, October 31 - November 6, 2004. ACM 2004, 97-106, http://portal.acm.org/citation.cfm?doid=1029911

[ASATMS] DRAFT Application Security Assessment Tool Market Survey Version 1.0, U.S. Defense Information Systems Agency (DISA), Washington
D.C., 2002, https://iase.disa.mil/appsec/index.html

[1] http://www.cftt.nist.gov , web page for the NIST Computer Forensic Tool Testing Project

[2] http://samate.nist.gov , web page for the NIST SAMATE Project



Submitted to the Workshop on the Evaluation of Software Defect Detection Tools

Deploying Architectural Support for Software Defect Detection in Future Processors

Yuanyuan Zhou and Josep Torrellas
Department of Computer Science, University of Illinois at Urbana-Champaign�

yyzhou,torrellas � @cs.uiuc.edu

1 Motivation
Recent impressive advances in semiconductor technology are en-
abling the integration of ever more transistors on a single chip. This
trend provides a unique opportunity to enhance processor functional-
ity in areas other than performance, such as in easing software devel-
opment or enhancing software debugging.

Exploring architectural support for software debugging is a re-
search direction of great promise. First, it enables new tradeoffs in
the performance, accuracy, and portability of software defect detec-
tion tools, possibly allowing the detection of new types of defects
under new conditions. Secondly and most importantly, it opens up
a new possibility: on-the-fly software defect detection in production
runs. This last area has been under-explored due to the typically large
overheads of many software solutions.

Table 1 briefly summarizes the architectural supports for software
defect detection that our research group has recently proposed.

Architectural
Support

Description Over-
head

ReEnact [1] Extend the communication monitoring mecha-
nisms in thread-level speculation to detect and
characterize data races automatically on the fly.

1%
to
13%

iWatcher [4] Associate program-specified monitoring func-
tions with memory locations. When any such lo-
cation is accessed, the monitoring function is au-
tomatically triggered with low overhead without
going through the OS.

4%
to
80%

AccMon [3] Detect general memory-related bugs by extracting
and monitoring the set of instruction PCs that nor-
mally access a given monitored object.

0.24X
to
2.88X

SafeMem [2] Exploit existing ECC memory technology to de-
tect memory corruption and prune false positives
in memory leak detection.

1%
to
29%

Table 1: Architectural supports for software defect detection recently pro-
posed by our research group.

In general, using architectural support to detect software defects
provides several key advantages over software-only dynamic ap-
proaches:

(1) Performance. Architectural support can significantly lower the
overhead of dynamic monitoring if it eliminates the need for exten-
sive code instrumentation. Such instrumentation may even interfere
with compiler optimizations. Moreover, the hardware can be used
to speed up certain operations. For example, AccMon uses a hard-
ware Bloom filter to filter 80-99% of the accesses that would go to
a software monitor function. As shown in Table 1, hardware sup-
port enables dynamic detection of bugs with orders-of-magnitude less
overhead than commonly existing software-only tools.

(2) Accuracy. Architectural support enables ready access to execution
information that is often hard to obtain with software-only instrumen-
tation. An example is all the accesses to a monitored memory object
and only those — instrumentation-based tools need to check more
memory accesses due to pointer aliasing problems. This capability
is leveraged by iWatcher [4]. Another example of hard to obtain in-
formation is the exact interleaving of the accesses that caused a data
race in a multithreaded program running at production speeds. This
capability is leverages by ReEnact [1] to detect production-run data
races.

(3) Portability. Architectural support is typically language indepen-
dent, cross module (capable of checking for bugs in third-party li-
braries), and easy to use with low-level system code such as the oper-
ating system. Moreover, it can be designed to work with binary code
without recompilation.

