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6 Vertex Cover

The vertex cover problem is defined as follows:

Given a graph G= (V,E) find a subset C CV such that for all (u,v) € E, at least one of u
or v is included in C and the cardinality of set C' is minimized.

This problem is a special case of the set cover problem in which the elements correspond to edges. There
is a set corresponding to each vertex which consists of all the edges incident upon it and each element is
contained exactly in two sets. Although the greedy algorithm for set cover we mentioned in the last class can
be applied for vertex cover, the approximation factor is still H(A(G)), where A(G) is the maximum degree
of a node in the graph G. Can we hope to find algorithms with better approximation factors? The answer
is yes and we will present a number of 2-approximation algorithms.

6.1 2-Approximation Algorithms
6.1.1 Simple Algorithm

Input: Unweighted graph G(V,E)
Output: Vertex cover C

1. C «0

2. while E # () do begin
Pick any edge e = (u,v) € E and choose both end-points u and v.
C + CU{u,v}
E+ E\{e€ E|e=(z,y) such that u € {z,y} or v € {z,y}}
end.

3. return C.

The algorithm achieves an approximation factor of 2 because for a chosen edge in each iteration of the
algorithm, it chooses both vertices for vertex cover while the optimal one will choose at least one of them.
Note that picking only one of the vertices arbitrarily for each chosen edge in the algorithm will fail to
make it a 2-approximation algorithm. As an example, consider a star graph. It is possible that we are going
to choose more than one non-central vertex before we pick the central vertex.
Another way of picking the edges is to consider a maximal matching in the graph.
6.1.2 Maximal Matching-based Algorithm

Input: Unweighted graph G(V,E)
Output: Vertex cover C

1. Pick any maximal matching M C E in G.
2. C <« {v| v is matched in M}.

3. return C.

14



It is also a 2-approximation algorithm. The reason is as follows. Let M be a maximal matching of the
graph. At least one of the end-points in all the edges in E '\ M is matched since, otherwise, that edge could
be added to M, contradicting the fact that M is a maximal matching. This implies that every edge in E
has at least one end-point that is matched. Therefore, C' is a vertex cover with exactly 2 | M| vertices.

To cover the edges in M, we need at least |M| vertices since no two of them share a vertex. Hence, the
optimal vertex cover has size at least |M| and we have

VC =2 |M| < 2VCortime

where V' is the size of vertex cover.

7 Weighted Vertex Cover

Given a graph G = (V, E) and o positive weight function w : V — RT on the vertices, find a
subset C C 'V such that for all (u,v) € E, at least one of u or v is contained in C and ), _~ w(v)
is minimized.

The greedy algorithm, which choose the vertex with minimum weight first, does not give a 2-approximation
factor. As an example, consider a star graph with NV + 1 nodes where the central node has weight 1 + ¢,
€ << 1, and other non-central nodes have weight 1. Then, it is obvious that the greedy algorithm gives
vertex cover of weight N while the optimal has only weight 1 + e.

7.1 LP Relaxation for Minimum Weighted Vertex Cover

Weighted vertex cover problem can be expressed as an integer program as follows.

OPT-VC = Minimize ) .y w(v)X(v)
subject to X(u)+X@w)>1 Ve = (u,v) € E
where X (u) € {0,1} YueV

If the solution to the above problem has X (u) = 1 for a vertex u, we pick vertex u to be included in the
vertex cover.

But, since the above integer program is NP-complete, we have to relax the binary value restriction of
X (u) and transform it into a linear program as follows.

LP-Cost = Minimize ) .y w(v)X (v)

subject to X(u)+Xw)>1 Ve = (u,v) € E
where X(u) >0 YueV
Nembhauser and Trotter showed that there exists an optimal solution of the linear program of the form:
0
X*(uw)=4 L.
1

How do we interpret the results from LP as our vertex cover solution? One simple way is to include a vertex
w in our vertex cover if X*(u) > % That is, the resultant vertex cover is

C={ueVX*u)> =}

DN | =

This forms a cover since for each edge, it cannot be that the X values of both end points is < % This turns
out to give 2-approximation of minimum weighted vertex cover. Why?

Zw(u) < ZQX*(u)w(u) < Z2X*(u)w(u) = 2 LP-cost

uel ueC ueV
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Moreover, since LP is obtained by the relaxation of binary value restriction of X (u) in the original integer
program,
LP-Cost < OPT-VC.

