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Abstract

We present new approximation algorithms for several facility lo-
cation problems. In each facility location problem that we study,
there is a set of locations at which we may build a facility (such as
a warehouse), where the cost of building at location i is f;; further-
more, there is a set of client locations (such as stores) that require to
be serviced by a facility, and if a client at location j is assigned to
a facility at location ¢, a cost of ¢,; is incurred that is proportional
to the distance between ¢ and j. The objective is to determine a
set of locations at which to open facilities so as to minimize the
total facility and assignment costs. In the uncapacitated case, each
facility can service an unlimited number of clients, whereas in the
capacitated case, each facility can serve, for example, at most u
clients. These models and a number of closely related ones have
been studied extensively in the Operations Research literature.

We shall consider the case in which the distances between loca-
tions are non-negative, symmetric and satisfy the triangle inequality.
For the uncapacitated facility location, we give a polynomial-time
algorithm that finds a solution of cost within a factor of 3.16 of the
optimal. This is the first constant performance guarantee known
for this problem. We also present approximation algorithms with
constant performance guarantees for a number of capacitated mod-
els as well as a generalization in which there is a 2-level hierarchy
of facilities. Our results are based on the filtering and rounding
technique of Lin & Vitter. We also give a randomized variant of
this technique that can then be derandomized to yield improved
deterministic performance guarantees.
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1 Introduction

We shall present approximation algorithms for a variety of facility
location problems. One of the most well-studied problems in the
Operations Research literature is the uncapacitated facility location
problem, dating back to the work of Balinski [2], Kuehn & Ham-
burger [16], Manne [20], and Stollsteimer [25, 26] in the early 60’s.
In its simplest form, the problem is as follows: we wish to find
optimal locations at which to build facilities (such as warehouses)
to serve a given set of n client locations (such as stores); we are
also given a set of locations at which facilities may be built, where
building a facility at location ¢ incurs a cost of f;; each client 7 must
be assigned to one facility, thereby incurring a cost of ¢;;, propor-
tional to the distance between locations 2 and j; the objective is to
find a solution of minimum total cost. The main result of this paper
is an approximation algorithm that finds a solution of cost within a
factor of 3.16 of the optimum, provided the distances between the
locations are symmetric and satisfy the triangle inequality. This is
the first approximation algorithm for this problem with a constant
performance guarantee.

This A/P-hard problem has been studied from, among others,
the perspective of worst-case performance guarantees, probabilistic
analysis of the average-case performance, polyhedral characteriza-
tions, and the empirical investigation of heuristics. Its prominence
in the literature is due to the fact that it has a wide variety of appli-
cations as well as its appealing simplicity. For an extensive survey
of work on this, and closely related problems, the reader is referred
to the textbook edited by Mirchandani & Francis [21], and in partic-
ular, the chapter by Corntiejols, Nemhauser, and Wolsey [6]. Fora
more in-depth explanation of results known for these models, there
is an extensive discussion in the textbook of Nemhauser & Wolsey
[22].

We shall briefly survey the results known on approximation al-
gorithms for the uncapacitated facility location problem. Through-
out this paper, a p-approximation algorithm is a polynomial-time
algorithm that always finds a feasible solution with objective func-
tion value within a factor of p of optimal. Hochbaum [12] showed
that the greedy algorithm is an O(log n)-approximation algorithm
for this problem, and provided instances to verify that this analysis
is asymptotically tight. This provided a stark contrast to earlier
results of Corntiejols, Fisher, & Nemhauser [5], who considered
a problem that is equivalent from the perspective of optimization,
but not approximation: their objective was to find a solution so as
to maximize the difference between the assignment “costs” (which
they interpreted as profits) and the facility costs. For this objective,
Corntiejols, Fisher, & Nemhauser showed that the greedy algorithm,
in effect, came within a constant factor of optimal. Although they
justified their variant with an application for computing an opti-
mal strategy for gaining profit from interest accrued by delays in
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clearing checks, the original objective 1s much more natural for the
typical network design type of setting in which the uncapacitated
facility location problem usually arises.

Lin & Vitter [19] gave an elegant technique, called filtering,
for rounding fractional solutions to linear programming relaxations,
and as one application of this technique for designing approximation
algorithms, gave another O(log n)-approximation algorithm for the
uncapacitated facility location problem. Furthermore, Lin & Vitter
considered the k-median problem, where facility costs are replaced
by a constraint that limits the number of facilities to k; that is,
there are n locations, and one is allowed to build facilities at no
more than k of them to serve all n locations; the objective is to
minimize the total assignment costs. They gave an algorithm that
finds a solution for which the objective is within a factor of 1 + ¢ of
the optimum, but is infeasible since it opens (1 + 1/e)(inn + 1)k
facilities. Lin & Vitter [18] also showed that in the special case of
the k-median problem where the assignment costs are symmetric
and satisfy the triangle inequality, one can find a solution of cost
no more than 2(1 + ¢) times the optimum, while using at most
(1 4+ 1/e)k facilities.

All of the problems discussed above are min-sum problems, in
that the sum of the assignment costs enters into the objective func-
tion. Much stronger approxtmation results are known for min-max
facility location problems. The k-center problem is the min-max
analogue of the k-median problem: one builds facilities at k loca-
tions out of n, so as to minimize the maximum distance that an un-
selected location is from its nearest facility. Hochbaum & Shmoys
[13] and subsequently Dyer & Frieze [7] gave 2-approximation al-
gorithms for this problem, and also gave extensions for weighted
variants. Bar-Ilan, Kortsarz, & Peleg {3] considered a capacitated
variant, in which each facility can serve at most u locations, and
gave a 10-approximation algorithm for this problem. Khuller &
Sussmann [15] recently improved this to give a 6-approximation
algorithm. They also considered a variant in which one can build
multiple facilities of capacity w at a location, for which they gave a
S-approximation algorithm.

Our results for min-sum facility location problems are filtering
and rounding algorithms that build on the results of Lin and Vitter
[18, 19]. In addition to our algorithm for the uncapacitated facility
location problem, we will give approximation algorithms for several
capacitated variants of this problem. We shall assume that each
location has a given demand that must be serviced by some facility,
and each facility can service a total demand that is at most u. In
assigning locations to facilities, we can either require that each
location have its entire demand serviced by a unique facility, or
else we can allow a client’s demand to be split among several open
facilities. For both settings, we will give an algorithm that finds
a solution of cost within a constant factor of optimal, but uses
facilities that have a constant factor greater capacity than u (and
are proportionately more expensive). Finally, we also consider the
variant of the problem in which we may build multiple facilities at
a location, each of capacity u, and give an approximation algorithm
with constant performance guarantee. All of the constants are
relatively small (less than 10); for example, in the setting in which
we may build multiple facilities at a location and may split aclient’s
demand among several facilities, we give a 5.69-approximation
algorithm. Our strongest performance guarantees are based on
a randomized variant of the filtering technique of Lin & Vitter,
which yields deterministic algorithms with improved performance
guarantees.

