
Exam prep – ON PAPER

Don’t forget that we have an exam on Friday! You should be expecting some questions requiring you to

write methods for linked lists and/or trees. Some of the questions might specifically say “you must use

recursion” and some questions might specifically say “you may not use recursion”. If you don’t follow

these instructions you are likely to get no points, so read the instructions carefully!

Please practice solving the problems below on paper (no computer), just as you would during the exam.

1. Assume we are writing a traditional linked list (terminating with a null-reference), partially defined

below:

 public class LinkedList<T> {
private class Node {

 private T data;
 private Node next;

 private Node(T data) {
 this.data = data;
 next = null;
 }
 }
 private Node head;
 }

a. Write a method called insertValueAfter, with the prototype you see below. The value

must be inserted immediately after the first occurrence of the target. If the target is not in

the list, then your method should do nothing. You must use recursion for this question. You

may use an auxiliary helper method if you find it useful.

 public void insertValueAfter(T value, T target)

b. Write a method called insertValueBefore, with the prototype you see below. The value

must be inserted immediately before the first occurrence of the target. If the target is not

in the list, then your method should do nothing. You may not use recursion for this question.

public void insertValueBefore(T value, T target)

[More questions on the back page….]

2. Assume we are writing a traditional binary search tree (with null references to represent empty child

branches), partially defined below. You should assume that this tree contains no duplicate keys.

public class BinarySearchTree<K extends Comparable<K>, V> {
 private class Node {
 private K key;
 private Node left, right;

 private Node(K key) {
 this.key = key;
 left = right = null;
 }
 }
 private Node root;

}

a. Write a method called contains, which accepts a parameter of type K, and returns true if

the parameter is found in the tree, false otherwise. Your code must be efficient (do not traverse

any subtrees unnecessarily) or you will lose most of the points. You must use recursion for this

question. You may use an auxiliary helper method if you find it useful.

b. Write a method called countRange with the prototype shown below. You may assume that

the parameter low is “smaller than” the parameter high when they are compared. The

method should return the number of elements found in the tree with values that are between

low and high (inclusive). Your code must be efficient (do not traverse any subtrees

unnecessarily) or you will lost most of the points. You must use recursion for this question.

You may use an auxiliary helper method if you find it useful.

public int countRange(K low, K high)