Therefore, the cost of the vertex cover we rounded from the LP is

VC =) w(u) < 2O0PT-VC
ueC

7.1.1 Primal-Dual Applied to Weighted Minimum Cover

Although relaxation to LP and rounding from the LP solutions gives us a 2-approximation for the minimum
weighted vertex cover, LP is still computationally expensive for practical purposes. How about the dual
form of the relaxed LP?
Given a LP in standard form:
Primal (P)
Minimize Tz
subject to Az > b
x>0

where z, b, ¢ are column vectors, A is a matrix and T denotes the transpose. We can transform it into its
dual form as follows:

Dual (D)
Maximize bTy
subject to ATy <c¢
y=>0
Then, the dual of our relaxed LP is
DLP-Cost = Maximize ) .Y (e)
subject to 3, (uyer Y(e) < w() Yo eV
Y(e) >0 Ve € E

Y, is called “packing function”. A packing function is any function Y : E — R* which satisfies the above
two constraints.

According to Weak Duality Theorem, if PLP-Cost and DLP-Cost are the costs for a feasible solution to
the primal and dual problem of the LP respectively,

DLP-Cost < PLP-Cost

Therefore,
DLP-Cost < DLP-Cost* < PLP-Cost*

But, remember that PLP-Cost* < OPT-VC. Therefore, we don’t need to find the optimal solution to
the dual problem. Any feasible solution is just fine, as long as we can upper bound the cost of the vertex
cover as a function of the dual feasible solution. How do we find a feasible solution to the dual problem? It
reduces to the problem: “how to find a packing function”. In fact, any maximal packing function will work.

By mazimal, we mean that for an edge e(u,v) € E, increase Y (e) as much as possible until the inequality
in the first constraint becomes equality for v or v. Suppose u is an end-point of the edge e for which the
constraint becomes equality. Add u to the vertex cover, C, and remove all the edges incident on u. Obviously,
C' is a vertex cover. Does this vertex cover give 2-approximation?

Note that

wv) = Z Y(e) WweCl
e(u,v):u€N(v)
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where N (v) is the set of vertices adjacent to vertex v. Therefore,

Zw(v) = Z Z Y() = Z |C N {u,v} Y(e) < Z 2Y(e)

veC v€EC e(u,v):uEN(v) e=(u,v)EE e(u,v)EE
However, according to the constraint of the packing function,

Y
e(u,v):u€N (v)

2, )2 Y

veC* vEC* e(u,v):u€N (v)

g
S
v

N
g
>
\Y

where C* is the optimal weighted vertex cover.
Since some of the edges are counted twice in the right-side expression of the above inequality,

> ¥ weyw

veC* e(u,v):uEN(v) ecE

Hence,

Zw(v) <2 Z w(v) = 2 OPT-VC
velC veC*

One simple packing function is, for some vertex v, to distribute its weight w(v), onto all the incident
edges uniformly. That is, Y, = Z’((;’)) for all the incident edges e where d(v) is the degree of the vertex v.
For other vertices, adjust Y, appropriately. This way of defining packing function leads to the following
algorithm.

7.1.2 Clarkson’s Greedy Algorithm

Input: Graph G(V,E) and weight function w on V
Output: Vertex cover C

1. for all v € V do W (v) + w(v)
2. for all v € V do D(v) + d(v)
foralle€e EdoY,.+ 0
C+0

while E # () do begin
Pick a vertex v € V for which % is minimized
for all edges e = (u,v) € E do begin

A

E+ E\g
W (u)  W(u) - 5 and D(u)  D(u) — 1
W(v
Ye
end
C+ CU{v}and V « V\ {v}
W)« 0

end.

6. return C.
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7.1.3 Bar-Yehuda and Even’s Greedy Algorithm

Input: Graph G(V,E) and weight function w on V
Output: Vertex cover C

1. for all v € V do W (v) < w(v)
2. forallee EdoY, « 0
3. C«+ 0

4. while E # () do begin
Pick an edge (p,q) € E
Suppose W (p) < W (q)
Ye < W(p)
W(q) + W(q) —W(p)
for all edges e = (p,v) € E do begin
E+ E\¢g
end
C+ CU{p}and V « V\ {p}

end.
5. return C.

Note that both these algorithms come up with a maximal packing (or maximal dual solution) and pick
those vertices in the cover for which the dual constraint is met with equality. Any method that comes up
with such a maximal dual solution would in fact yield a 2 approximation. These are just two ways of defining
a maximal dual solution.
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