2 The uncapacitated facility location problem

In this section, we will consider the following problem: we are
given a set of locations N = {l,...,n}, and distances between
them, ¢i;, 4,J = 1,...,n; there is a subset £ C N of locations at
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which we may open a facility, and a subset D C N of locations that
must be assigned to some open facility; for each location j € D,
there is a positive integral demand d; that must be shipped to its
assigned location. For each location : € F, the non-negative cost
of opening a facility at ¢ is f;. The cost of assigning location 4 to an
open facility at § is ¢;; per unit of demand shipped. We shall assume
that these costs are non-negative, symmetric, and satisfy the triangle
nequality: thatis, c;; = ¢;; forall 4,7 € N, and ¢;; + ¢;x > cix
for all 4,5,k € N. We wish to find a feasible assignment of each
location in D to an open facility so as to minimize the total cost
incurred. This is the metric uncapacitated facility location problem.

This problem can be stated as the following integer program,
where the 0-1 variable y;, ¢ € F indicates if a facility is opened
at location ¢, and the 0-1 variable z.;, ¢ € F, 7 € D, indicates if
location j is assigned to a facility at i:

minimize Z fivi+ Z Z djcijxs;

(1)

icF iCF j€D
subject to
Z zi; = 1, foreach j € D, (2)
i€F
zi; < ¥, foreachi € F, j € D, 3)
z,; € {0,1}, foreachie F, je D, 4
v € {01}, foreach i € F. 5

The constraints (2) ensure that each location j € D is assigned to
some location ¢ € F, and the constraints (3) ensure that whenever
a location j is assigned to location 7, then a facility must have been
opened at ¢ (and paid for). For notational simplicity, we shall refer
to 0-1 variables «;; foreachi,j € N, with the understanding that if
i ¢ Forj¢ D, then z,; = 0; similarly, we shall refer to variables
i, for each i & F, with the understanding that 3; = 0 in this case.

We will derive an approximation algorithm for the uncapaci-
tated facility location problem that is based on solving the linear
relaxation of this integer program, and rounding the fractional solu-
tion to an integer solution that increases its cost by a relatively small
constant factor. This rounding algorithm consists of two phases.
We apply the filtering and rounding technique of Lin & Vitter [19]
to obtain a new fractional solution, where the new solution has the
property that whenever a location j is fractionally assigned to a
(partially opened) facility 4, the cost ¢;; associated with that assign-
ment is not too big. We then show how a fractional solution with
this closeness property can be rounded to a near-optimal integer
solution.

Consider the linear relaxation to the integer program (1)-(5),
where the 0-1 constraints (4) and (5) are replaced, respectively,
with

0,
0,

foreachi e F, j € D,
foreach ¢ € F.

Tiy
Y

6
(M

Given g;, for each j € D, we shall say that a feasible solution
(z, y) to this linear program is g-close if it satisfies the property

(8)

The following lemma is proved by applying the filtering tech-
nique of Lin & Vitter [19]. Given a feasible fractional solu-
tion (z,y), we shall define the a-point, c;(a), for each location
J € D. Focus on a location j € D, and let « be a permu-
tation such that cp1); < crz); € -+ < Cx(n);- Recall that
ifi ¢ F, then z;; = 0. We then set ¢;(a) = cx(iny;, Where

i* = min{i’ : E:zl Za(iy; > o}

IV IV

zi; > 0= ci; < gj.



Lemma 1 Let a be a fixed value in the interval (0,1). Given a
feasible fractional solution (z,y), we can find a g-close feasible
Sfractional solution (&,§) in polynomial time, such that

1. g; < cj{a), foreach j € D:
2 W er £ S(UQ) T p fitie

Proof: The proof of this lemma is quite simple. Foreach j € D,
leta; = Z'EF: csy <egla) Tish clearly, a; > o. We merely set

5. = ) zulai ife; < cjla);
b 0 otherwise.

Foreach i € F, we set §; = min{1,y:/a}. The definition of Z is
set up exactly to ensure that the first condition holds. Furthermore,
since §; < (1/a)y;, the second condition holds as well. Finally, a
straightforward calculation verifies that (£, §) is a feasible fractional
solution. u

If welet § = {i: ¢ci; > c;j(a)}, then the definition of ¢;(a)
implies that 3 7. ¢ z:; > 1 — c. Hence,

D eszis 2 Y cizi 2 (1- a)e(a),

iEF €S

or equivalently,

cia) < T—]-_a Z CisTi 9

iEF

We will show how to exploit this closeness property in rounding
fractional solutions to near-optimal integer solutions. This result
generalizes a similar claim used by Lin & Vitter {18] to obtain their
results for the metric £-median problem.

Lemma 2 Given a feasible fractional g-close solution (%,7), we
can find a feasible integer 3g-close solution (£, §) such that

Z figi £ Z fiti.

e F tEF

Proof: We shall first present the rounding algorithm, and then prove
that it yields the lemma. We are given g;, j € D, and a feasible
fractional solution (Z, §) that is g-close. The algorithm iteratively
converts this solution into a 3g-close integer solution (&, §), without
increasing the total facility cost.

The algorithm maintains a feasible fractional solution (£, §);
initially, we set (£,9) = (&, ¥). Throughout the execution of the
algorithm, F will denote the set of partially opened facility locations
for the current solution; thatis, F = { € F : 0 < §: < 1}. We
shall also let D denote the set of those locations j that are assigned
only to facilities in F'; that is, 3;; > 0 implies that s € F. In each
iteration, we first find the location j € D for which g; is smallest;
let ;' denote this location. Let § be the set of facilities s € F for
which £,;+ > 0 (see Figure 1); that is,

S={i€F:&; >0}

We will assign j' to the location ¢ € § for which f; is smallest;
let i’ denote this location. We round the values {f: }:es by setting
$ = 1,and §; = Oforeachi € § — {i'}. Let T denote the set of
locations that are partially assigned by Z to locations in S that is,

T = {j : 3i € S such that ;; > 0}.
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Figure 1: Rounding the solution near j', where edges correspond
to positive components of &

We assign each location j € T to the facility opened at i'; that is, we
set&;; = 1 and 2;; = 0 for each ¢ # i'. When D becomes empty,
then for each location j € D, there exists ¢ such that 20, >0
and §,» = 1, and so j can be assigned to ¢’; that is, we round & by
setting £,.; = 1 and 2;; = O for each ¢ # ¢'. We shall argue that
the algorithm maintains the following properties:

(P1) (&,9) is a feasible fractional solution,
(P2) Yicr Fith < T cp fiis

(P3) #i; >0andi € F = ¢;; < g3
(P4) ;> 0andi g F = ¢;; < 3g,.

