
 1 

 

 

University of Maryland College Park 

Dept of Computer Science 

CMSC132 

Midterm II 
 

Last Name (PRINT): _____________________________________________________ 

 

First Name (PRINT): _____________________________________________________ 

 

University Directory ID (e.g., umcpturtle): _____________________________________ 

 

 

Lab TA (Circle One): 

 
0101/0102 Medhi 0201Jeremy 0203/0204 Stefani 0303/0304 Raghav 0402 Solomon 0404 Victor 

0103/0104 Nisarg 0202 William 0301/0302 Meena 0401 Avery 0403 Jihoon Honors 

 

I pledge on my honor that I have not given or received any unauthorized assistance on this examination. 

 

Your signature: _____________________________________________________________ 

 

Instructions 
 

 This exam is a closed-book and closed-notes exam. 

 Total point value is 200 points.  

 The exam is a 50 minutes exam. 

 Please use a pencil to complete the exam. 

 WRITE NEATLY.  

 Your code must be efficient. 

 You don’t need to use meaningful variable names; however, we expect good indentation. 

 You must stop writing when time is up; make sure you write your name and section now. 

 

Grader Use Only 

 

#1 Problem #1 (Algorithmic Complexity) 30  

#2 Problem #2 (Miscellaneous) 60  

#3 Problem #3 (Linear Data Structures) 110  

 Honors 15  

Total Total 200/215  

 

 

 

 



 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 3 

Problem #1 (Algorithmic Complexity) 

 
1. (18 pts) For the following problems you need to provide the asymptotic complexity using Big O notation.  In addition, 

you need to identify the critical section (circle it) and the time function (Time  below). Here is an example: 

 
   for (j = 1; j <= n; j++) { 

 

      System.out.println(j);  

 

   } 

   System.out.println("Goodbye"); 

 

 Time  n + 1 

 Big O  O(n)  

 

a. (6 pts) 
  for (m = 1; m <= n / 2; m++) { 

   for (t = 1; t <= n; t++) { 

    System.out.println(m * t); 

   } 

  } 

  System.out.println(m * 2); 

  

 Time  

  Big O  

 

b. (6 pts)    
  for (i = 1; i <= n * 2; i += n * 2) { 

   for (k = 1; k <= n; k++) { 

    System.out.println(k); 

   } 

   System.out.println(i); 

  }   

        

 Time  

 Big O  
 

c. (6 pts)     
  int i = 1; 

  while (i <= n) { 

   for (int k = 1; k <= n / 4; k++) { 

    System.out.println(k); 

   } 

   i = 2 * i; 

  }          

 Time  

 Big O  
 

2. (4 pts) List the following Big O expressions in order of asymptotic complexity (lowest complexity first). 

 

         O(nlog(n))   O(nn)    O(log(n))   O(n!)   O(1)   O(n) 

 

 
3. (4 pts) Indicate the complexity (Big O) for an algorithm whose running time increases roughly by a constant when 

input size doubles. 

 

4. (4 pts) Indicate the complexity (Big O) for an algorithm with the following running times: 
 

       Size(n)     Running Time 
          4                    16 

          8                    64 

        16                   256 



 4 

Problem #2 (Miscellaneous) 
 

1. (3 pts) Which component of the Model View Controller Paradigm did you implement for the Blackjack project?  

 

2. (3 pts) The clone method associated with the Object class returns a shallow copy.  True / False. 

 

3. (3 pts) A dealership can upgrade any cars with the following extra (not free) features: spoiler, sunroof, and security 

system. Any combination of them are possible. Which of the following design patterns is preferred in order to 

implement a software that allows the dealership to sell customized cars? Circle only one. 

 

a. Marker design pattern 

b. State design pattern 

c. Decorator design pattern 

d. Iterator design pattern 

e. Pizza decorator pattern 

 

4. (3 pts) The Marker design pattern can be implemented in Java using: 

 

a. An interface. 

b. A global variable that assumes the different values of interest. 

c. A static function that updates a value that represents the different states. 

d. None of the above. 

 

5. (3 pts)  If we do not override the equals and the hashCode method for a class, the Java HashCode contract will be 

satisfied.  True / False. 

 

6. (3 pts) A hashCode function returns -2 (negative 2).  Which of the following is true? 

 

a. It is a valid hashCode function and extremely good one. 

b. It is a valid hashCode function and extremely bad. 

c. It is invalid as the value cannot be negative. 

d. None of the above. 

 
7. (3 pts)  A checked exception represents an error that a program cannot ignore (must either catch or declare). True / False. 

 

8. (3 pts) A finally block is only executed when an exception occurs. True / False. 

 

9. (3 pts) In Java an exception must explicitly be propagated in order for the caller to receive it. True / False. 

 

10. (3 pts) All problems that we solve using recursion can be solved without recursion.  True / False. 

 

11. (3 pts) A tail recursive solution is difficult to transform to an iterative solution.  True / False. 

 

12. (3 pts) Outer & inner classes can directly access each other’s fields and methods (even if private). True / False. 