2 Deployment Challenges and Plans
Due to the above advantages, it is highly desirable for software de-
velopers to be able to use architectural support to assist in detecting
software defects. Of course, to make this happen, we need the coop-
eration of processor design companies such as Intel, IBM, AMD, or
Sun Microsystems. To help improve the chances that one or more of
these companies finds it attractive to include architectural support for
software debugging in their processors, we put forward the following
suggestions:

(1) The research communities working on software defect detection
tools and on computer architecture can work together to identify (i)
what are important or difficult-to-catch bugs (e.g. data races) that
need architectural support? and (ii) what architectural extensions can
be added to exisiting processors to help detect these bugs?

The architectural supports that are more likely to succeed are those
that have one or several of the following features: simplicity, general-
ity, reconfigurability and leverage existing hardware. Simple designs
are those that require modest extensions to current processor hard-
ware, such as iWatcher or SafeMem. General designs are those that
can be used for multiple purposes, such as debugging and profiling,
as also exemplified by iWatcher. Reconfigurable designs can easily be
disabled, enabled or reconfigured for other purposes so that hardware
vendors can manufacture only one type of hardware but can configure
it for different users. Finally, designs that leverage existing hardware
and use it for other purposes are likely to be successful. For example,
SafeMem makes novel use of ECC memory for bug detection.

(2) Software companies such as Microsoft with significant leverage
on processor companies can push the latter to provide the necessary
architectural hooks in their processors. Software companies can also
be willing to buy some special “testing” processors (processors with
sophisticated bug detection support) that are priced higher than regu-
lar processors. Similarly, software companies can motivate customers
to buy such processors by offering them incentives such as lower li-
cense fees or better services.

(3) Interest in the topic of architectural support for software produc-
tivity and debuggability can be broadened through workshops, con-
ferences, and funding efforts in this area.
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Abstract 
 

Tools used to identify bugs in source code often 
return large numbers of false positive warnings to the 
user.  These false positive warnings can frustrate the user 
and require a good deal of effort to identify.  Various 
attempts have been made to automatically identify false 
positive warnings.  We take the position that historical 
data mined from the source code revision history is useful 
in refining the output of a bug detector by relating code 
flagged by the tool to code changed in the past. 

1 Introduction 

Tools used to identify bugs in source code often 
return large numbers of false positive warnings to the 
user.    True positive warnings are often buried among a 
large number of distracting false positives.  By making 
the true positives hard to find, a high false positive rate 
can frustrate users and discourage them from using an 
otherwise helpful tool. 

Prior research has focused on inspecting the code 
surrounding the warning producing code with the 
assumption that a tool may produce a large number of 
false positive warnings very close together in the code [2]. 

More recent work has added user driven feedback to 
refine the ranking of warnings [1].  As the user inspects a 
warning and classifies it as either a bug or false positive, 
the remaining warnings are re-ranked.  The intuition is 
that warnings that are part of some grouping are likely to 
all be either bugs or false positives.  This approach has the 
advantage of giving the user a preliminary ranking of the 
warnings and then refining that ranking with as close to 
true fact as one can get: the opinion of the user. 

2 Repository Mining as a Solution 

We believe we can use data mined from the source 
code repository to help determine the likelihood of a 
warning being a true bug or a false positive by relating 
code flagged by warnings to code that was changed in the 
past.  With the source code repository we have a record of 
each source code change.  We can determine when a 
piece of code is added and, more importantly, when code 
is changed.  The code changes may be used to highlight 
bug fixes through the life of the project.   

Examining the code changes and the state of the code 
before and after the change may allow us to match 
previous code changes to warnings produced by a bug 
finding tool.  Warnings could be matched to code changes 

in a number of ways.  The functions invoked, the location 
in the code (module/API/function) or the control or data 
flow may be used to link the flagged code to the code 
from the repository.  Warnings that flag code similar to 
code snippets that have been changed in the past may be 
more likely to be true positives. 

In [3] we show how historical data can be used to 
rank warnings produced by a static analysis tool with a 
particularly high false positive rate.  We mined the source 
code repository to determine which functions in a 
software project had a particular type of bug fix applied to 
their invocation.  We produced a ranking of the warnings 
where warnings involving functions flagged with a bug 
fix were pushed to the top of the list.  Our approach 
produced a ranking with a higher density of likely bugs 
near the top as compared to a more naïve ranking scheme. 