These properties certainly hold when the algorithm starts. Further-
more, if they hold when the algorithm stops (and so property {P3)
becomes vacuous), then we have proved Lemma 2.

We shall show that these properties are maintained by the algo-
rithm in each iteration. Property (P1) is clearly maintained: the
algorithm only assigns a location j € D to an opened facility, and
when we set any variable §; to 0, we also set each variable 2,; to
0. Property { P3) is trivially maintained, since the algorithm never
sets a variable %, to be in the interval (0,1) nor adds a location to
F.

To show that property (P4) is maintained during an iteration,
consider some variable £;:; that is set to 1 during it. We examine
the situation at the start of this iteration as depicted in Figure 1.
Since j must be in 7, there must exist 7 € § such that £;; > 0.
Furthermore, both &,;; > 0 and #;/,» > 0, since ¢,' € S. But
S C F, and hence by (P3), we have that ¢;; < g;, ¢;j» < gy,
and ¢y < g;r. By the triangle inequality, we have that ¢;1; <
cirjr + ¢y + eij < 2g50 + g; < 3g;, where the last inequality
follows from our choice of j'. Hence, property (P4) is maintained
by the algorithm.



To show that ( P2) is maintained, we note that

fl’ = Eréigfz < Zflity’

€8

where the inequality follows from the fact that

Z‘in = 17

€S

and that the mintmum of a set of numbers is never more than
their weighted average. Finally, #;; < ¢:, and so we have that
fi £, ¢ fi%:- But this inequality implies that the facility cost
of § never increases throughout the execution of the algorithm,
which proves that { P2} is maintained.

Finally, we note that the simple rounding performed when b
is empty also maintains these four properties. This completes the
proof of the lemma. B

If we start with a feasible fractional solution (z,y) and apply
Lemma | to get (£,7), and then apply Lemma 2 to (Z, g), the
resulting feasible integer solution (&, §) has facility cost at most

Y £u <Y fE <)) f
e F iEF iEF

On the other hand, for each location j € D, its unit assignment cost
in £ is at most 3g; < 3¢; (@) < == 2 icF CisTi;- By combining

l—ox

these two bounds, we see that the total cost of (£, )

ST fE+ Y)Y dicidy

1eF t€F j€D
1
- S fw 43 dics(a)

€F J€ED

1 —3- a}(z fiyi + sza'cz‘jﬂcu‘)- 12)

tEF i€F 3€D

(10)

< (11

1
< max{—,
< max{—

If we set o = 1/4, then we see that the total cost of (&£, ) is within
a factor of 4 of the cost of {z, y). By rounding an optimal solution
(z, y) to the linear relaxation, we get the following theorem.

Theorem 3 For the metric uncapacitated facility location problem,
filtering and rounding yieids a 4-approximation aigorithm.

In Section 5, we will give an algorithm with a somewhat better
performance guarantee, by refining this analysis. Nonetheless, we
do not know very much about the extent to which there is an in-
herent gap between integer and fractional optimal solutions to this
formulation for the metric uncapacitated location problem.

3 The capacitated facility location problem

In this section, we consider the case in which each open facility can
be assigned to serve a total demand that is at most u, where u is a
positive integer. We will show how to adapt our algorithm for the
uncapacitated case to this more general setting.

In the uncapacitated case, if we are given the optimal value of
y, then it is trivial to find the corresponding z: we simply assign
each location j € D to the location 7 for which ¢;; is the minimum
among all possibilities where y; = 1. In the capacitated case, the
situation is somewhat more complicated. First of all, there are
two variants of the problem, depending on whether each location’s
demand must be assigned to only one facility, or the demand may be
fractionally split among more than one (completely) open facility.
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We will first focus on the latter case. 1f we are given the optimal
value of y, the problem of finding a minimum-cost assignment that
satisfies each location’s demand, while assigning at most u to each
open facility is an instance of the transportation problem. (For
a review of the basics for this problem see, e.g., the textbook of
Lawler [17}.) Briefly, the optimal solution to this problem can be
found in polynomial time, and if « and the demands d;, j € D,
are integers, then the flow values d;z;; in the solution found are
also integral. For example, this implies that in the case that the
demands are all 1 and » is an integer, there is no distinction between
the two capacitated variants mentioned above: we always find an
assignment that routes each demand to a unique open facility.

Our algorithm is based on rounding an optimal solution to its
linear programming relaxation. This linear programming relaxation
is identical to the one used in the uncapacitated case, except we must
explicitly require that

0<yu <1,
and we must impose capacity constraints

Z d;zi; < uys,

J€D

foreachi € F, (13)

foreachi € F. (14)

It is not possible to design an approximation algorithm for the
capacitated problem based solely on this linear programming relax-
ation, since the ratio between its integer and fractional optimal is
unbounded. To see this, consider an instance with « + 1 locations
with unit demands that are all distance 0 from each other with fixed
costs fy =0and fi = 1,74 =2,...,u+ 1. There is the following
fractional solution: sety = 1, 32 = 1/u, 21; = u/(w+ 1) and
z2; = 1/(w+1),j =1,...,u+ 1. The cost of this solution is
1 /u, whereas the optimal integer solution has cost 1. However,
if we also allow the near-optimal solution to slightly overuse any
facility then clearly one can, at least in this instance, find an integer
solution of cost nearly equal to that for the optimal fractional one.

