
1 
 

 

University of Maryland, College Park 

Dept. of Computer Science 

CMSC132 Final Exam 

 

 
First Name (PRINT):_______________________________________________ 

 

Last Name (PRINT): _______________________________________________ 

 

University ID:  ____________________________________________________ 

 

Instructions 
 

 This exam is a closed-book, closed-notes, 120 minute exam. 

 The exam is worth 200 pts 

 WRITE NEATLY.  If we cannot understand your answer, we will not grade it (i.e., 0 credit). 

 

 

Page 2 (12)  

Page 3 (22)  

Page 4 (27)  

Page 5 (14)  

Page 6 (30)  

Page 7 (12)  

Page 8 (19)  

Page 9 (16)  

Page 10 (20)  

Page 11 (12)  

Page 12 (16)  

Total (200

) 

 



2 
 

1. [3 points]  State the complexity (using big-O notation) for the function below.  Give the smallest bound 

possible and use the simplest notation possible. 

 

13 log7 𝑛  +  25𝑛10 + 2𝑛 

 

Answer:   O(           ) 

 

2. [9 points]  State the running time (using big-O notation) for a call to each of the methods below.  Give the 

smallest bound possible and use the simplest notation possible.   

 

a. void f(int n) { 

   for (int i = 0; i < n; i += 10) { 

      for (int j = i; j > 0; j--) { 

         for (int k = 0; k < 10000; k++) { 

    … 

   } 

} 

   } 

} 

 

Answer:   O(           ) 

 

b. void g(int n) { 

   for (int k = n; k > 1; k /= 2) { 

… 

   } 

} 

 

Answer:   O(           ) 

 

 

c.  void p(int n) { 

       if (n == 0 || n == 1) 

       return 15; 

    return p(n-1) * p(n-2); 

 } 

 

[Hint:  We did not talk about complexity of recursive methods in general, but we analyzed a 

specific example that was almost exactly the same as this one!] 
 

Answer:   O(           ) 

  



3 
 

3.  [6 points]  Consider the method below: 

 

public void foo(List<String> list) { 

   for (int i = 0; i < list.size(); i++) { 

      System.out.println(list.get(i)); 

   } 

} 

 

a.  What is the running time (in terms of big-O) if the method is called with an ArrayList as the 

argument?  (Use the variable “n” to represent the size of the list.) 

 

 

 

b.  What is the running time (in terms of big-O) if the method is called with a LinkedList as the 

argument?  (Use the variable “n” to represent the size of the list.) 

 

 

 

4. [4 points]  Regarding code coverage: 

 

a. 100% statement coverage implies that every possible flow path has been tested.       

TRUE/FALSE    

 

 

b. 100% conditional or branch coverage implies that every possible flow path has been tested.   

TRUE/FALSE 

 

 

5.  [12 points]   

a. Name one advantage TCP has over UDP. 

 

 

 

b. Give an example of an application where UDP would be preferable. 

 

 

 

c. What do we call the numbers that identify a particular machine on a network? 

 

 

 

d. What do we call the number that identifies a particular networking application running on a 

machine on a network? 

 

 



4 
 

6. [9 points]   

a.   What is an advantage of HashSet over TreeSet? 

 

 

 

b.  What is an advantage of TreeSet over HashSet? 

 

 

 

c.  What is an advantage of LinkedHashMap over HashMap? 

 

 

 

7. [6 points]   Write a short code fragment that could result in deadlock  if executed concurrently by more than 

one thread. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. [12 points]  Which algorithm strategies are employed for each example below?  (You may circle more than 

one, but you will be penalized for incorrect circles.) 

 

a. Dijkstra’s Algorithm 

Greedy     Backtracking     Divide&Conquer     Dynamic Programming     Heuristics 

b. Merge Sort 

Greedy     Backtracking     Divide&Conquer     Dynamic Programming     Heuristics 

c. DFS through a maze, trying to find the end point. 

Greedy     Backtracking     Divide&Conquer     Dynamic Programming     Heuristics 

d. DFS through a maze, trying to find the end point.  At each juncture where there is a choice, first 

exploring the direction that seems to be leading most directly toward the end point.  

Greedy     Backtracking     Divide&Conquer     Dynamic Programming     Heuristics 



5 
 

 

9. [6 points] What is the definition of a min-heap? 

 

 

 

 

 

 

 

 

10. [8  points] The following array represents a heap, stored sequentially instead of using a tree with nodes.  

 

 
8 12 15 30 17 100 20 

 

 

In the boxes below, draw the heap the way it would look after the smallest element has been removed.  

Be sure to follow the algorithm shown in class for removing the smallest element.  (Hint:  We strongly 

recommend drawing the heap as a tree first!) 

 
 

      

 

 

  



6 
 

11.  [6 points]  Think about “checked” versus “unchecked” exceptions. 

a. Briefly characterize the kinds of situations where it makes more sense to throw a checked 

exception. 

