
New description of the Unified Memory Model Proposal for Java

Jeremy Manson, William Pugh and Sarita Adve

April 5, 2004, 9:25pm

Actions and Executions

An action a is described by a tuple 〈t, k, v, u〉, comprising:

t - the thread performing the action

k - the kind of action: volatile read, volatile write, (normal or non-volatile) read, (normal or non-volatile)
write, lock or unlock. Volatile reads, volatile writes, locks and unlocks are synchronization actions.

v - the variable or monitor involved in the action

u - an arbitrary unique identifier for the action

An execution E is described by a tuple 〈P,A,
po→,

so→,W, V,
sw→ ,

hb→ 〉, comprising:

P - a program

A - a set of actions
po→ - program order, which for each thread t, is a total order all actions performed by t in A

so→ - synchronization order, which is a total order over all synchronization actions in A

W - a write-seen function, which for each read r in A, gives W (r), the write action seen by r in E.

V - a value-written function, which for each write w in A, gives V (w), the value written by w in E.

sw→ - synchronizes-with, a partial order over synchronization actions.

hb→ - happens-before, a partial order over actions

Note that the synchronizes-with and happens-before are uniquely determined by the other components
of an execution and the rules for well-formed executions.

1

Definitions

1. Definition of synchronizes-with If x
so→ y and x is a volatile write or an unlock, and y is a volatile

read of the same variable as x, or a lock of the same monitor as x, then x
sw→ y. Volatile writes and

unlocks are referred to as releases, and volatile reads and locks are referred to as acquires.

2. Definition of happens-before The happens-before order hb→ is the transitive closure of sw→ ∪ po→ .

3. Restrictions of partial orders and functions We use f |d to denote the function given by restricting
the domain of f to d: for all x ∈ d, f(x) = f |d(x) and for all x 6∈ d, f(x) = ⊥. Similarly, we use e→ |d
to represent the restriction of the partial order e→ to the elements in d: for all x, y ∈ d, x

e→ y if and
only if x

e→ |d y. If either x 6∈ d or y 6∈ d, then it is not the case that x
e→ |d y.

Well-formed Executions

We only consider well-formed executions. An execution E = 〈P,A,
po→,

so→,W, V,
sw→,

hb→〉 is well formed if the
following conditions are true:

1. Each read sees a write in the execution. All volatile reads see volatile writes, and all non-
volatile reads see non-volatile writes. For all reads r ∈ A, we have W (r) ∈ A and W (r).v = r.v.
If r.k is a volatile read, then W (r).k is a volatile write, otherwise r.k is a normal read, and W (r).k is
a normal write.

2. Synchronization order is consistent with program order There do not exist x, y ∈ A, such that
x

so→ y ∧ y
po→ x. The transitive closure of synchronization order and program order is acyclic.

3. The execution obeys intra-thread consistency For each thread t, the actions performed by t in
A are the same as would be generated by that thread in program-order in isolation, with each write
w writing the value V (w) and each read r seeing the value V (W (r)). The program-order must reflect
the program order of P .

4. The execution obeys happens-before consistency For all reads r ∈ A, it is not the case that
r

hb→ W (r) or that there exists a write w ∈ A such that w.v = r.v and W (r) hb→ w
hb→ r.

5. The execution obeys synchronization-order consistency For all volatile reads r ∈ A, it is not
the case that r

so→ W (r) or that there exists a write w ∈ A such that w.v = r.v and W (r) so→ w
so→ r.

2

Executions valid according to the Java Memory Model

A well-formed execution E = 〈P,A,
po→,

so→,W, V,
sw→,

hb→〉 is validated by committing actions from A. If all of
the actions in A can be committed, then the execution is valid according to the Java memory model.

Starting with the empty set as C0, we perform several steps where we take actions from the set of actions
A and add them to a set of committed actions Ci to get a new set of committed actions Ci+1. To demonstrate
that this is reasonable, for each Ci we need to demonstrate an execution Ei containing Ci that meets certain
conditions.

Formally, there exists

• Sets of actions C0, C1, . . . , Cn such that

– C0 = ∅
– Ci ⊆ Ci+1

– Cn = A

• Well-formed executions E1, . . . , En, where Ei = 〈P,Ai,
poi→,

soi→,Wi, Vi,
swi→ ,

hbi→〉.

Given these sets of actions C0...Cn and executions E1...En, every action in Ci must be one of the actions
in Ei. All actions in Ci must share the same relative happens-before order and synchronization order in
both Ei and E. Formally,

1. Ci ⊆ Ai

2. hbi→ |Ci = hb→ |Ci

3. soi→ |Ci
= so→ |Ci

The values written by the writes in Ci must be the same in both Ei and E. Only the reads in Ci−1 need to
see the same writes in Ei as in E. Formally,

4. Vi|Ci
= V |Ci

5. Wi|Ci−1 = W |Ci−1

All reads in Ei that are not in Ci−1 must see writes that happen-before them. All reads in Ci − Ci−1 must
see writes in Ci−1 in both Ei and E. Formally,

6. For any read r ∈ Ai − Ci−1, we have Wi(r)
hbi→ r

7. For any read r ∈ Ci − Ci−1, we have Wi(r) ∈ Ci−1 and W (r) ∈ Ci−1

A set of synchronization edges is sufficient if it is the minimal set such that you can take the transitive closure
of those edges with program order edges, and determine all of the happens-before edges in the program. This
set is unique.

Given a set of sufficient synchronizes-with edges for Ei, if there is a release-acquire pair that happens-
before an action you are committing, then that pair must be present in all Ej , where j ≥ i. Formally,

8. Let sswi→ be the swi→ edges that are also in the transitive reduction of hbi→. We call sswi→ the sufficient
sychronizes-with edges for Ei. If x

sswi→ y
hbi→ z and z ∈ Ci, then x

swj→ y for all j ≥ i.

3