Motivated by this discussion, we shall call an algorithm for the
metric capacitated facility location problem a (p, p' )-approximation
algorithm if it finds, in polynomial time, a solution of total cost
within a factor of p of the true optimum, but each facility i €
F is expanded to have capacity p;u at a cost of p; f; for some
pi € [1,0']. In this section, we present a {7, 7/2)-approximation
algorithm. We will express the relaxation in the capacity constraint
by allowing 0 < y; < p', foreach i € F. If (z,y) is a feasible
fractional solution to this modified linear program, then it is p’'-
relaxed. Furthermore, the analogue of an integer solution with this
relaxation is that y; is either 0 or at least 1, for each i € F; if
(z,y) is a p'-relaxed solution with this additional property, then we
will call it a p’-relaxed integer solution (even though it is not really
integer at all).

Once again, our algorithm is based on first filtering, and then
rounding. It is quite straightforward to generalize Lemma 1 to
obtain the following result.

Lemma 4 Let o be a fixed value in the interval (0,1). Given a
Jeasible fractional solution (z,y), we can find a g-close fractional
solution (Z,§) in polynomial time, such that

1. g; < c;(a), for each 3 € D;
2. ziEF figi S (l/a)ziep fzyi;

3. (£,9) is 1/ a-relaxed. n

On the other hand, the rounding algorithm becomes a bit more
complicated, since the uncapacitated algorithm takes great advan-
tage of the fact that there are no capacities: a// demand fractionally
routed to any location in S ends up being assigned to j' (using the
notation in the proof of Lemma 2). We next prove the following
analogue of Lemma 2.



Lemma 5 Given a p'-relaxed fractional g-close solution (%, §), we
canfind a 2p' -relaxed integer 3g-close solution (£, §) in polynomial

time, such that
Z fige <4 Z figi.

1EF [T=¥2

Proof: We first describe the rounding algorithm in detail, and then
prove that it produces the claimed solution. As in the uncapacitated
case, we maintain a solution (&,g) and the algorithm gradually
rounds each 0 < ¢, < [ to either O or {; initially, we set £ = z, we
set §; = 1 for each ¢ such that §; € [1/2,1), and we set §; = %
otherwise. We also maintain a set ' C F of facilities ¢ for which
0 < §: < 1 (but due to the previous step, this will be equivalent to
restricting 0 < §; < 1/2). For each 7 € D, the algorithm keeps
track of the fraction of the demand for location j that is satisfied
by locations in F: let §; = Y. &:; for each j € D. In this
case, we let D C D be the set of locations j for which 3; > 1/2.
(In the uncapacitated case, the restriction for D was, in effect, that
B =1)

In each iteration, we first select the location j € D for which
g5 is minimum, and let j' denote this location. Again, we let

S:{Zeﬁ‘i}1]l>0}

and
T ={j € D: 3: € §such that &;; > 0}.

We do not open Just one facility in S, but open the cheapest
>, s i] facilities in § instead; let O denote this set of facil-
ities. Foreach ¢ € O, we update §; = 1, and for each7 € § - O,
we update 3 = 0. (Thus, F will be reset to F — 5 in the next
iteration.)

For each location j € T, there is a total demand d; currently
assigned to locations in S, where

Cij = d, Z.’f:,',;

i€s

this demand will be rerouted to go only to those facilities in O.
The problem of assigning the demand (f, at each location j € T to
facilities in O, each of which is capable of handling total demand
at most u, is an instance of the transportation problem (analogous
to the discussion at the beginning of this section). Our analysis
will show that any feasible solution suffices; however, it is natural
to exploit the fact that a minimum-cost solution can be found in
polynomial time. Foreachi € O, j € T, let z;; be the amount
of j’s demand that is assigned to ¢ by an optimal solution to this
instance of the transportation problem. We update our solution by
resetting &:; = 2:;/d; foreachi € O, j € T, and #;; = 0 for each
i€ §—0,j € D. {All other components of & remain unchanged.)

When D becomes empty, we have satisfied at least half of the
demand for each location j € D, by assigning it to locations for
which the component of § is at least {. To compute the solution
claimed by the lemma, we will simply ignore the 3; fraction of j’s
demand that is still assigned to the remaining facilities in F', and
rescale the part of & specnfymg the assignment to facilities not in
F_ That is, for each i ¢ F', we reset §j; to be 2yl, and reset £;; to
be #;/(1 — B;) foreach j € D. Foreachi € F,wesetg =0
and set #;; = 0, foreach j € D.

The proof that this algorithm delivers a suitable solution follows
the same outline as the proof of Lemma 2. We show that until the
point at which D becomes empty, the algorithm maintains invariants

(P1') (£,%)is a p'-relaxed solution;

(P2") z,vgp fitn 23 45 fils
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as well as ( P3) and (P4).

Of course, we must also show that the algorithm is well-defined.
Ineach iteration, werely on an optimal solution to an auxiliary input
to the transportation problem, and so we must show that a feasible
solution exists to this input. An input to the transportation problem
has a feasible solution provided that the total demand is no more
than the total supply That is, we must show that the total demand
for T, 37 ;. d;, is not more than the total supply for O, |O|u. But
since the solution (&, §) maintained by the algorithm is a p’-relaxed
solution, we have that (£, §) satisfies the inequality

> dity; <Y didis < ujs, foreachi€ S,

JjET JED
and hence
Dd=D didy <) ui <ulO].
JET JET i€8 i€S

Hence, the algorithm is well-defined. Furthermore, it is clear that
this solution of the transportation problem is precisely what is re-
quired to maintain the fact that (£, §) remains a p'-relaxed sotution.
Hence, property (P1') is maintained.

As in the uncapacitated case, property (P3) is trivially main-
tained, since the algorithm never sets #;; > 0 while maintaining
1 € F. The proof for property (P4) is identical to its proof in the
uncapacitated case: foreachi € Sandj € T, ¢;; < 3g;.

It remains only to prove that property (P2') is maintained by
the algorithm. This property is true initially, since the only locations
i € F eitherhave §; = §;, orelse §; > 1/2and §; = 1, and hence
§: < 24:. Next consider the set of locations § removed from F in
some iteration. At the end of this iteration, we will set g, = | for
eachi € O, and §; = 0 foreach € § — O. Until this iteration, for
each ¢ € S, we have not changed g., and hence, §; = #. Thus, to
prove that property (P2') is maintained by this iteration, it suffices
to show that the inequality

Y H<2Y fin

i€0 €S

(15)

holds for the value of y at the start of this iteration.
Observe that since O was selected in order of cheapest fixed

costs, we have that
I

t€0 €8

(16)
provided 0 < z; < 1, foreachi € §,and 33, oz = |O]. If we
set

19| —, foreacht: € S,

L= =
Zies Y

|O|. Sincei € F, §; < 1/2. Furthermore,

(17)

then clearly Yies ki =
j' € D implies that

1/2 <Bj’ = Zi’,‘jl = Zfijl.

ieF i€$
Since £;;- < §i, we can conclude that
12<) i
ie$
Hence,
0] s ¥l

<2,

Ziesi" 2165 Y



and so 2, < 1, foreach i € §. By combining (16), (17), and (18),

we see that
DALY nfi<d g2

€0 1€S €S

and so (15) holds; property (P2') is maintained.