 

 

 

 

 

b. Briefly characterize the kinds of situations where it makes more sense to throw an unchecked 

exception. 

 

 

 

 

 

12. [18 points]  Complete the following table using big-O notation.  Use the smallest bound possible and 
simplest notation possible. 
 

Sorting Algorithm Average Case 

Complexity 

Worst Case 

Complexity 

QuickSort  

 

 

BucketSort  (Assume the range is at least as large as 

the data set, and that the data is random, but over a 

uniform distribution.) 

  

HeapSort  

 

 

 

 

 

 

13. [6 points]   Describe the Tree Sort algorithm.   

 

 

 

 

 

 

 

 

 

 



7 
 

14. [6  points]  Write a class called StringLengthComparator, which implements the Comparator 

interface and defines an ordering for String objects according to the length of the strings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15. [3 points]  Under what circumstances can a “data race” occur? 

  

 

 

 

 

 

 

 

 

 

 

16. [3 points]  What is wrong with the following class? 

 

public class Apple { 

   private int size; 

   public Apple(int size) { 

      this.size = size; 

   } 

   public boolean equals(Object x) { 

      // assume equals has been implemented correctly so that apples 

      // with the same size are considered equal 

   } 

} 



8 
 

17.  [19 points]  Consider a class called Squares.  Below is an illustration of how the class may be used: 
 

Squares s = new Squares(); 
Iterator<Integer> it = s.iterator(); 
while(it.hasNext()) { 
   System.out.println(it.next()); 
} 

The output for this code fragment is: 

1 

4 

9 

16 

25 

…     // it goes on “forever” 

 

The Squares class implements Iterable, so your job will be to implement the iterator method 

in the space below.  Your iterator method must return an Iterator that will iterate over all of the squares:   

1, 4, 9, 16, 25, 36, 49…..   [You may imagine that the values go on “forever”, even though eventually an 

overflow will occur.] 

 

You must use an anonymous inner class.  The iterator’s remove method should throw an 

UnsupportedOperationException. 

 

public class Squares implements Iterable<Integer> { 
 

  

 



9 
 

18.   [16 points]  Assume we are implementing a sorted linked list using the Node class below: 

 

 private class Node { 
  private int data; 
  private Node next; 
 } 
 

Implement the method below, which accepts the head of a sorted linked list as a parameter.  The method 

returns the head of an updated list containing no duplicates.  (Return the head of a list containing the same 

elements as the original list, but without duplicates). You must implement this using recursion.  You may 

not use any loops of any kind, and you must not allocate any new Node instances.  Remember:  The list is 

assumed to be sorted!  You may NOT write a helper method for this one, and you must not create any 

unnecessary data structures. 

 
public static Node removeDupsFromSortedList(Node head) {  

 

  



10 
 

19.  [20 points]  Write a “blocking queue”, by wrapping an ArrayList inside a class called “Queue”.  Be sure to 

use correct generic notation so that your collection will work with any Java objects.  The API should consist of just 

two methods:  enqueue (which adds an element to the queue) and dequeue (which removes an element from 

the queue.)  Your implementation must be thread-safe.  When a thread attempts to perform the dequeue 

operation on an empty queue, it should “block” until an element becomes available. 

 

 

  



11 
 

20. [12 points]  Use the following graph to answer the question below. 

 

a.  [10 points]  Apply Dijkstra’s algorithm using B as the starting (source) node. Indicate the 

cost/distance and predecessor for each node in the graph after processing 2 nodes.  Don’t leave 
any of the boxes blank or you will lose points! 

 

Starting table (filled in for you): 

Node A B C D E F 

Cost ∞ 0 ∞ ∞ ∞ ∞ 

Predecessor - - - - - - 

 

FILL IN THE TABLES BELOW FOR PROCESSING TWO SUCCESSIVE NODES. (You will need to copy 

many of the entries from the preceding table.)  

After processing first node: 

Node A B C D E F 

Cost       

Predecessor       

        After processing second node: 

Node A B C D E F 

Cost       

Predecessor       

 

B 

E 

A 

D 

C
3 2 

4 3 

2 

F 

8 

1 

7 



12 
 

21.  [16 points]  Consider the following implementation of a Binary Search Tree: 

 

 public class BinarySearchTree<K extends Comparable<K>, V> { 
    private class Node { 
       private K key; 
  private V data; 
  private Node left, right; 
  public Node(K key, V data) { 
     this.key = key; 
     this.data = data; 
  } 
    } 
    private Node root; 
      } 
 

Write an instance method called getMin that finds the smallest key and returns the data value associated with that 

key.  For an empty tree the method will return null.  Your implementation must be efficient!  You may write an 

auxiliary (helper) method if you find it useful. 
 


