

Name: ___________________________ Section: ____________

Quiz #7

1. A thread must hold a lock on an object before calling wait on it.

Circle one: TRUE FALSE

2. A thread must hold a lock on an object before calling notifyAll on it.

Circle one: TRUE FALSE

3. When wait is called on an object, the current thread releases the lock on the object.

Circle one: TRUE FALSE

4. When notifyAll is called on an object, the current thread releases the lock on the object.

Circle one: TRUE FALSE

5. When a thread holds a lock on an object, it is impossible for any other threads to modify that object.

Circle one: TRUE FALSE

6. When a thread holds a lock on an object, that thread cannot be interrupted until it releases the lock.

Circle one: TRUE FALSE

7. It is possible for one thread to hold locks on two different objects at the same time.

Circle one: TRUE FALSE

8. It is possible for two different threads to simultaneously hold a lock on the same object.

Circle one: TRUE FALSE

[More on the back page…]

9. (15 points) Decide whether each of the following methods could cause problems when the foo

method is executed by multiple threads concurrently. (Recall that a “data race” is a situation in which

multiple threads attempt conflicting updates on a shared resource.)

static int a;

static void foo() {

 a++;

}

Could this code cause data races?

 YES / NO

static int a;

static final Object lock = new Object();

static void foo() {

 synchronized(lock) {

 a++;

 }

}

Could this code cause data races?

 YES / NO

static int a;

static void foo() {

 final Object lock = new Object();

 synchronized(lock) {

 a++;

 }

}

Could this code cause data races?

 YES / NO

static final Object a = new Object();

static final Object b = new Object();

static void foo() {

 synchronized(a) {

 synchronized(b) {

 }

 }

}

Could this code cause deadlock?

 YES / NO

static void foo(Object a, Object b) {

 synchronized(a) {

 synchronized(b) {

 }

 }

}

Could this code cause deadlock?

 YES / NO