Next consider the situation when when D becomes empty. At
this point, property (P1') implies that §; < p’, for each i € F.
Since we now multiply § by at most 2, and we have ensured that
there does not exist some 3; € (0,1), we see that the solution
is a 2p'-relaxed integer solution. Furthermore, since before § is
multiplied by 2, we know that (P2') holds, then the final solution
¢ must have facility cost at most 4 times the cost of , and this
completes the proof of the lemma. ]

Next we show how to combine Lemmas 4 and 5 to obtain a
(7,7/2)-approximation algorithm for the capacitated facility loca-
tion problem. Let (x,y) denote an optimal solution to the linear
relaxation of the capacitated facility location problem. We apply
Lemma4to (z,y), to obtain a 1 /a-relaxed solution (£, §), and then
apply Lemma 5 to yield the 2/ a-relaxed integer solution (&, §). For
each i € F with ¢; > 0, we open a facility of capacity §;« and
assign to it a fraction &, ; of the demand d; at location j. The facility
cost of this solution is at most

. _ 4
Y S <AY fig <= fan (19)
iEF iEF 1EF
Furthermore, the total assignment cost is at most
Zcfjd,-a‘:,-,- < 3Zd,g,~
JED J€ED
< 3201:‘6:'(0)
J€D
3
< T d) e Q0
JED  i€F

Hence, we have found a solution of total cost at most

% Zfiyi + 1—_%—&- ZdJ Z CisTij-

ieF jED iEF

If we set @ = 4/7, then we see that the total cost of the solution
found is within a factor of 7 of the cost of the optimal solution to
the linear relaxation. Since the solution is 2/a-relaxed, we obtain
the following theorem.

Theorem 6 For the metric capacitated facility location problem,
filtering and rounding yields a (7,7/2)-approximation algorithm.

Next we turn our attention to the model in which the entire
demand of each location must be assigned to the same facility.
We shall call this problem the metric capacitated location prob-
lem with unsplittable flows. We will show that the solution found
by algorithm of Theorem 6 can be adjusted to satisfy this more
stringent condition, while only slightly increasing the performance
guarantees.

The extension to the model with unsplittable flows is based on
a rounding theorem of Shmoys & Tardos [24] for the generalized
assignment problem. This theorem can be explained as follows.
Suppose that there is a collection of jobs J, each of which is to be
assigned to exactly one machine among the set M; if job j € J is
assigned to machine ¢ € M, then it requires p;; units of processing,
and incurs a cost r;. Each machine 7 € M can be assigned jobs
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that require a total of at most P; units of processing on it, and the
total cost of the assignment must be at most R, where R and P,,
foreach i € M, are given as part of the input. The aim is to decide
if there is a feasible assignment. If there is such an assignment,
then there must also be a feasible solution to the following linear
program, where z,; is the relaxation of a 0-1 variable that indicates
whether job j is assigned to machine i:

Zz,]- = 1, foreachj € J; (1)
1€EM
Z pi;zi; < P, foreachie M; (22)
j€J
Y. rums < R (23)
iEM jeJ
z;; > 0, foreachieM,jelJ (24

Shmoys and Tardos {24] show that any feasible solution z can be
rounded, in polynomial time, to an integer solution that is feasible
if the right-hand side of (22) is relaxed to P; 4+ max;c s p;;.

We show next how to apply this rounding theorem to produce
a solution for the capacitated version with unsplittable flows. Con-
sider the algorithm of Theorem 6 without specifying the choice of
a. Suppose that we apply the algorithm starting with an optimal
solution (z,y) to the linear relaxation of the capacitated facility
location problem (that is, the linear program given by (1), (2), (3),
(6), (13), and (14).) The algorithm delivers a 2/a-relaxed integer
solution (£, §), where the facility cost and the assignment cost are,
respectively, within a factor of 4/ and 3/(1 — &) of the analogous
costs for (z,y). Let O denote the set of facilities opened by the
solution (£, §); that is,

O={l€Fﬁ,21}

We can view each facility 7 € O asamachine of processing capacity
¥ u, and each location j € D as a job that requires a total of d; units
of processing (independent of the machine to which it is assigned)
and incurs a cost d;c;; when assigned to machine i. Therefore, if
weset M =0,J =D, P, = g;uforeachi € M,

R= Z Z djcijdi;,

1€F jeD

aswell as p;; = d; and r;; = djci; foreachi € M, j € J, then &
is a feasible solution to the linear program (21)-(24).

The rounding theorem for the generalized assignment problem
implies that we can round £ into an integer solution Z such that each
facility ¢ € O is assigned a total demand at most P; + max;ep d;
and the assignment cost of this solution is

DD diezas,

z Zd,-c,-,—icij < Z Zd,'c,-,-i:.-] <
t€F 3€D

1€0 j€D teF jeD

3
l-a

where the last inequality follows from (20). Note that, in order
for there to exist a feasible solution with unsplittable flows, the
demand d; must be at most u, for each j € D; hence, we assume
that our instance has this property. We can conclude that the rounded
solution £ assigns a total demand to each facility ¢ € O that is at
most

maxd; + giu < (1 + gi)u.

jED

Hence, if we consider the solution (&, §) where §: = ¢ + 1, for
eachi € O and §; = ¢ otherwise, then we see thatitisa 1 +2/a-
relaxed integer solution. Finally, since §; > 2 for each i € O
(due to the final doubling when D becomes empty), we see that



7 < (3/2)1, for each i € D. This implies that the facility cost of
(2,9) 1s

S s <Y R <SS fun

1€F 1EF Y=

where the last inequality follows from (19). Thus, if we compare
the solution (%, §) to the optimal fractional solution (z,y) from
which we started, we have shown that the facility cost increases by
at most a factor of 6/a, and the assignment cost increases by at
most a factor of 3/(1 — a). If we set & = 2/3, then both of these
bounds are equal to 9, and so we obtain the following theorem.

