
Spring 2010 CMSC 858Y: Homework 2 Samir Khuller

Due in class: No due date - complete by Mar 22.

(1) Given an edge weighted graph G = (V,E) find a minimum weight subset of edges E′ such that
every vertex in G is incident on at least one edge in E′. (Such a set is called a min weight
edge cover.) Give a polynomial time algorithm for solving minimum weight edge cover. If you
cannot solve it for general graphs, you may solve it for bipartite graphs for partial credit. Give
an argument to prove correctness of the algorithm. (You may find the following fact useful: a
min weight perfect matching in any weighted graph can be found in polynomial time.)

(2) Given a weighted bipartite graph G, design an efficient algorithm to find a perfect matching
that minimizes the weight of the maximum weight edge in the matching. In other words, the
weight of a matching w(M) = maxe∈M w(e). The algorithm should compute a matching with
minimum weight.

(3) An edge coloring of a graph is a coloring of the edges, so that two edges incident on the same
node have different colors. A k coloring is a coloring of the edges that uses at most k colors.

A graph is d-regular if every node has degree d. First prove that every d-regular bipartite
graph has a perfect matching. Now show that every d-regular bipartite graph can be colored
with d colors.

(4) Show that any bipartite graph can be colored with ∆ colors where ∆ is the maximum degree.
(Extend your solution to problem 3.)

(5) Suppose we have a network flow problem in a directed graph G = (V,E, s, t) where the vertices
have capacities. Hence the net flow entering a vertex cannot exceed its capacity c(v). How do
we find a maximum flow from s to t? Show how to reduce this to the standard flow problem
with edge capacities.

(6) The b − matching problem is the following: given a bipartite graph B = (V,U,E) and a
function b : V ∪U → Z+, is there a subset M ⊆ E such that for each v ∈ V ∪U , v is incident
upon exactly b(v) edges in M? How would one design a strongly polynomial algorithm for this
problem? (An algorithm is strongly polynomial if its running time depends only on the input
size (i.e., number of vertices or edges) and not on the particular numbers/weights. In this case
the running time should not depend on the b values.)
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