 

13. (4 pts) Complete the following declaration so we can define an array of E elements with a number of elements that 

corresponds to size. 
 

E[] data =  

 

 

 

 

 

 



 5 

14. (20 pts) The Operation interface is defined as follows: 

 
public interface Operation { 

 public double cost(int hours, double difficulty); 

} 

 

a. (10 pts) Using an anonymous inner class, initialize the variable called simple with an object that implements the 

Operation interface and defines the cost of an operation as the product of hours by difficulty.  For example, 

calling simple.cost(2, 4.5) will return 9.0. 

 
Operation simple =  

 

 

 

 

 

 

 

 

 

 

b. (10 pts) Using a lambda expression, initialize the variable complex with an object that implements the Operation 

interface and defines the cost of an Operation as twice the product of hours by difficulty. For example, calling 

complex.cost(2, 4.5) will return 18.0. 

 
Operation complex = 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 6 

Problem #3 (Linear Data Structures) 
 

Use the following classes to implement the methods below.  You may not add any instance variables nor static variables 

to either class, you may not add any methods to the Node class, and you may not use the Java API LinkedList class.  

The size of the list is represented by the size instance variable.  Each list is associated with a unique name represented 

by the name instance variable.  

 
public class LinkedList<T extends Comparable<T>> { 

 private class Node { 

  private T data; 

  private Node next; 

  

  private Node(T data, Node next) { 

   this.data = data; 

   this.next = next; 

  } 

 } 

 private int size; 

 private String name; 

 private Node head; 

 

 public LinkedList() { name = "NONAME"; }  

 public int hashCode() { /* YOU MUST IMPLEMENT */ } 

 public LinkedList(ArrayList<T> arrayList, String name) { /* YOU MUST IMPLEMENT */ } 

 public void removeOddPosition() { /* YOU MUST IMPLEMENT */ } 

   

} 

 

1. (4 pts) Provide an implementation for the hashCode method that tries to avoid collisions as much as possible.  Each 

list has a unique name and two lists are considered equal if they have the same name. 

 

2. (80 pts) Provide a NON-RECURSIVE implementation for the LinkedList constructor that takes an ArrayList and a 

string (list’s name) as parameters. For this problem: 

 

a. The constructor will initialize a new linked list using the elements from the ArrayList (in the same order 

they appear) removing any duplicates (e.g., a second “cat” string will not be added to the list if we have 

already seen one). 

b. If the arrayList or the name parameter (or both) are null, the exception IllegalArgumentException will be 

thrown and no further computation will take place.   There is no message associated with this exception. 

c. An empty list will be returned if the arrayList is empty. 

d. Feel free to use a set in order to identify duplicates. 

e. You will lose credit if your code is not efficient. 

 

3. (26 pts) Provide a RECURSIVE implementation of the removeOddPosition method. For this problem: 

a. The method will remove all the nodes from the list whose position is associated with an odd number (first 

node, third node, fifth node, etc.) 

b. You may not create new nodes; if you do you will lose significant credit. 

c. The code must handle the empty list case. 

d. You may only add ONE auxiliary method. 

e. You may not use the previous constructor. 

f. You will lose most of the credit for this problem if you use any iteration statement (i.e., while(), do 

while, for). 

 

One the next page we provided a driver that illustrates the functionality associated with the methods you need to 

implement.  You can ignore it if you know what to implement.  Notice the driver relies on methods you do not need to 

implement.  You may find the following set methods helpful: 

 

 

 

 

boolean add(E e) boolean remove(Object o) 

boolean contains(Object o)  void clear() 

boolean isEmpty() int size() 



 7 

Driver 

 

ArrayList<String> arrayList = new ArrayList<String>(); 

arrayList.add("C"); 

arrayList.add("B"); 

arrayList.add("M"); 

arrayList.add("D"); 

arrayList.add("M"); 

   

LinkedList<String> list = new LinkedList<String>(arrayList, "First"); 

System.out.println("List1: " + list); 

   

list.removeOddPosition(); 

System.out.println("List2: " + list); 

Output 

 

List1: ListName: First, Size: 4 

C B M D  

List2: ListName: First, Size: 2 

B D 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 8 

PAGE FOR PREVIOUS PROBLEM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 9 

PAGE FOR PREVIOUS PROBLEM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HONORS STUDENTS (THERE IS A QUESTION ON  THE REVERSE SIDE) 

 



 10 

HONORS 

  
Students in the Honor’s section must answer this question and only students in the Honor’s section will receive credit for 

it. 

 

Provide a RECURSIVE implementation for the getReversed method that belongs to the LinkedList class defined in 

Problem #3. The method will return a new list with elements from the original list in reverse order. For example, for a list 

with strings “C” “B” “M” “D”, the method will return a new list with strings “D” “M” “B” “C”.  For this problem: 

 

a. You can use shallow copy for the data component of each node. 

b. You may not modify the nodes of the original list. 

c. Your code must be efficient. 

d. You may only add one auxiliary method. 

e. You will lose most of the credit for this problem if you use any iteration statement (i.e., while(), do while, 

for). 
 
public LinkedList<T> getReversed(String name) 