Theorem 7 For the metric capacitated facility location problem
with unsplittable flows, filtering and rounding yields a (9, 4)-approx-
imation algorithm.

Khuller & Sussmann [15} have introduced the notion that one
can open multiple facilities of capacity « at each location (in the
context of the capacitated k-center problem). We can also obtain
analogues of Theorems 6 and 7 for this variant of the capacitated
facility location problem. In other words, we are now interested
in obtaining solutions in which each y; is an integer. We start by
solving the linear relaxation, which is identical to the one used
above, except that we replace (13) with just y; > 0, for each
1 € F. Lemma 4 must now be modified to reflect that we obtain
a solution (£, ) that is feasible for the new linear relaxation, but
still has the property that §; < (1/a)y:, for each i € F; otherwise
Lemma 4 remains unaffected. The statement of Lemma 5 must
also be modified; we now require that (Z, §) be a feasible fractional
solution, and that the solution (£, %) be such that each §;, ¢ € F,
is an integer. This apparently stronger claim can be obtained by
essentially the same proof. The only modification needed is in the
initialization of §: at the start of the algorithm, we set §; = [¢:] for
each ¢ such that §; > 1/2, and as before, we set §; = §; foreach ¢
such that §; < 1/2, This also maintains property (P2'), since this
initial rounding increases the cost incurred for each facility location
i ¢ F by at most a factor of 2. Of course, we no longer need to
maintain property (P1'). By using these modified lemmas, we can
obtain the following analogue of Theorems 6 and 7.

Theorem 8 For the metric capacitated facility location problem
with multiple facilities allowed, filtering and rounding yields a 7-
approximation algorithm with splittable flows, and a 9-approxi-
mation algorithm with unsplittable flows.

Since the performance guarantees have not become worse by
imposing this additional restriction that the capacity used for each
location is an integer multiple of w, one might wonder why we have
not stated Theorems 6 and 7 in this stronger way. The reason is that
by maintaining this integerized capacity, we do need to introduce a
greater relaxation of the capacity bound. For example, in Theorem
6 we would produce a 2[p']-relaxed solution, rather than simply a
2p'-relaxed solution.

4 The 2-fevel uncapacitated facility location problem

Another more general version of the facility location problems that
we consider is the setting in which there is a 2-level hierarchy
of facilities. Such 2-level facility location problems have been
considered extensively in the literature (see, for example, {1, 14,
27,28)).

We shall only consider the 2-level version of the uncapacitated
problem, but it is possible to obtain similar extensions for the capac-
itated models as well. In the 2-level uncapacitated facility location
problem, there is, as before, a set of demand points D, and a set of
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locations F* where hub facilities can be built. However, each unit
of demand at a point in D must now be shipped from a hub facility
via an intermediate transit station; let E' denote the set of locations
at which one of these transit stations may be built. We shall con-
sider the metric case in which the unit cost of shipping between two
locations z,j € D U E U F is equal to ¢;;; that is, these costs are
non-negative, symmetric, and satisfy the triangle inequality, and so
forany i,5,k € DUEUPF,¢ij + ¢;x > cix. Eachlocationk € D
has a specified demand dx. For each i € F, the cost of building
a hub facility at location ¢ is f; and for each j € E, the cost of
building a transit station at location j is e;. Each unit of demand at
location £ € D must be shipped from some location i € F at which
a hub is built via a location j € F at which a transit station is built,
incurring a shipping cost of ¢;; + ¢;x. We shall let ¢;;; denote the
shipping cost ¢;; + ¢;&. The aim is to determine which hubs and
transit stations to build so that the total building and shipping cost
is minimized. We will show how to extend Theorem 3 to obtain a
4-approximation algorithm for this more general model.

First, we give a linear programming relaxation of the 2-level
uncapacitated facility location problem. All of the variables in this
linear program are relaxations of 0-1 decision variables, and there
are three types of variables: the variables z,;x, 1 € F, j € E,
k € D, indicate whether the demand at location k is routed through
a transit station at location j from a hub facility at location i; the
variables y;, 1 € F, indicate if a hub facility is opened at location
1; and the variables z;, j € E indicate if a transit station is opened
at location j.

minimize Z f,'y,'+Z eﬂ,-%-z Z Z diCijrZijx (25)

1EF JEE 1€F ;e E k€D
subject to
> N 2w = 1, foreachke D, (26)
i€F j€EFE
Za:,-,-k < vy, foreachie F, k€ D, 2N
JEE
Zx,',-k < =z, foreach j€ E, ke D, (28)
icF
zi;8 > 0, foreachi€ F, j€E, ke D,(29)
yi > 0, foreachi € F, (30)
z; > 0, foreachj € E. an

As in the single-level setting, we will show that any feasible
solution to the linear relaxation of this integer program can be
rounded to an integer solution that has objective function value
at most 4 times as much. This rounding algorithm will closely
resemble the algorithm used to prove Theorem 3. We first modify
the definition of g-close. A feasible solution (z, y, 2) to this linear
relaxation is said to be g-close if it satisfies the property

Zijk > 0= cize < g (32)
We shall also modify the notion of an a-point. For each location
k € D, we sort the costs ¢;jx over all pairs 2 € F, j € E, in
nondecreasing order; if we add the associated values ,; in this
sorted order, then we let ¢ () be the cost associated with the first
pair for which this running sum is at least c. It is straightforward
to obtain the following extension of Lemma 1.

Lemma 9 Let a be a fixed value in the interval (0,1). Given a
Seasible fractional solution (z,y, z), we can find a g-close feasible
Sractional solution (&, §, 2) in polynomial time, such that



1. gr < ckla), foreachk € D;
Yier FB < (1) X p fiys

EjeEe,ZjS(l/a)zjeEejzj. [ |

%)

il

Analogous to (9), it is easy to derive that, foreach k£ € D,

ce(a) < I ia Z Zcijkz'ijk- (33)

1EF jEE

Next we prove the following analogue of Lemma 2.

Lemma 10 Given a feasible fractional g-close solution (Z,, 2),
we can find a feasible integer 3g-close solution (%, 4, 2) such that

Z figs + Z e;%; < Z figi + Z €;%;.

