New description of the Unified Memory Model Proposal for Java

Jeremy Manson, William Pugh and Sarita Adve

April 5, 2004, 9:25pm

Actions and Executions

An action a is described by a tuple $\langle t, k, v, u \rangle$, comprising:

- $t\,$ the thread performing the action
- k the kind of action: volatile read, volatile write, (normal or non-volatile) read, (normal or non-volatile) write, lock or unlock. Volatile reads, volatile writes, locks and unlocks are synchronization actions.
- \boldsymbol{v} the variable or monitor involved in the action
- u an arbitrary unique identifier for the action

An execution E is described by a tuple $\langle P, A, \stackrel{po}{\rightarrow}, \stackrel{so}{\rightarrow}, W, V, \stackrel{sw}{\rightarrow}, \stackrel{hb}{\rightarrow} \rangle$, comprising:

- ${\cal P}\,$ a program
- ${\cal A}\,$ a set of actions
- $\stackrel{po}{\rightarrow}$ program order, which for each thread t, is a total order all actions performed by t in A
- $\stackrel{so}{\rightarrow}$ synchronization order, which is a total order over all synchronization actions in A
- W a write-seen function, which for each read r in A, gives W(r), the write action seen by r in E.
- V a value-written function, which for each write w in A, gives V(w), the value written by w in E.
- $\stackrel{sw}{\rightarrow}$ synchronizes-with, a partial order over synchronization actions.
- $\stackrel{hb}{\rightarrow}$ happens-before, a partial order over actions

Note that the synchronizes-with and happens-before are uniquely determined by the other components of an execution and the rules for well-formed executions.

Definitions

- 1. **Definition of synchronizes-with** If $x \xrightarrow{so} y$ and x is a volatile write or an unlock, and y is a volatile read of the same variable as x, or a lock of the same monitor as x, then $x \xrightarrow{sw} y$. Volatile writes and unlocks are referred to as *releases*, and volatile reads and locks are referred to as *acquires*.
- 2. Definition of happens-before The happens-before order \xrightarrow{hb} is the transitive closure of $\xrightarrow{sw} \cup \xrightarrow{po}$.
- 3. Restrictions of partial orders and functions We use $f|_d$ to denote the function given by restricting the domain of f to d: for all $x \in d$, $f(x) = f|_d(x)$ and for all $x \notin d$, $f(x) = \bot$. Similarly, we use $\stackrel{e}{\to} |_d$ to represent the restriction of the partial order $\stackrel{e}{\to}$ to the elements in d: for all $x, y \in d$, $x \stackrel{e}{\to} y$ if and only if $x \stackrel{e}{\to} |_d y$. If either $x \notin d$ or $y \notin d$, then it is not the case that $x \stackrel{e}{\to} |_d y$.

Well-formed Executions

We only consider well-formed executions. An execution $E = \langle P, A, \stackrel{po}{\rightarrow}, \stackrel{so}{\rightarrow}, W, V, \stackrel{sw}{\rightarrow}, \stackrel{hb}{\rightarrow} \rangle$ is well formed if the following conditions are true:

- 1. Each read sees a write in the execution. All volatile reads see volatile writes, and all nonvolatile reads see non-volatile writes. For all reads $r \in A$, we have $W(r) \in A$ and W(r).v = r.v. If r.k is a volatile read, then W(r).k is a volatile write, otherwise r.k is a normal read, and W(r).k is a normal write.
- 2. Synchronization order is consistent with program order There do not exist $x, y \in A$, such that $x \xrightarrow{so} y \wedge y \xrightarrow{po} x$. The transitive closure of synchronization order and program order is acyclic.
- 3. The execution obeys intra-thread consistency For each thread t, the actions performed by t in A are the same as would be generated by that thread in program-order in isolation, with each write w writing the value V(w) and each read r seeing the value V(W(r)). The program-order must reflect the program order of P.
- 4. The execution obeys happens-before consistency For all reads $r \in A$, it is not the case that $r \stackrel{hb}{\to} W(r)$ or that there exists a write $w \in A$ such that w.v = r.v and $W(r) \stackrel{hb}{\to} w \stackrel{hb}{\to} r$.
- 5. The execution obeys synchronization-order consistency For all volatile reads $r \in A$, it is not the case that $r \xrightarrow{so} W(r)$ or that there exists a write $w \in A$ such that w.v = r.v and $W(r) \xrightarrow{so} w \xrightarrow{so} r$.

Executions valid according to the Java Memory Model

A well-formed execution $E = \langle P, A, \stackrel{po}{\rightarrow}, \stackrel{so}{\rightarrow}, W, V, \stackrel{sw}{\rightarrow}, \stackrel{hb}{\rightarrow} \rangle$ is validated by committing actions from A. If all of the actions in A can be committed, then the execution is valid according to the Java memory model.

Starting with the empty set as C_0 , we perform several steps where we take actions from the set of actions A and add them to a set of committed actions C_i to get a new set of committed actions C_{i+1} . To demonstrate that this is reasonable, for each C_i we need to demonstrate an execution E_i containing C_i that meets certain conditions.

Formally, there exists

• Sets of actions C_0, C_1, \ldots, C_n such that

$$-C_0 = \emptyset$$
$$-C_i \subseteq C_{i+1}$$
$$-C_n = A$$

• Well-formed executions E_1, \ldots, E_n , where $E_i = \langle P, A_i, \stackrel{po_i}{\rightarrow}, \stackrel{so_i}{\rightarrow}, W_i, V_i, \stackrel{sw_i}{\rightarrow}, \stackrel{hb_i}{\rightarrow} \rangle$.

Given these sets of actions $C_0...C_n$ and executions $E_1...E_n$, every action in C_i must be one of the actions in E_i . All actions in C_i must share the same relative happens-before order and synchronization order in both E_i and E. Formally,

1.
$$C_i \subseteq A_i$$

2. $\stackrel{hb_i}{\rightarrow} |_{C_i} = \stackrel{hb}{\rightarrow} |_{C_i}$
3. $\stackrel{so_i}{\rightarrow} |_{C_i} = \stackrel{so}{\rightarrow} |_{C_i}$

The values written by the writes in C_i must be the same in both E_i and E. Only the reads in C_{i-1} need to see the same writes in E_i as in E. Formally,

4.
$$V_i|_{C_i} = V|_{C_i}$$

5.
$$W_i|_{C_{i-1}} = W|_{C_{i-1}}$$

All reads in E_i that are not in C_{i-1} must see writes that happen-before them. All reads in $C_i - C_{i-1}$ must see writes in C_{i-1} in both E_i and E. Formally,

- 6. For any read $r \in A_i C_{i-1}$, we have $W_i(r) \xrightarrow{hb_i} r$
- 7. For any read $r \in C_i C_{i-1}$, we have $W_i(r) \in C_{i-1}$ and $W(r) \in C_{i-1}$

A set of synchronization edges is *sufficient* if it is the minimal set such that you can take the transitive closure of those edges with program order edges, and determine all of the happens-before edges in the program. This set is unique.

Given a set of sufficient synchronizes-with edges for E_i , if there is a release-acquire pair that happensbefore an action you are committing, then that pair must be present in all E_j , where $j \ge i$. Formally,

8. Let $\xrightarrow{ssw_i}$ be the $\xrightarrow{sw_i}$ edges that are also in the transitive reduction of $\xrightarrow{hb_i}$. We call $\xrightarrow{ssw_i}$ the sufficient sychronizes-with edges for E_i . If $x \xrightarrow{sw_i} y \xrightarrow{hb_i} z$ and $z \in C_i$, then $x \xrightarrow{sw_j} y$ for all $j \ge i$.