We investigate function usage patterns mined from 
the software repository in [4].  Here we are trying to 
identify from the repository how functions should be 
invoked in the source code with respect to each other.  We 
believe that discrepancies between how we expect 
functions to be called and how they are invoked in the 
current version of the software could be used to highlight 
code that may be incorrect.  These discrepancies may 
indicate confusion on the part of the programmer.  
Warnings produced for these snippets of code may be 
more likely to be true bugs. 

A ranking based on the past history is similar to the 
idea of ranking based on user feedback.  However, when 
using past history the feedback is automatically generated 
(and could be augmented by interactive user feedback). 
The initial ranking the user is given will have the benefit 
of past code changes.  
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ABSTRACT
While numerous techniques for detecting thepresenceof defects
exist, it is hard to assign the defect to a particular location in the
code. In this position paper, I argue that this is necessarily so, and
that locating a defect is inseparable from designing a fix—in other
words, writing a correct program. This leads to an inherent impre-
cision, which can be dealt with by ranking locations according to
their defect probability.

1. ERRORS AND CAUSES
To explain how failures come to be, one needs two central terms:

errors andcauses.An error is a deviation from what is correct,
right, or true. If we see an error in the program outcome (thefail-
ure), we can trace back this failure to earlier errors in the program
state (faultsor infections), until we finally reach the defect—an er-
ror in the program code. This defect causes the initial infection,
which propagates until the infection becomes visible as a failure.

In this infection chain, acauseis an event without which a sub-
sequent event (theeffect) would not have occurred. Thus, if the
program code had been correct, it would not have caused the infec-
tion, which again would not have led to the failure. This causality
is normally proven by re-testing the program after the defect has
been fixed: If the failure no longer occurs, we have proven that the
original defect indeed has caused the failure.

While causality is easy to explain (and easy to verify), the term
error becomes less certain the further one goes back the chain of
events. The key issue is: to decide that something is erroneous,
one needs a specification of what is correct, right or true. Telling
whether a programoutcomeis a failure is the base of testing—and
quite straight-forward. Telling whether a programstateis infected
already requires appropriate conditions or representation invariants.
Telling whether some programcodeis incorrect, finally, becomes
more and more difficult as granularity increases.

2. DEFECTS AND GRANULARITY
Why does the location of a defect become less certain with in-

creasing granularity? If a computationP fails, we know it must
have some defect. Let us assume thatP can be separated into two
sub-computationsP = P1 ◦ P2, each at a different location. Then,
we can check the result ofP1, and determine whether it is correct
(which means thatP2 has a defect) or not (thenP1 has a defect).

Now assume we can decomposeP into n executed procedures,
or P = P1 ◦ · · · ◦Pn. By checking the outcome of eachPi, we can
assign the defect location to a single precisePj . Obviously, this
means specifying the postconditions of every singlePi, including
general obligations such as representation invariants.

Let us now assume we can decomposeP into m executed lines,

or P = P1 ◦ · · · ◦ Pm. To locate the defect, we now need a speci-
fication of the correct state at each executed line—for instance, the
correct program. Thus, to precisely locate the defect, we need a
specification that is precise enough to tell us where to correct it.

In practice, such a specification is constructedon demand:When
programmers search for a defect, they reason about whether this
location is the correct way to write the program—and if it does
not match, they fix it. Therefore, programmers do not “locate”
defects; theydesign fixesalong with the implicit specification of
whatshouldbe going on at this location—and the location that is
changed is defined as the defect in hindsight.

3. DEALING WITH IMPRECISION
As long as a full specification is missing (which we must reason-

ably assume), it is impossible to locate defects precisely, just as it
is impossible to foresee how a problem will be fixed—and whether
it will be fixed at all. Therefore, any defect location techniques will
always have to live with imprecision. This is not a big deal; we
can have our tools makeeducated guessesabout where the defect
might be located. And we will evaluate our tools by their power to
suggest fixes that are as close to some “official” defect as possible.