1eFR 1€EE 1EF JEE

Proof: We shall first give the rounding algorithm, and then prove
that the solution found has the properties claimed by the lemma. The
algorithm is quite similar to the one used in the single-level unca-
pacitated case. We maintain a feasible fractional solution (£, ¢, 2)
that is initialized to (Z, §, Z). We will maintain a collection R of
triples (3,3, k), 1 € F, j € E, k € D, that have been rounded to
have #;,, = | (and hence 3, = %, = 1). Initially, R = @ (even if
some components of & are equal to 1). We also maintain a set Dof
locations k& € D that do not participate in any triple in R; that is,

D={keD:(ijk)e R=k+#k}.

In each iteration, we first find the location k € D for which gk
is smallest; let k' denote this location. Let S denote the set of pairs
(3,7) that are used to supply &' in the current solution; that is,

S ={(i,j) : Eijne > 0}

We also introduce notation for those locations that occur in some
pair in S let

Sr ={i € F:3j such that z,;,» > 0}

and
Sk = {j € E: Ji such that 2,3 > 0}.

We will assign k' to be served by the facility-transit station pair
(i,7) € S for which f; + e; is smallest; let (¢',7') denote this
pair. We round the values {g: }:es, by setting §;» = l,andg; = 0
foreach ¢ € Sp — {i'}. Similarly, we round {2,},cs, by setting
2 = 1,and 2; = 0 for each j € Sg — {j'}. Let T denote the
set of locations that are partially assigned by # to use locations in
either Sg or Sg; that is,

T ={k € D:3%; >0suchthati € Sporj € Sz}.

We assign each location k € T to the facility opened at s’ through
the transit station located at j'; that is, for each k € T, we reset
#;0% = 1 and &,;& = 0 for each (¢, j) # (¢, 7'); furthermore, we
add (i',5', k) to R. When D becomes empty, then for each location
k € D, there exists (i', 7') such that #,/,-;, = 1, and so we have
computed an integer solution.

We shall argue that the algorithm maintains the following prop-
erties:

(P1) (&,79, %) is a feasible fractional solution;

(P2) Y icr fili + 2 cp€iti S Liep filli + 25 €i%55
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(P3) zi% > 0and (¢,7,k) € R = ciye < gk
(P4) ;0 > 0and (¢,5,k) € R = ¢ije < 3gx;

(P5) (¢,5,k) € Rand £, > 0= (i,5,k) € R,

(P6) (i,j,k) € R= (£;; = Oforeach ] # j, k € D and
£:;5 =O0foreachi £ 4, ke D.)

These properties certainly hold when the algorithm starts. Further-
more, if they hold when the algorithm stops (and so property ( P3)
becomes vacuous), then we have proved Lemma 10. The proof
that (P1) is maintained is similar to the proof of property (P1) in
Lemma 2: the main observation is that whenever some g; or Z; is
set to 0, we also set all corresponding variables £, to 0.

The new properties ( P5) and (P6) are straightforward conse-
quences of the way in which the rounding algorithm proceeds. To
prove (PS5), consider two triples (Z,j, k) and (3,7, k) for which
#:;4 > 0and £,;;z > 0 at the start of the algorithm. If either triple
is placed in R, then in the same iteration, the algorithm will put
the other one in R as well. Since the algorithm never changes a
component of £ from being 0 to being positive, this implies that
property (P5) holds. )

To prove (P6), consider two triples (Z, 7, k) and (3, 7, k) , where
J # 3, for which initially we have that £:;x > 0 and &,;; > 0. If
either of these triples is added to R, then in the same iteration, we
must also set the variable corresponding to the other triple to 0; in
other words, if (i,7,k) € R, then 2,3 = 0, and so the first haif
of (P6) has been proved. The proof of the second half is exactly
analogous.

The proof that property (P4) is maintained is similar to the
proof given for (P4) in Lemma 2. Consider some variable £,
that is set to | during some iteration of the algorithm. However,
this implies that & € T, since the algorithm only sets to 1 those
components of £ for which the last index is in T". For the location
%' used in this iteration (that is, the location in D with minimum gk
value), we have that ,+;,,0 > 0; furthermore, (¢',5', k') was not
in R at the start of this iteration, and hence, by (P3), ¢i7;rx < ggr.
Since k € T, we know that there exists &;;x > 0 such that ¢ € Sp
or j € Sg. We shall consider these two cases separately.

Case 1: ¢ € Sp. It follows from ¢ € S that there exists
j € E such that that &5+ > 0. Since k' € D, this implies that
(i,ja kl) g R’ and so Cijk! < 9k’

We will show next that (¢,5,k) € R, and hence ci;x < gx.
Suppose that 7 # j. Since &5+ > 0, it follows from (P6) that
(¢,7,k) ¢ R. On the other hand, suppose that j = 7. Since
k' € D,weknowthat(i,7, k') ¢ R,andhence, by (P5), (3, ],k) =
(6,5,k) € R.

We wish to show that ¢;/;+; < 3g:. However, by the triangle
inequality, we can bound ¢,/ by the total cost of the path from '
to j' to k', followed by the path from k' to j to i, followed by the
path from i to j to k. Hence,

Cirrie < Cirjrar + Cigke + Cigk S grr + g + gx < 3Gk

Case 2: j € Sg. Since j € Sg, there exists 7 such that
Z:5% > 0. Again, since k' € D, we know that (3,7, k') ¢ R, and
hence Cijk! < i’

We will show next that (i,5,k) € R, and hence ¢;;x < g&.
Suppose that 7 # 3. Since £;;z+ > 0, it follows from (P6) that
(i,7,k) ¢ R. Onthe other hand, suppose that ¢ = . Since k' € D,
we know that (i,7,k') = (3,5,k') € R, and hence, by (P5),
(i,5,%) € R. Finally, we can bound c;: j+; by the cost of the path
from ¢’ to j' to k' followed by the edge from &' to j, followed by
the edge from j to k. Hence,

Citjre L Cirjrer + Cisrt + Cijk < gre + g + gk < 39,



and we have shown that property {P4) is maintained.
To show that (P2} is maintained, we note that

firte = (ir'?}relsf1 +e, < (SL;S(]‘1 + €;)&5k,
i,3)€

where the inequality follows from the fact that the minimum of
a set is no more than any convex combination of it. Finally,
2 sep Fik <gaoand 30, o Eie < 2 these imply that

Z fidie = Z fi Z Tije < Z fid

(1.7)€ES i€Sg  5(i,7)€8 i€Sp
and
E €;Zisk = E € E Tijr < _;_ €;Z;.
(i,3)ES 1€SE  u(:,5)ES JESE
Hence
fir+e; < E fign + E e;2;.
i€ESF 1€SE

But this inequality implies that the total of the facility cost and transit
station cost of (g, 2) never increases throughout the execution of the
algorithm, which proves that ( P2) is maintained. This completes
the proof of the lemma. [ ]

By combining Lemmas 9 and 10 in a manner identical to the
way in which Lemmas 1 and 2 were used to prove Theorem 3, we
obtain the following theorem.

