
Binary Tree Exercise

Instructions

Check out the project called 132Spring13Week08Lab. It contains a class called BinarySearchTree.

Please note that you will soon be implementing a project where the Binary Search Tree is

implemented polymorphically, which is very different!

In this exercise, we use null to represent an empty tree. For example, an empty BinarySearchTree

has a null root, and a leaf node has null left and right fields.

NOTE: You may not add any instance or static variables to the BinarySearchTree class. Adding

auxiliary (private) methods is fine.

After writing each method below, test your code to see if it works!

1. We have written an add method that relies on an auxiliary add method (look at the code

distribution). Please write the auxiliary add method. Hint: Use recursion!

2. Define a method named height() that returns the height of the tree.

3. Define a recursive method size() that returns the number of entries in the tree.

4. Define a recursive method named numberOfLeavesNodes () that returns the number of leaf

 nodes in the tree.

5. Define a recursive method getIncreasingOrderList() that returns an ArrayList with the data

 elements of the tree inserted into the list based on increasing key order.

6. Define a recursive method named preOrderTraversal which returns a string representing a

 pre-order traversal of the tree.

7. Define a recursive method isFull() that returns true if every interior node in the tree has both

 a left and a right subtree.