However, imprecision also must be considered whenevaluating
techniques. For instance, if a technique detects that a function call
does not match the function’s requirements, the technique cannot
decide whether it is better to fix the caller or the callee. Let us now
assume that we conduct an evaluation where we have injected a de-
fect in the callee. If the technique now flags the caller as defective,
the result is evaluated as being at the wrong location, or even as a
false. Nonetheless, the mismatch is helpful for the programmer.

There are entire classes of problems which cannot be located at
all. For instance, assume I inject a defect which eliminates the ini-
tialization of a variable. Although there are techniques which will
detect this situation, they will be unable to tell where the initial-
ization should have taken place. Again, the evaluation will show a
mismatch between predicted and expected defect location; nonethe-
less, the diagnosis will be helpful for the programmer.

How are we going to take this imprecision into account? I sug-
gest to have our tools not only suggest locations, but to actually
rank the locations by their probability to be related to the defect.
The model would be an ideal programmer, starting with the most
probable location, and going down the list until the “official” de-
fect is found; obviously, the sooner the “official” defect is found,
the better the tool. In a mismatch of caller and callee, both loca-
tions would end on top of the list; a missing initialization would
result with the function or module containing the declaration being
placed at the top. Suchcode rankingswould allow us to compare
individual defect-locating tools, and eventually establish standards
for evaluating them.
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Using automated tools based on programming-language technologies to find software de-
fects (bugs) is a growing and promising field. As a research area less mature than related ones
such as compiler construction, there are not yet widely accepted benchmarks and evaluation
techniques. Though neither surprising nor necessarily bad, the lack of evaluation standards
begs the question of what criteria should guide the inevitable growth of standards by which
research on automated defect detection is judged. I contend that obvious metrics such as
number of bugs and seriousness of bugs found are insufficient: We should also consider the
technologies that led to the bug existing and whether other existing technologies could have
found the bug or rendered it irrelevant.

It is understood that a bug’s seriousness is relevant though difficult to quantify. In
particular, bugs that have little affect on program behavior, bugs that are more expensive to
fix than leave, and bugs for which experts dispute whether the bugs are real should rightfully
be devalued. Leaving such issues aside, let us assume an easy-to-use automated tool finds
serious bugs, the sort that developers acknowledge are errors, want to fix, can fix, do fix,
and believe the result is of value. I believe the research community today would deem such
work a contribution, but in the future the “bar will be raised” in at least two ways.

First, we will learn to devalue bugs that are easily avoidable with known technologies.
For example, suppose a static analysis finds double-free errors in C code, i.e., situations
where free is called more than once on the same object. Further suppose all applications
for which bugs were found were stand-alone desktop applications that ran as fast or faster
when recompiled to use conservative garbage collection. Were these bugs worth finding and
fixing? Should we require the analysis to prove useful on applications for which manual
memory management is considered necessary? As another example, suppose a modified
compiler uses sophisticated run-time data structures to track uninitialized memory and abort
a program if such memory is accessed. Further suppose the program would run without error
or performance loss if the compiler had simply initialized all memory to 0.

Second, we will learn that tools must provide an incremental benefit over the state-of-
the-art. Many tools exist; how is a new one better? It should find different bugs, find them
in a better way (perhaps faster or with less user intervention), or perhaps use a more elegant
approach to finding the same bugs. Would compiling the code with -Wall lead to exactly
one accurate warning for every bug found? Does the tool work only for ten-line programs
that are clearly incorrect when manually examined by an expert? Is the tool strictly less
powerful and more complicated than an existing tool?

In general, it may simply be that it is currently easy to succeed with automated tools
for defect detection because we assume the lowest possible baseline: We find bugs in what-
ever code is available, which was typically compiled without compiler warnings enabled and
without other tools applied to the code. It seems clear this will change, just as the compiler
optimization community must now show that a new optimization is neither made-irrelevant-
by nor trivially-encoded-with existing and widely used optimizations.
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