Theorem 11 For the 2-level uncapacitated facility location prob-
lem, filtering and rounding yields a 4-approximation algorithm.

5 A randomized filtering algorithm

In this section, we will show that by choosing the threshold o at
random, we are able to obtain improved performance guarantees. In
fact, it will also be straightforward to derandomize these algorithms.
This use of randomization is very much in the same spirit as the
randomization used in scheduling algorithms by Chekuri, Motwani,
Natarajan, & Stein {4] and Goemans [9].

For each of the facility location models that we have discussed
in the previous three sections, we have given an approximation
algorithm based on a particular choice of a, but it is evident that
we can also consider the algorithm for any choice of o € (0, 1).
For each model, the randomized algorithm is quite easy to state:
we choose « uniformly in the interval (3,1), where 8 will be
fixed later to optimize the algorithm’s performance; then we apply
the deterministic algorithm with that value of a. The intuition
for cutting off the uniform distribution at some point 3 is that the
filtering step increases the facility cost by a factor of 1/, and so
we will need to bound E{1/a].

We first analyze this approach for the uncapacitated (single-
level) facility location problem. At the core of our analyses is the
following simple lemma about the a-point of a cost function, which
was first observed by Goemans [8]. Goemans used this observation
to show that if one implements the a-point 1-machine scheduling
algorithm of Hail, Shmoys, & Wein [11] where o € (0, 1) is chosen
with probability density function f(a) = 2a, then its performance
guarantee improves from 4 to 2 (which had already been shown in
[10] by a less direct approach). Independent of our work, Schulz &
Skutella {23] also used this observation for improved performance
guarantees for other scheduling models.

Lemma 12 Foreach j € D, j;)l cila)ydo =3 cijzi;.
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Proof: For simplicity of notation, let us assume that

ey ey <ove Lyl

that is, the permutation 7 is the identity. The function ¢; () is a step
function, which can be described as follows. Leti; < i < -+ < 44
be the indices ¢ for which z;; > 0. The function c,(a) is equal
to ¢;,, for each ¢ in the interval (Z 2 z,,J,ES | i) We
wish to compute the area under this curve; for the interval from

k— k
Yool T3 0 3.0 T, this area is exactly ¢;, ; - %.,,. Hence

s= l

the total area is exactly

¢
E Cigs * E.,,,—E CijZTis,

k=1

which proves the lemma. |

We show nexthow to apply this lemma. In fact, we have already
proved that the filtering anld rounding algorithm of Theorem 3 finds
a solution of cost at most — Z:GF fiya +3 Z,eu d,¢;(a) for any
given « (see equation (11)). Hence, we see that the expected cost
of the solution found by the randomized algorithm is

< E[éz,ﬁy;+3zdjcz(a)]
EF JED
= BT e 433 dsBles (o)
tEF j€ED
1
= (/; I—I-——da)ny,+3Zd(/ cJ(a)da)
JED
< ln(l/ﬁ)z.ﬂ ‘+ Ed / c;i{a)d
icF JED
- ln(l/,B Zf, ‘+ Zd Zci}zﬁ
i€EF JeD 1€EF

Hence, we wish to choose /3 so as to minimize max{ '11(1_%3) , '13—,9 |5
that is, we set 3 = 1/¢>, to yield the following theorem.

Theorem 13 For the metric uncapacitated facility location prob-
lem, randomized filtering and rounding yields an algorithm that
finds a solution whose expected total cost is within a factor of
3/(1 — e73) < 3.16 of the optimum.

One reinterpretation of the proof of this theorem is that for o
selected at random in this manner, we have

B Y a3 Y dies(e) < oY Sk 3 dreosan)

teF J€ED iEF teF ;€D

where p = UTz:’S Of course, a consequence of this is that there

must exist a choice for a for which this function is not greater
than its expectation. Thus, if we can find the a = a” for which

E‘EI, fivi +33. jep @ici(a) is minimized, then by running
the deterministic ﬁltermg and rounding algorithm with &« = a*, we
are assured of finding a solution within the expected performance
guarantee. Fortunately, the step function nature of ¢; () makes this
a particularly simple function to minimize; we need only check all
breakpoints of all of the step functions ¢;(«), 7 € D. This yields
the following theorem.

Theorem 14 For the metric uncapacitated facility location prob-
lem, filtering and rounding yields a 3.16-approximation algorithm.



The same randomization and derandomization technique can be
applied to each of the theorems in this paper, yielding somewhat
improved constants for each of the performance guarantees. In
the capacitated case, for example, if we again choose ¢ uniformly
within the interval between [3, 1] (where 3 will be chosen later),
then the expected total cost of the solution found by the algorithm

is at most
PILIDILES

41n(1/8) 3
-8 ;f‘y‘-{-]_ﬂjeD i€F

where (z,y) is the optimal solution to the linear relaxation of the
capacitated facility location problem. If we set 3 = e™3/* then we
see that the expected cost is within a factor of 3/(1—e™¥*) < 5.69
of the cost of the linear relaxation optimum (z,y). The solution
(%, §) found by the algorithm is also guaranteed to be 2/-relaxed,
and so the expectation of the maximum capacity used at any fa-
cility is at most 2uE[1/a] < 2(—1f_—37‘—)u < 2.85u. When we
derandomize this algorithm, by focusing on the optimal choice of
a with respect to the bound on the cost of the solution, we cannot
simultaneously keep the guarantee for the maximum capacity used
close to its expectation, 2.85u. However, we are choosing a within
the interval [e /%, 1], and the bound 2/ is at most 2¢’/* < 4.24
throughout this interval. Hence, we obtain the following theorem.

Theorem 15 For the metric capacitated facility location problem,
filtering and rounding yields a (5.69,4.24)-approximation algo-
rithm.

The same approach can be applied to each of the theorems in this
paper. In particular, for Theorem 7, the performance guarantee of
(9,4) canbe improved to (3/(1—e~'/?), 1 +2e'/?) < (7.62,4.29);
for Theorem 8, the performance guarantees of 7 and 9 can be
improved to 5.69 and 7.62, respectively; and for Theorem 11, the
performance guarantee of 4 can be improved to 3.16.
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